




classical antivirus techniques) and out-of-the-box rootkit 
detection methods. We discuss how the two types compare 
in cloud computing environments and why. 

A. In-the-box Rootkit Detection : Traditional Method 
In-the-box rootkit detection methods are widely used by 

conventional anti-virus/-malware programs. These methods 
require an agent to be installed inside the system that is to be 
checked for rootkits. The agents scan the system from the 
inside, identifying known rootkit signatures or incoherencies 
caused by rootkits.  

Even when these methods are applied to cloud computing 
environments, they do not take the virtualized status of the 
systems into account. Instead they treat virtual machines as 
real computers and installs an agent into each virtual 
machine inside the system. Each copy of the agent 
independently manages its own version of virus/malware 
signature. 

This form of rootkit detection may have the following 
problems in cloud computing environments. First, it may 
cause A/V storm. In enterprise environments, host IDS/IPS 
software is installed in each host and set up to perform a 
virus scan at specific time, e.g. 12 a.m. Thus, all of the anti-
virus/-malware agents perform the scan at the same time. 
Usually, this is fine. But in cloud computing environments, 
they generate an extremely high workload in the virtualized 
system since all of them reads from storages shared by 
virtual machines and perform signature matching with those 
files for virus/malware, causing disk/network bandwidth 
saturation. This situation is called A/V storm. A/V storm 
greatly reduces the performance of services provided by 
virtual machines in the virtualized system, in which the 
virtual machines under anti-virus scanning are co-located. 

Second, the virus/malware signature should be 
maintained independently for each copy of the agent 
installed. Each of the signatures in virtual machines needs to 
be maintained as the same version to keep the same security 
level of virtual machines. This requirement makes the 
security management of virtual machines complicated since 
virtual machines may be dynamically created, paused, 
restarted, or moved into another virtualized system.  

Third, because the agent works inside the target machine, 
if the machine is really infected with rootkits, the rootkits 
may detect the agents and attempt to fool it. As rootkits often 
manipulate the OS kernel in order to provide the stealth 
power required, it is relatively easy for the rootkit to hide 
from an agent process once the presence and identity is 
known. This leads to incorrect status analysis of the system, 
approving the rootkit-infected system as a clean one.  

B. Out-Of-The-Box Rootkit Detection 
Out-of-the-box rootkit detection methods use a different 

approach. As part of the installation, the methods migrate the 
target system to a virtual machine by installing a Type 1 
hypervisor. Then they utilize VM introspection technology 
to gather a clean view of the system from the hypervisor. 
This is why the methods are called out-of-the-box: they work 
outside of target system, the “box”. 

In a cloud computing environment, out-of-the-box 
approaches synergizes with the cloud computing 
environments in many ways. This is because out-of-the-box 
approaches and cloud computing both utilizes virtualized 
systems as the basis of operation, providing a common 
ground. 

First, the need to install a hypervisor and migrate 
physical hosts to virtual machines is alleviated. This is 
because in cloud computing environments, the systems in 
question are already virtualized. This reduces the total 
operation overhead, because virtualization overheads are 
already accounted for by cloud computing. Also it leads to 
decrease in setup costs. 

Second, it is extremely difficult for a rootkit inside the 
target virtual machine to detect and fool out-of-the-box 
rootkit detection methods. The rootkit detection methods do 
not install anything inside the target virtual machine nor rely 
on the OS system call of the target machine. Even if the 
rootkit keeps track of the virtualized state of the target 
machine in order to detect the installation of out-of-the-box 
rootkit detection methods, the tracking yields no information 
in cloud computing environments, because the infected 
system was virtualized from the beginning. Therefore it is 
much easier to check for rootkits without worrying about 
malicious interferences. 

Third, as the rootkit detection workload is centralized at 
one point in each server, it becomes easier to avoid A/V 
storms. As the tests are all carried out by a single entity per 
virtualized system, it becomes feasible to micro-schedule 
checking for each virtualized machine. This level of control 
is not possible for the in-the-box rootkit detection methods, 
because in that case there is no option but to give each agent 
a predetermined fixed schedule, rendering workload-based 
modifications to the schedules infeasible. 

IV. DESIGN OF ROOTKIT DETECTION SYSTEM 

A. Design Requirements of Rootkit Detection System 
In this section, we discuss the key requirements for 

designing our rootkit detection system. These requirements 
specify the constraints that any rootkit detection system must 
hold to provide optimized performance in cloud computing 
environments. 

1) Agentless Virtual Security Appliances 
The rootkit detection system needs to be implemented as 

an agentless security virtual appliance. This structure should 
be able to access the internal states of VMs through a 
hypervisor API call or similar libraries, while staying out of 
the virtual machines in question. This observation and 
analysis of the internal states and events of VMs including 
the contents of virtual CPU, memory, and disk is called VM 
introspection. Even though VM introspection is the outside 
observation, it can build an almost same semantic view of 
system states and events as a semantic view obtained inside  
VM. Thus, VM introspection is critical to support tamper-
resistant, high-fidelity out-of-the-box VM monitoring, 
resulting in the basis of intrusion detection/prevention. 

Recent malware is getting gradually more stealthy and 
elusive. They are trying to detect and compromise even anti-
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malware software located in the compromised system as well 
as to hide their own presence from intrusion detection in the 
system. Many out-of-the-box based approaches have been 
recently proposed. They place their detection facility in an 
independent VM without locating an agent inside VM 
monitored. Thus, they enable the detection facility to be 
isolated from the monitored VM, making it hard for malware 
to sense and subvert the detection facility itself.  

VM introspection is a crucial technique for agentless 
virtual security appliance. VMware has introduced VMsafe 
API [23] and vShield Endpoint Security API [24], which 
allow third-party security vendors to leverage VM 
introspection-based approach to better monitor, protect, and 
control guest VMs for their ESXi hypervisor [25].  For Xen 
hypervisor and KVM, LibVMI has been presented in [12]. 
However, it has only limited capabilities as VM 
introspection tool. To ensure that the result of VM 
introspection is correct, methods securing a hypervisor need 
to be supported such as kernel integrity check to prevent 
from subverting VM introspection such as work in [1]. 

2) Hypervisor Independece  
There are various virtualization platforms available based 

on different hypervisors, including Xen, VMware ESXi, 
KVM, and MS Hyper-V. Although VMware ESXi is the 
current market leader, Citrix Xen, KVM, and Microsoft 
Hyper-V have increasingly grown their market share [18]. 
Xen is popular in large cloud service providers such as 
Amazon. KVM have been increasingly gaining its popularity 
after RedHat Enterprise Linux began to adopt KVM into its 
product line. Furthermore, MS Hyper-V is seeing increase in 
use after the release of MS Windows Server 2012. Therefore, 
locking into a single hypervisor based platform would 
significantly hamper the applicability of the rootkit detection 
system. The ability to run on different hypervisor types 
becomes crucial in developing a practical rootkit detection 
system that can be implemented and utilized in any cloud 
computing environment. 

3) Performance 
Performance is a key issue in cloud computing 

environment, compared to traditional non-virtualized 
environments. In traditional environments, there always 
exists some slack in resources even in high load scenarios, 
and therefore avoiding major performance hogging was not 
difficult. However, most resources are supposed to be fully 
utilized by being shared among VMs in virtualized 
computing environments. This means that scheduling a 
rootkit detection for each of VMs requires taking into 
consideration of all VMs inside the virtualized system. This 
may place additional burden on a rootkit detection system. 

4) Useablility 
Rootkits are a serious and immediate threat to any 

systems. But the threat is even greater in cloud computing 
environments, because one compromised VM has a potential 
to infect all VMs in the same virtual network of the same 
virtualized system. 

To this end, it is imperative to take measures as soon as 
possible once any rootkit is detected. However, uninstalling 
rootkits from VM in question is very hard because removing 
rootkit itself does not ensure the normal operation of VM 

infected. Naïve deletion of rootkits can even cause the crash 
of VM due to the corruption of critical system structures. 

Therefore, a rootkit detection system should be able to 
effectively cooperate with SIEM(Security Information and 
Event Management) system to take immediate emergency 
measures such as isolating VM in question.  

B. Rootkit Detection VSA Architecture 
In this section, we present the architecture of our rootkit 

detection system in virtualized environments for cloud 
computing. The overview of the architecture is presented in 
Figure 2. The VSA(Virtual Security Appliance) consists of 
vIPS platform, Detection framework, Management 
framework, and miscellaneous modules. vIPS platform is a 
virtual host/network IPS platform that provides hypervisor 
independent API for virtual machine introspection [26]. 
Detection framework is the workhorse of the VSA. It 
functions as a rootkit detection engine and a signature 
database . Management framework takes care of 
communicating with vIPS platform. It mainly takes care of 
policy management and intrusion notification. Miscellaneous 
modules provide utility functions required by the other 
modules. 

 

 
Figure 2.  Architecture of Rootkit Detection VSA 

1) vIPS platform 
We presented vIPS platform in [26], which is a 

hypervisor-independent virtual host/network IPS platform to 
aid developing flexible and effective VSA. It provides 
virtualization platform-neutral API for accessing VM 
information, including VM introspection. Also, vIPS 
platform provides easy integration with SIEMs, improving 
usability in cloud computing environments where there will 
be many VMs shared across many virtualization systems to 
take care of. vIPS platform allows additional IDS/IPS 
functionalities to be added on as a plugin. We designed the 
rootkit detection system as a plugin service on vIPS platform. 

2) Detection framework 
Detection framework is the main workhorse of the rootkit 

detection system. It consists of three modules: signature 
comparison engine module, signature storage module, and 
signature generation module. 
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Signature comparison engine module with rootkit 
signatures in the signature storage module managed by 
Management framework. 

Signature storage module stores rootkit-related signatures 
as a database, allowing fast lookups. Signatures can include 
rootkit signatures that identify the existence of rootkits, and 
clean signatures that ensure the integrity of  a specific 
structure inside VM, such a files or one of  the memory 
sections. 

Signature generation module utilizes the VM 
introspection module to look for comparison targets for 
rootkit detection rules, and either pass the data on to 
signature comparison engine module or register the new 
signature as cross-compared. 

3) Management framework 
Management framework is the administrative part of the 

rootkit detection system.  It consists of two modules: policy 
management module and event generation module. 

Policy management module receives and applies the 
policy settings configured by external  management software 
such as SIEM  via vIPS framework 

Event generation module notifies the vIPS framework of 
the detection result, and generates security events or alerts if 
an intrusion has been detected. 

4) Miscellaneous modules 
Miscellaneous modules include logging module and 

authentication  module.  They act as utility functions for the 
security VSA. 

V. RELATED WORKS 
A few works have previously discussed VMI-based out-

of-the-box approach for rootkit detection. [5,10,17,27,29].  
Garfinkel and Rosenblum present a VMI-based IDS with a 
signature-based detection engine for VMware Workstation, 
combining callback functions for predefined malicious 
events  with polling for other malicious changes inside the 
virtual machine [5].  Payne et al. presents a VM introspection 
library called XenAccess [17], which is now called LibVMI 
[12]. Now LibVMI supports Xen and KVM hypervisors, but 
its accesses are limited to CPU registers and memory of 
virtual machines. 

Most current commercial VMI-based intrusion detection 
tools focuses on VMWare products. Prime examples are 
Juniper Networks’ vGW [9] and Trend-Micro’s Deep 
Security [21]. None of the aforementioned except LibVMI 
includes architecture to support any hypervisor other than 
VMware. 

VI. CONCLUSION 
In this paper, we propose an effective rootkit detection 

method for detecting rootkits inside VMs in cloud 
environments. It builds upon vIPS platform, an effective 
virtualized system security protection platform, to create a 
hypervisor independent, agentless virtualized security 
appliance. 

We are currently in the process of implementing the 
rootkit detection plugin service for vIPS platform. As a 

future work, we plan to evaluate of our implementation in 
terms of performance and rootkit detection accuracy. 
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