

classical antivirus techniques) and out-of-the-box rootkit
detection methods. We discuss how the two types compare
in cloud computing environments and why.

A. In-the-box Rootkit Detection : Traditional Method
In-the-box rootkit detection methods are widely used by

conventional anti-virus/-malware programs. These methods
require an agent to be installed inside the system that is to be
checked for rootkits. The agents scan the system from the
inside, identifying known rootkit signatures or incoherencies
caused by rootkits.

Even when these methods are applied to cloud computing
environments, they do not take the virtualized status of the
systems into account. Instead they treat virtual machines as
real computers and installs an agent into each virtual
machine inside the system. Each copy of the agent
independently manages its own version of virus/malware
signature.

This form of rootkit detection may have the following
problems in cloud computing environments. First, it may
cause A/V storm. In enterprise environments, host IDS/IPS
software is installed in each host and set up to perform a
virus scan at specific time, e.g. 12 a.m. Thus, all of the anti-
virus/-malware agents perform the scan at the same time.
Usually, this is fine. But in cloud computing environments,
they generate an extremely high workload in the virtualized
system since all of them reads from storages shared by
virtual machines and perform signature matching with those
files for virus/malware, causing disk/network bandwidth
saturation. This situation is called A/V storm. A/V storm
greatly reduces the performance of services provided by
virtual machines in the virtualized system, in which the
virtual machines under anti-virus scanning are co-located.

Second, the virus/malware signature should be
maintained independently for each copy of the agent
installed. Each of the signatures in virtual machines needs to
be maintained as the same version to keep the same security
level of virtual machines. This requirement makes the
security management of virtual machines complicated since
virtual machines may be dynamically created, paused,
restarted, or moved into another virtualized system.

Third, because the agent works inside the target machine,
if the machine is really infected with rootkits, the rootkits
may detect the agents and attempt to fool it. As rootkits often
manipulate the OS kernel in order to provide the stealth
power required, it is relatively easy for the rootkit to hide
from an agent process once the presence and identity is
known. This leads to incorrect status analysis of the system,
approving the rootkit-infected system as a clean one.

B. Out-Of-The-Box Rootkit Detection
Out-of-the-box rootkit detection methods use a different

approach. As part of the installation, the methods migrate the
target system to a virtual machine by installing a Type 1
hypervisor. Then they utilize VM introspection technology
to gather a clean view of the system from the hypervisor.
This is why the methods are called out-of-the-box: they work
outside of target system, the “box”.

In a cloud computing environment, out-of-the-box
approaches synergizes with the cloud computing
environments in many ways. This is because out-of-the-box
approaches and cloud computing both utilizes virtualized
systems as the basis of operation, providing a common
ground.

First, the need to install a hypervisor and migrate
physical hosts to virtual machines is alleviated. This is
because in cloud computing environments, the systems in
question are already virtualized. This reduces the total
operation overhead, because virtualization overheads are
already accounted for by cloud computing. Also it leads to
decrease in setup costs.

Second, it is extremely difficult for a rootkit inside the
target virtual machine to detect and fool out-of-the-box
rootkit detection methods. The rootkit detection methods do
not install anything inside the target virtual machine nor rely
on the OS system call of the target machine. Even if the
rootkit keeps track of the virtualized state of the target
machine in order to detect the installation of out-of-the-box
rootkit detection methods, the tracking yields no information
in cloud computing environments, because the infected
system was virtualized from the beginning. Therefore it is
much easier to check for rootkits without worrying about
malicious interferences.

Third, as the rootkit detection workload is centralized at
one point in each server, it becomes easier to avoid A/V
storms. As the tests are all carried out by a single entity per
virtualized system, it becomes feasible to micro-schedule
checking for each virtualized machine. This level of control
is not possible for the in-the-box rootkit detection methods,
because in that case there is no option but to give each agent
a predetermined fixed schedule, rendering workload-based
modifications to the schedules infeasible.

IV. DESIGN OF ROOTKIT DETECTION SYSTEM

A. Design Requirements of Rootkit Detection System
In this section, we discuss the key requirements for

designing our rootkit detection system. These requirements
specify the constraints that any rootkit detection system must
hold to provide optimized performance in cloud computing
environments.

1) Agentless Virtual Security Appliances
The rootkit detection system needs to be implemented as

an agentless security virtual appliance. This structure should
be able to access the internal states of VMs through a
hypervisor API call or similar libraries, while staying out of
the virtual machines in question. This observation and
analysis of the internal states and events of VMs including
the contents of virtual CPU, memory, and disk is called VM
introspection. Even though VM introspection is the outside
observation, it can build an almost same semantic view of
system states and events as a semantic view obtained inside
VM. Thus, VM introspection is critical to support tamper-
resistant, high-fidelity out-of-the-box VM monitoring,
resulting in the basis of intrusion detection/prevention.

Recent malware is getting gradually more stealthy and
elusive. They are trying to detect and compromise even anti-

29

malware software located in the compromised system as well
as to hide their own presence from intrusion detection in the
system. Many out-of-the-box based approaches have been
recently proposed. They place their detection facility in an
independent VM without locating an agent inside VM
monitored. Thus, they enable the detection facility to be
isolated from the monitored VM, making it hard for malware
to sense and subvert the detection facility itself.

VM introspection is a crucial technique for agentless
virtual security appliance. VMware has introduced VMsafe
API [23] and vShield Endpoint Security API [24], which
allow third-party security vendors to leverage VM
introspection-based approach to better monitor, protect, and
control guest VMs for their ESXi hypervisor [25]. For Xen
hypervisor and KVM, LibVMI has been presented in [12].
However, it has only limited capabilities as VM
introspection tool. To ensure that the result of VM
introspection is correct, methods securing a hypervisor need
to be supported such as kernel integrity check to prevent
from subverting VM introspection such as work in [1].

2) Hypervisor Independece
There are various virtualization platforms available based

on different hypervisors, including Xen, VMware ESXi,
KVM, and MS Hyper-V. Although VMware ESXi is the
current market leader, Citrix Xen, KVM, and Microsoft
Hyper-V have increasingly grown their market share [18].
Xen is popular in large cloud service providers such as
Amazon. KVM have been increasingly gaining its popularity
after RedHat Enterprise Linux began to adopt KVM into its
product line. Furthermore, MS Hyper-V is seeing increase in
use after the release of MS Windows Server 2012. Therefore,
locking into a single hypervisor based platform would
significantly hamper the applicability of the rootkit detection
system. The ability to run on different hypervisor types
becomes crucial in developing a practical rootkit detection
system that can be implemented and utilized in any cloud
computing environment.

3) Performance
Performance is a key issue in cloud computing

environment, compared to traditional non-virtualized
environments. In traditional environments, there always
exists some slack in resources even in high load scenarios,
and therefore avoiding major performance hogging was not
difficult. However, most resources are supposed to be fully
utilized by being shared among VMs in virtualized
computing environments. This means that scheduling a
rootkit detection for each of VMs requires taking into
consideration of all VMs inside the virtualized system. This
may place additional burden on a rootkit detection system.

4) Useablility
Rootkits are a serious and immediate threat to any

systems. But the threat is even greater in cloud computing
environments, because one compromised VM has a potential
to infect all VMs in the same virtual network of the same
virtualized system.

To this end, it is imperative to take measures as soon as
possible once any rootkit is detected. However, uninstalling
rootkits from VM in question is very hard because removing
rootkit itself does not ensure the normal operation of VM

infected. Naïve deletion of rootkits can even cause the crash
of VM due to the corruption of critical system structures.

Therefore, a rootkit detection system should be able to
effectively cooperate with SIEM(Security Information and
Event Management) system to take immediate emergency
measures such as isolating VM in question.

B. Rootkit Detection VSA Architecture
In this section, we present the architecture of our rootkit

detection system in virtualized environments for cloud
computing. The overview of the architecture is presented in
Figure 2. The VSA(Virtual Security Appliance) consists of
vIPS platform, Detection framework, Management
framework, and miscellaneous modules. vIPS platform is a
virtual host/network IPS platform that provides hypervisor
independent API for virtual machine introspection [26].
Detection framework is the workhorse of the VSA. It
functions as a rootkit detection engine and a signature
database . Management framework takes care of
communicating with vIPS platform. It mainly takes care of
policy management and intrusion notification. Miscellaneous
modules provide utility functions required by the other
modules.

Figure 2. Architecture of Rootkit Detection VSA

1) vIPS platform
We presented vIPS platform in [26], which is a

hypervisor-independent virtual host/network IPS platform to
aid developing flexible and effective VSA. It provides
virtualization platform-neutral API for accessing VM
information, including VM introspection. Also, vIPS
platform provides easy integration with SIEMs, improving
usability in cloud computing environments where there will
be many VMs shared across many virtualization systems to
take care of. vIPS platform allows additional IDS/IPS
functionalities to be added on as a plugin. We designed the
rootkit detection system as a plugin service on vIPS platform.

2) Detection framework
Detection framework is the main workhorse of the rootkit

detection system. It consists of three modules: signature
comparison engine module, signature storage module, and
signature generation module.

30

Signature comparison engine module with rootkit
signatures in the signature storage module managed by
Management framework.

Signature storage module stores rootkit-related signatures
as a database, allowing fast lookups. Signatures can include
rootkit signatures that identify the existence of rootkits, and
clean signatures that ensure the integrity of a specific
structure inside VM, such a files or one of the memory
sections.

Signature generation module utilizes the VM
introspection module to look for comparison targets for
rootkit detection rules, and either pass the data on to
signature comparison engine module or register the new
signature as cross-compared.

3) Management framework
Management framework is the administrative part of the

rootkit detection system. It consists of two modules: policy
management module and event generation module.

Policy management module receives and applies the
policy settings configured by external management software
such as SIEM via vIPS framework

Event generation module notifies the vIPS framework of
the detection result, and generates security events or alerts if
an intrusion has been detected.

4) Miscellaneous modules
Miscellaneous modules include logging module and

authentication module. They act as utility functions for the
security VSA.

V. RELATED WORKS
A few works have previously discussed VMI-based out-

of-the-box approach for rootkit detection. [5,10,17,27,29].
Garfinkel and Rosenblum present a VMI-based IDS with a
signature-based detection engine for VMware Workstation,
combining callback functions for predefined malicious
events with polling for other malicious changes inside the
virtual machine [5]. Payne et al. presents a VM introspection
library called XenAccess [17], which is now called LibVMI
[12]. Now LibVMI supports Xen and KVM hypervisors, but
its accesses are limited to CPU registers and memory of
virtual machines.

Most current commercial VMI-based intrusion detection
tools focuses on VMWare products. Prime examples are
Juniper Networks’ vGW [9] and Trend-Micro’s Deep
Security [21]. None of the aforementioned except LibVMI
includes architecture to support any hypervisor other than
VMware.

VI. CONCLUSION
In this paper, we propose an effective rootkit detection

method for detecting rootkits inside VMs in cloud
environments. It builds upon vIPS platform, an effective
virtualized system security protection platform, to create a
hypervisor independent, agentless virtualized security
appliance.

We are currently in the process of implementing the
rootkit detection plugin service for vIPS platform. As a

future work, we plan to evaluate of our implementation in
terms of performance and rootkit detection accuracy.

ACKNOWLEDGEMENT
This work was supported by the IT R&D program of

MOTIE/KEIT. [10041872, Development of Virtual Network
Intrusion Prevention Techniques: Analysis, Detection, and
Prevention of Hacking in Virtualized Environments for
Cloud Computing]

REFERENCES
[1] S. Bahram, X. Jiang, Z. Wang, J. L. Mike Grace, D. Srinivasan, J.

Rhee, and D. Xu. DKSM: Subverting virtual machine introspection for
fun and profit. In IEEE International Symposium on Reliable
Distributed Systems (SRDS), 2010.

[2] F. Bellard. QEMU. http://wiki.qemu.org.
[3] Citrix. Xen. http://www.xen.org.
[4] Forrester Research. The evolution of cloud computing markets, 2010.
[5] T. Garfinkel and M. Rosenblum. A virtual machine introspection based

architecture for intrusion detection. In Network and Distributed System
Security Symposium (NDSS), 2003.

[6] Gartner. Cloud computing: Key initiative overview, 2010.
[7] R. P. Goldberg. Architectural Principles for Virtual Computer Systems,

pages 22-26. Harvard University, 1973.
[8] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection through

VMM-based “out-of-the-box” semantic view reconstruction. In ACM
Conference on Computer and Communications Security (CCS), 2007.

[9] Juniper Networks, Inc. vGW Series Virtual Gateway.
http://www.juniper.net/us/en/products-services/security/vgw-series/.

[10] T. Kittel. Design and implementation of a virtual machine
introspection based intrusion detection system. Master's thesis,
Technische Universitat, Munchen.

[11] KVM. Kernel based virtual machine (KVM). http://linux-kvm.org.
[12] LibVMI project. vmitools. |http://code.google.com/p/vmitools/.
[13] P. Mell and T. Grance. The NIST definition of cloud computing, 2009.
[14] Microsoft Corp. Microsoft server and cloud platform.

http://www.microsoft.com/en-us/server-cloud/windows-server/hyper-
v.aspx.

[15] Oracle Corp. Virtualbox. http://www.virtualbox.org.
[16] Paralles. Parallels desktop. http://www.parallels.com.
[17] B. D. Payne, M. D. P. de A. Carbone, and W. Lee. Secure and flexible

monitoring of virtual machines. In Annual Computer Security
Appliances Conference (ACSAC), 2003.

[18] E. Shein. Microsoft, Citrix and KVM continue to erode VMware's
virtualization domination.
http://www.networkcomputing.com/virtualization/microsoft-citrix-
and-kvm-continue-to-ero/232601849.

[19] Sourcefire. Snort. http://www.snort.org.
[20] Symantec. State of cloud survey: Global findings.

http://www.symantec.com/about/news/resources/press_kits/detail.jsp?
pkid=stateofcloud2011, 2011.

[21] Trend Micro, Inc. Deep Security.
http://www.trsendmicro.com/us/enterprise/cloud-solutions/deep-
security/.

[22] VMware. vCloud networking and security.
http://www.vmware.com/products/datacenter-virtualization/vcloud-
network-security/.

[23] VMware. VMsafe. http://www.vmware.com/go/vmsafe.
[24] VMware. vShield endpoint.

http://www.vmware.com/products/vshield/overview.html.

31

[25] VMware, Inc. VMware. http://www.vmware.com.
[26] Y.Shin, M.Yoon, K.Son. Design of a Versatile Hypervisor-based

Platform for Virtual Network-Host Intrusion Prevention. In ICIPT,
2013.

[27] X. Jiang, X. Wang, and D. Xu. Stealthy Malware Detection and
Monitoring Through VMM-Based Out of the Box Semantic View
Reconstruction. ACM Transactions on Information and System
Security, Vol. V, No. N, June 2008, Pages 1-27.

[28] Cisco. Cisco Global Cloud Index: Forecast and Methodology, 2012–
2017.
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/n
s705/ns1175/Cloud_Index_White_Paper.html.

[29] Chris Rogers Virtual Disk Integrity in Real Time, Xen Project
Developer Summit

32

