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Abstract

Rootkits are used by malicious attackers who desire to

run software on a compromised machine without being de-

tected. They have become stealthier over the years as a

consequence of the ongoing struggle between attackers and

system defenders. In order to explore the next step in rootkit

evolution and to build strong defenses, we look at this issue

from the point of view of an attacker. We construct Cloaker,

a proof-of-concept rootkit for the ARM platform that is non-

persistent and only relies on hardware state modifications

for concealment and operation. A primary goal in the de-

sign of Cloaker is to not alter any part of the host oper-

ating system (OS) code or data, thereby achieving immu-

nity to all existing rootkit detection techniques which per-

form integrity, behavior and signature checks of the host

OS. Cloaker also demonstrates that a self-contained ex-

ecution environment for malicious code can be provided

without relying on the host OS for any services. Integrity

checks of hardware state in each of the machine’s devices

are required in order to detect rootkits such as Cloaker.

We present a framework for the Linux kernel that incorpo-

rates integrity checks of hardware state performed by device

drivers in order to counter the threat posed by rootkits such

as Cloaker.

1. Introduction

In order to surreptitiously control a compromised com-

puter, an intruder typically installs software that tries to

conceal malicious code. This software is commonly re-

ferred to as a rootkit. A rootkit hides itself and some ma-

licious payload from the operating system, users and in-

trusion detection tools. The techniques utilized by rootk-

its to avoid detection have evolved over the years. Older

rootkits modified system files and were easily detected by

tools that checked for file integrity [29, 46] or rootkit signa-

tures [38]. To avoid being detected by such tools, rootkit de-

signers resorted to more complex techniques such as modi-

fying boot sectors [33, 51] and manipulating the in-memory

image of the kernel. These rootkits are susceptible to de-

tection by tools that check kernel code and data for alter-

ation [43, 13, 42, 21]. Rootkits that modify the system

BIOS or device firmware [25, 26] can also be detected by

integrity checking tools. More recently, virtualization tech-

nology has been studied as yet another means to conceal

rootkits [31, 44]. These rootkits remain hidden by running

the host OS in a virtual machine environment. To counter

the threat from these Virtual Machine Based Rootkits (VM-

BRs), researchers have detailed approaches to detect if code

is executing inside a virtual machine [20]. Is this the end

of the line for rootkit evolution? We believe that other

hardware features can still be exploited to conceal rootk-

its. For example, Shadow Walker [52] exploits the existence

of separate instruction and data address translation buffers

to hide itself. While Shadow Walker exhibits some weak-

nesses that allow it to be detected by existing approaches,

we aim to show that it is possible to construct a rootkit that

exploits changes to hardware state for more effective con-

cealment. Studying the construction of such a rootkit fuels

the proactive design and deployment of new countermea-

sures. Similar approaches have been used in the past by

other researchers [31, 44, 15].

In this paper, we present Cloaker, an extremely stealthy

proof-of-concept rootkit that exploits ARM processor fea-

tures to avoid discovery. ARM processors power 90% of

mobile handsets shipped today and five billion ARM pro-

cessors have already been consumed by the mobile device

market [6]. With four billion mobile phone subscriptions

expected by 2009 [11] and an increasing deployment of

ARM-based phones, it is essential that the threat posed by

rootkits such as Cloaker be carefully evaluated. In contrast,

the number of worldwide PC users is expected to be a lit-

tle over one billion in 2009, reaching the two billion mark

only by 2015 [56]. ARM-based mobile devices from sev-

eral manufacturers have been broken into in the past and a

number of such attacks are documented in online websites
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and forums [3, 37]. There are also several mobile device

viruses that use Bluetooth connectivity to propagate [15].

However, to the best of our knowledge, Cloaker represents

the first exploration of an ARM processor specific rootkit.

In this paper, we demonstrate that most existing tech-

niques used for rootkit detection are ineffective against

Cloaker. Cloaker does not leave any detectable trace in the

filesystem and is thus invisible to typical intrusion detec-

tion tools that scan filesystems. Similar to VMBRs, Cloaker

does not modify OS code or data. Therefore, it cannot be

detected by integrity checks of the host OS. Cloaker tweaks

hardware registers and settings in a manner that allows it

to execute without interfering with the existing OS. More

specifically, Cloaker exploits an ARM processor setting that

allows the interrupt vector to be located in an alternate re-

gion of memory. It also exploits hardware functionality that

allows several entries in the address translation cache to be

locked down and not be automatically removed using the

typical approaches used by operating systems to flush it.

Most existing rootkits rely on the host OS for services

such as networking, process management, memory man-

agement and other subsystems. Since Cloaker aims to leave

the host OS untouched, it cannot use these services. This

does not diminish the effectiveness of Cloaker. The design

of Cloaker illustrates how malicious users can construct

powerful rootkits even without hooking into the host OS.

Cloaker provides a small and self-contained environment

for malicious code; it provides services such as scheduling,

networking and memory management. In essence, Cloaker

is a malicious and hidden micro-OS environment that co-

exists with the existing OS on the device.

As a consequence of the decision to not modify any ex-

isting code on the system, Cloaker is a non-persistent rootkit

and does not remain in the device after a restart. Given that

most mobile phones are restarted very infrequently, we be-

lieve that Cloaker can still pose a serious threat to the device

while it is powered on. A similar argument is also made by

the authors of other rootkits [44, 19]. As we shall see later

(in Section 8), non-persistence significantly reduces the de-

tectability of rootkits.

Cloaker represents a single instance of a possible new

class of rootkits which rely on architecture and device spe-

cific features to hide themselves. Rootkits such as Cloaker

can be effectively discovered and disabled by code that has

in-depth knowledge of hardware features and settings. Such

code is typically present only in device drivers. Therefore,

in order to detect rootkits like Cloaker, we advocate the de-

sign of a framework for OS device drivers that can check

the integrity of their associated hardware. We believe that

generic software-based rootkit detection approaches and

third party antivirus tools running in user space are weaker

than hardware state integrity checks performed by device

drivers.

Our contributions in this work include

1. Exploration of the threat posed by rootkits that modify

hardware settings for concealment.

2. Demonstration that a rootkit and malicious payloads

which do not rely on the host OS for any services can

be easily constructed within a small memory footprint.

3. Detection techniques for such advanced rootkits.

We have implemented Cloaker on the Texas Instruments

OMAP1610 H2 mobile device development platform [54].

The OMAP1610 is a system-on-chip (SoC) design and is

powered by an ARM926EJ-S processor core [5]. Our ex-

periments with Cloaker use Linux as the host kernel. While

many manufacturers are now shipping Linux-based mo-

bile phones, there are other phone operating systems in

widespread use as well. The vulnerabilities highlighted by

Cloaker, however, may also be applicable to these other op-

erating systems. In this paper, we focus on the ARM ar-

chitecture. Similar attacks may also be possible on other

architectures.

The remainder of this paper is organized as follows. We

illustrate the role of a rootkit in an attacker’s arsenal and de-

scribe defenses against intrusion in Section 2. In Section 3,

we look at the evolution of rootkits in more detail, motivat-

ing the need to look ahead and study possible advances in

rootkit technology. We present the design and implementa-

tion of Cloaker in Section 4. Section 5 describes several ma-

licious payloads that we were able to build using Cloaker.

The limitations of Cloaker are addressed in Section 6. We

discuss some size and performance aspects of Cloaker in

Section 7. Section 8 classifies existing rootkit detection ap-

proaches and evaluates their effectiveness against Cloaker.

In Section 9, we present a framework for the Linux ker-

nel that can be used by device drivers to check the integrity

of hardware state as a countermeasure against Cloaker-like

rootkits. Finally, we conclude in Section 10.

2. Intrusion, Rootkits and Defenses

Before we start discussing rootkits in detail, it is impor-

tant to understand the role played by rootkits in a malicious

attacker’s arsenal. Figure 1 illustrates the use of a rootkit

in a typical attack scenario. The attacker starts off with the

goal of compromising a target machine. Once that goal is

attained, the next step is to avoid detection. This is achieved

by first removing all traces of intrusion. The attacker then

installs a rootkit to hide malicious activity on the machine.

Attackers typically use rootkits in conjunction with pay-

loads such as keyloggers, spam relays and bots. The rootkit

may also provide a covert means for the attacker to access

the machine: usually referred to as a “backdoor”.
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Goal: Compromise Target Machine

Approaches:

Vulnerability Exploitation

Social Engineering

Goal: Avoid Detection

Approaches:

Remove Traces of Intrusion

Rootkit Installation

Goal: Malicious Activity

Approaches:

Sniff Passwords

Steal Files

Figure 1. Role played by a rootkit during a typical attack

The first defensive wall against attackers is usually a

combination of intrusion prevention mechanisms. Detec-

tion techniques are the next defensive wall and are neces-

sary when prevention techniques fail. We address the spe-

cific problem of rootkits and their detection in this paper.

Once an intrusion has been detected, there is also the as-

sociated problem of recovering the system to a clean state.

This is addressed by recovery techniques.

Some examples of intrusion prevention techniques are

use of a firewall, scanning code for viruses before exe-

cution, sandboxing techniques such as SELinux [35] and

MAPbox [1], and control flow enforcement as used in Pro-

gram Shepherding [32] and SecVisor [48]. Some exam-

ples of tools that aid intrusion analysis and recovery are

BackTracker [30], the Repairable File Service [57] and

Taser [22]. Recovery techniques usually rely on logs of sys-

tem activity in order to restore legitimate files and mitigate

the effects of the intrusion. There is a large body of work in

intrusion prevention and recovery and a detailed discussion

of these topics is outside the scope of this paper.

We assume the existence of vulnerabilities that allow for

rootkit deployment. This paper focuses on the hiding and

operational aspects of rootkits. While we discuss some pos-

sible malicious usage of rootkits in Section 5, addressing

this aspect in additional detail is also outside the scope of

this paper.

3. Rootkit Evolution

The sophistication and creativity in the construction of

rootkits has seen significant increases over the course of

time. This evolution is primarily driven by advances in

rootkit and malware detection technology.

3.1. User Mode

Rootkits were originally designed as user space code that

patched or replaced existing applications and provided a

cover for malicious activity. For example, system programs

(like ps and ls on Unix) are changed so that they do not

reveal the presence of certain malicious processes or files.

The hidden processes typically include some malicious pay-

load. A significant number of such rootkits were collected

and studied by Grizzard [24]. Because these rootkits usually

create new files or modify existing files on the system, they

are easily detected by filesystem integrity checking tools

and signature checking tools. Integrity checking tools such

as Tripwire [29] ensure the integrity of existing system files

and folders. Signature checking tools search for traces of

known malware in the system. Signature checking is used

by chkrootkit [38] to scan for known rootkit modifications

to system binaries. This approach is also widely adopted by

most antivirus products in the market today.

3.2. Kernel Mode

To avoid detection by user space tools that scan the

filesystem, rootkit authors resorted to modifying the OS ker-

nel. Such kernel modifications are usually performed us-

ing loadable modules. A popular technique used by kernel

mode rootkits is called “hooking”. This involves modify-

ing kernel instructions or function pointers to change con-

trol flow and run rootkit code. For example, some rootkits

modify the results of system calls by subverting the con-

trol flow of the system call mechanism. This system call

hijacking can be used to implement a filter constructed by

the attacker. The filter hides the presence of malicious files,

processes and sockets. Direct Kernel Object Manipulation

(DKOM) is another approach used by modern kernel mode

rootkits [19]. This avoids modifications of kernel code and

relies only on modifications to kernel data in order to hide

malicious processes.

Several kernel mode rootkits have been collected and an-

alyzed by security researchers [24, 16]. These rootkits are

harder to detect than user mode rootkits because they can

thwart detection attempts from user space tools. Some of

these rootkits are detectable by signature scanning or in-

tegrity checks of kernel code and critical kernel data such

as system call tables and interrupt descriptor tables. In or-

der to evade signature checking tools, rootkit authors have

resorted to writing code that is polymorphic and changes its

signature frequently. For example, this approach is adopted

by newer versions of the Rustock rootkit [16]. Checks for
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anomalous kernel behavior can also help reveal the presence

of such rootkits. Researchers have investigated performing

such checks from within a virtual machine monitor [21, 8].

3.3. Firmware

As kernel mode rootkit detectors improved, malware re-

searchers began to explore more advanced ways for rootkits

to evade detection. Researchers showed that rootkits could

hide by modifying firmware in the system such as the ACPI

BIOS [26] and the PCI BIOS [25]. Such rootkits can be

detected by the Trusted Computing Group’s Trusted Plat-

form Module (TPM) [53] technology which checks the in-

tegrity of the OS image and all the firmware in the system.

TPM chips are already available on a large number of PCs

being sold today. Additionally, existing firmware-based

rootkit prototypes are only useful for persistence. They still

hook the kernel or use DKOM techniques once the kernel is

booted. This makes them vulnerable to the same defenses

used against kernel mode rootkits.

3.4. Virtual Machine Based Rootkits

Virtual Machine Based Rootkits (VMBRs) are yet an-

other step in the evolution of rootkits. The intuition be-

hind this approach is that virtual machine monitors (VMMs)

are normally designed to be transparent to guest operating

systems and this property can be used to hide a rootkit.

VMBRs hide their presence by running the existing host

OS inside a virtual machine. Virtualization protects the

rootkit from detection tools running in the subverted guest

machine. SubVirt [31] was the first prototype rootkit to

demonstrate this concept. Hardware support for virtual-

ization, such as Intel’s VT [55] and AMD’s SVM technol-

ogy, can also be exploited to construct rootkits. The Blue

Pill [44] rootkit leverages virtualization hardware support

to better conceal itself and lower the performance overhead

and memory footprint. Nevertheless, several detection ap-

proaches based on discrepancies between virtual hardware

and physical hardware have been proposed to reveal the

presence of VMMs and VMBRs [20].

3.5. Hardware Configuration

The detectability of rootkits is generally low when they

do not modify any existing code or data in the host OS. This

observation is exploited by VMBRs. We believe that the

next step in rootkit evolution is to exploit the configuration

and state of hardware in order to hide. Modern processors

and peripheral devices incorporate many hardware config-

uration settings that govern their operation. These settings

and other hardware features that are unused by the host OS

may be manipulated in order to support rootkits.

The Shadow Walker [52] rootkit, for example, avoids de-

tection by providing a different view of memory to integrity

checking utilities. It does this by hooking the page fault

handler of the OS and inserting inconsistent entries in the

instruction and data Translation Lookaside Buffers (TLBs).

Shadow Walker, however, exhibits a weakness similar to

kernel mode rootkits and is prone to detection because it

overwrites the OS page fault handler [52]. Cloaker also uses

manipulation of hardware settings to hide, but goes one step

further and completely avoids any changes to the host OS

code or data.

4. Cloaker Design and Implementation

In this Section, we present the approach used by Cloaker

to conceal itself. We also discuss some issues with its in-

stallation into the host OS. We show that it is possible to

provide several services within Cloaker and describe a ver-

sion of Cloaker that we have written for Linux as a demon-

stration.

4.1. Staying Hidden

Cloaker leverages two specific hardware features on

ARM platforms to remain hidden from currently deployed

rootkit detection techniques. The first feature is the abil-

ity to change the location of the interrupt vector by flip-

ping a bit in a processor configuration register. On the

ARM926EJ-S processor [5], this is bit 13 of coprocessor

CP15 register C1. The two possible locations for the in-

terrupt vector are at 0x00000000 and 0xFFFF0000 in vir-

tual memory. Most operating systems for the ARM typi-

cally set this bit so that the interrupt vector is located at the

high address. The page at 0x00000000 is marked as invalid.

This helps to catch null pointer dereferences in OS code.

This approach is adopted by the ARM versions of several

open-source operating systems such as Linux, L4 [34] and

Choices [17]. By changing the coprocessor bit, Cloaker is

able to install a different interrupt vector at 0x00000000.

This vector acts as a trampoline and allows Cloaker to as-

sume control whenever an interrupt is triggered. This is il-

lustrated in figure 2. A primary goal in the design of Cloaker

was to remain hidden from the host OS without modifying

any part of it. This interrupt interception approach provides

Cloaker with periodic control over the processor and, there-

fore, obviates the need to hook OS code or data structures.

An additional benefit of this approach is that the processor

is always switched to a privileged mode when an interrupt

is received. This grants Cloaker complete control over the

processor.

The second ARM processor feature that is exploited by

Cloaker is the ability to lock down entries in the address
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0xFFFF0000

0x00000000

OS Interrupt Vector

OS Interrupt Handlers

Before Cloaker

1

2

Host OS code

Cloaker code

OS Interrupt Vector

After Cloaker

Cloaker Interrupt Vector

OS Interrupt Handlers

Cloaker Payload

2

3

4

0xFFFFFFFF

1

Figure 2. Cloaker operation through interrupt interception: The virtual memorymap on the left shows

the original system and the normal control flow for an interrupt. The one on the right shows the
hijacked control flow after Cloaker is installed.

translation lookaside buffer (TLB). Locking an entry pre-

vents it from being removed by the typical OS code that

flushes the TLB upon address space changes. This essen-

tially allows Cloaker to map in arbitrary memory regions

into the virtual address space of the processor without mod-

ifying any portion of the OS-managed page tables. Cloaker

places a TLB lockdown entry for a 4KB page at virtual ad-

dress 0x00000000 in order to hide its trampoline interrupt

vector. Cloaker places additional lockdown entries to hide

its payloads. The ARM926EJ-S processor core has a unified

data and instruction TLB. An 8 entry fully-associative por-

tion of this TLB is used exclusively for holding locked down

entries. Thus, Cloaker’s usage of locked down TLB entries

does not diminish the number of normal entries available to

the host OS and cause related performance problems. The

TLB entry lockdown feature is not always fully utilized by

most operating systems and thus presents a covert means

for hiding memory mappings. Since the ARM TLB cannot

be read by the OS, detection tools cannot simply scan for

the presence of malicious TLB entries.

Cloaker’s usage of virtual memory at 0x00000000

breaks the semantics of null-pointer dereferences that oc-

cur inside the OS kernel. This is not an issue because such

accesses only happen when there are errors inside the ker-

nel. Current detection systems do not check for the validity

of memory at addresses that the kernel expects to be invalid.

Additionally, because Cloaker only executes when the pro-

cessor is in a privileged mode, the mappings inserted by

Cloaker are configured to allow access only from privileged

processor modes. This ensures that the behavior of null-

pointer dereferences in user space applications remains un-

changed. This also ensures that user space detection tools

which scan for malware signatures have no visibility into

Cloaker.

The ARM processor automatically suspends further in-

terrupts whenever an interrupt is received. Since Cloaker

and its payloads execute only on interrupt handling paths,

the host kernel or other device interrupts cannot preempt or

interfere with Cloaker’s activities. Also, as long as Cloaker

executes payload code only on unpredictable (as far as the

kernel is concerned) interrupts, such as interrupts from a

keyboard or a network device, it does not raise any timing-

related alarm flags in the kernel. For this reason, Cloaker

does not interpose payload code on the host kernel’s timer

interrupt path. All timer interrupts are passed through to the

host kernel using a short control path consisting of only a

couple of instructions.

4.2. Installation

A rootkit installer is commonly referred to as a “drop-

per”. Any vulnerability in the host OS that allows arbitrary

code execution in a privileged mode of the ARM proces-

sor can be exploited by a dropper to install Cloaker. Ker-

nel code is usually executed in some privileged processor

mode. If the attacker gains superuser privileges on a sys-

tem such as Linux, Cloaker can be installed by loading a

dropper packaged as a kernel module. The module should

be subsequently unloaded and deleted to remove traces of

the intrusion. This approach may not be desired if kernel

module insertion events are logged. Yet another approach

to build a dropper would be to directly access kernel mem-

ory and inject rootkit code [47].

Cloaker needs some physical memory pages to store

the trampoline interrupt vector and any malicious payloads.

One possibility is to usurp unused memory on peripheral

devices such as video chips, network chips or other periph-

erals. Memory-mapped NOR flash chips that are commonly
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Various IP Header Fields Chk
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Dst IP Address

Cloaker’s Header Template

Figure 3. IP Networking in Cloaker: Creating a reusable network packet header

found on mobile devices support direct execution of code

stored on them. This may also be used by rootkits. Some

ARM SoC designs incorporate a small amount of on-chip

internal RAM which can be used for fast program execu-

tion. If the host system does not make use of this memory, it

can instead be used by Cloaker. A suitable alternative needs

to be chosen depending on the target system. It should be

noted that this is a one-time task and is only required for

Cloaker’s installation.

4.3. System Services

As noted previously, an important goal of Cloaker is to

avoid detection by not performing any modifications to the

host OS environment and not using any of its services. This

means that Cloaker must support similar services that can

be used by writers of malicious code. Since Cloaker does

not aim to be a full-fledged OS, these services can be simple

and can have a small memory footprint. Cloaker, therefore,

provides a micro-OS environment for malware payloads. A

related effort in providing small execution environments is

TinyOS [27]. Cloaker services, however, need to address

the additional challenge of staying hidden from the host OS.

We discuss three representative services in this paper: mem-

ory management, interrupt management and network com-

munication.

4.3.1. Memory Management

Cloaker includes a memory manager that uses the buddy

memory allocation algorithm to provide dynamic memory

allocation and deallocation services. This component is

only designed to manage allocations within a contiguous

range of memory and it does not support any memory pro-

tection semantics. The smallest possible allocation is con-

figurable and can be as low as 8 bytes. The memory man-

ager component is optional and is not required if payloads

can manage their own memory usage using fixed compile-

time data structures.

4.3.2. Interrupt Management

Cloaker includes an interrupt management library which en-

capsulates the interaction with interrupt hardware. It sup-

ports functionality such as lookups of the current interrupt

number, enabling and disabling specific interrupts and trig-

gering interrupts from software. It also incorporates an in-

terrupt dispatching framework that handles registration of

interrupt handlers and calls them when interrupts are re-

ceived. This library can be used by malware such as key-

loggers to intercept keyboard interrupts.

4.3.3. Networking

Cloaker uses direct interaction with the network chip in or-

der to provide a network communication service. In order

to do this, Cloaker uses a private software driver for the

chip that provides a packet receive and packet send API.

Cloaker supports parsing of Ethernet and IP headers, but

does not include a complete network stack. Nevertheless,

Cloaker is able to establish IP network communication with

arbitrary external entities using a discovery process that de-

termines two important parameters: the host’s IP address

and the gateway’s MAC address. The discovery process ex-

amines random packets from the network until a valid in-

coming packet from an external machine is received. The

last hop for an incoming packet from an external machine

that is not on the same subnet is typically between the net-

work gateway and the host system. Therefore, the host’s

IP address is obtained from the destination IP address in

the packet and the gateway’s MAC address is the same as

the source MAC address in the packet. This whole network

initialization in Cloaker is OS-independent. It may be pos-

sible to obtain these directly from the host kernel memory,

but this is kernel dependent as it would require knowledge

about kernel data structures.

Once the host’s IP and gateway’s MAC addresses are

known, a pre-fabricated Ethernet packet header template is

filled in with these values. This is illustrated in figure 3.

Note that the source MAC address can be obtained from the
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network chip. The destination IP field can be set to any IP

target. This pre-fabricated header can be now be used to

transmit an arbitrary number of packets because commonly

used IP headers do not incorporate any replay prevention

mechanism. Cloaker does, however, recompute the packet

checksum in the IP header for every packet that it sends.

This is because routers usually drop packets with invalid

checksums.

Cloaker’s networking support completely bypasses the

host kernel driver and network stack. We currently use a

significantly stripped down version of the Linux Ethernet

driver for the SMC91X chip on the OMAP1610 H2 board.

Cloaker’s modified driver reads incoming packets from the

chip but does not clear the packets from the chip’s buffers.

This allows intercepted packets to be also correctly received

by the host kernel’s driver.

4.4. Reducing the Amount of Code

Cloaker’s implementation attempts to achieve a small

memory footprint. A key observation that significantly

helps reduce the amount of rootkit code required to drive de-

vices and provide services is that part of this job may have

already been performed by the host kernel. For example,

device drivers in Cloaker do not need to include initializa-

tion code for devices that are already initialized by the ker-

nel. It is possible to achieve further reductions in code size

by adopting a technique that reuses existing kernel code at

runtime without tainting kernel data. It is important to en-

sure that kernel data is not modified because this opens up

the rootkit to detection. We start by identifying kernel code

that operates only on arguments passed in through registers

rather than by looking up and using global variables. Such

code can be directly called from within the rootkit with ar-

guments that point to rootkit data instead of kernel data.

Thus, we are able to run kernel code and not affect kernel

data. This, however, makes the rootkit closely tied to the

kernel.

The need to rewrite OS-like code in Cloaker to support

malware is a limitation and is the price paid for avoid-

ing detection by OS integrity checkers. When developing

Cloaker, we discovered a means to simplify the writing of

rootkit code and reduce the burden on programmers. While

the discussion in the previous paragraph focused on execu-

tion time reuse of kernel code, we also managed to reuse

kernel code during compile time by building Cloaker in

the build environment for the kernel. During the develop-

ment of Cloaker for Linux, we were able to reuse a large

number of Linux utility macros and support functions by

building the rootkit as part of the kernel build process. It

should be noted that we are not building Cloaker into the

kernel; we are only reusing kernel headers and libraries to

build Cloaker as an independent executable. Also, while

execution-time code reuse helps reduce the memory foot-

print, compile-time code reuse primarily helps reduce pro-

grammer effort.

4.5. Cloaker for Linux

We wrote Cloaker for kernel version 2.6.23.1, which is

the latest stable version of the Linux kernel as of this writ-

ing. The majority of Cloaker’s code is written in the C lan-

guage. A small section of the code that deals with the initial

interrupt handling is written in assembly. Our current in-

sertion strategy for Cloaker is to use superuser privileges to

load a kernel module which is unloaded immediately after-

ward. More untraceable insertion techniques could be used,

but this topic is not the focus of this work.

The Cloaker installer in the module first disables inter-

rupts to avoid any interference. In order to insert the tram-

poline interrupt vector and payload, some physical memory

is required that is not used by Linux. We currently request

free pages from the kernel and translate them into physical

pages for use by the rootkit. When the module is unloaded,

these pages are not deallocated. To the kernel, this process

essentially looks like a memory leak. It should be noted

that, unlike rootkits that use DKOM, this does not alter the

functional aspects of the kernel and can therefore, remain

unnoticed. Stealthier alternatives to obtain memory were

presented earlier in this Section. Cloaker then inserts entries

in the TLB lockdown region. It installs the trampoline in-

terrupt vector and its payload before re-enabling interrupts.

5. Malicious Payloads

In this Section, we show (by construction) that Cloaker

services can be used to carry out several typical malicious

activities. Malicious payloads generally perform one or

more of the following activities: intercepting I/O opera-

tions, stealing information from the host, covertly receiv-

ing commands or transmitting data. When using Cloaker,

malicious payloads need to conform to the same stringent

policy of not modifying OS code or data in order to avoid

detection. Additionally, since all payloads are executed in

processor interrupt context with further interrupts placed on

hold, they should complete execution quickly at every in-

vocation. This avoids delaying timing sensitive interrupts

such as the host kernel timer.

In the previous Section, we described how Cloaker es-

tablishes covert communication with external entities using

direct access to network devices. Malicious payloads can

use similar direct access to other devices in order to inter-

cept communications or steal information from the host.

For example, direct device access can be used to inter-

cept keystrokes or obtain sensitive information from flash
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memory or disks. Alternatively, payloads can snoop on the

buffers used by the OS to interact with these devices.

We used a combination of Cloaker services and direct

device access to construct three malicious payloads: a

keystroke sniffer (Keylogger), a network distributed denial-

of-service attack tool (DDosIP) and a data stealer (Infor-

mant). These payloads are written in the C programming

language.

5.1. Keylogger

We built a keylogger that captures all user input received

through a serial port on the OMAP1610 H2 board. The se-

rial port device is a National Semiconductor 16550 UART,

which is also found in most modern PCs. It has dual 64 byte

transmit and receive FIFO buffers. The keylogger registers

with Cloaker to receive the interrupts from the serial port.

Whenever it sees any data in the receive buffer, it reads and

logs the data in local memory. However, the act of read-

ing data from the serial port automatically empties the read-

only receive buffer and prevents the input from being sent

to the OS. In order to solve this problem, we exploit a de-

bug setting in the UART chip that loops back the transmit

lines to the receive lines. We enable loopback, write out the

logged keystrokes and then disable loopback. This ensures

that the input is received by the OS as expected.

Many devices such as GPS receivers, RFID readers and

external input devices also interact with the kernel through

serial interfaces. Our keylogger can be used to intercept

traffic between these devices and the OS to capture sensitive

information.

Another possible implementation of a keylogger would

be to directly sniff OS input buffers. This is, however, OS-

specific and it is possible that the keylogger fails to capture

some keystrokes. This scenario could happen if the input

were consumed by the host OS before the keylogger could

execute.

5.2. DDosIP

A Distributed Denial-of-Service (DDoS) attack on a tar-

get IP address is performed using a large number of com-

promised machines, each of which can be programmed to

send out a low bandwidth attack in order to avoid raising

alarms at the sources. For mobile devices using wireless

connectivity, the low bandwidth usage also helps ensure that

battery life and network performance are not significantly

disrupted.

The DDosIP payload uses Cloaker’s interrupt manage-

ment services to enable an unused hardware timer on the

OMAP1610 and registers to receive the interrupts from this

timer. This allows it to periodically send a packet when it

is invoked by the interrupt handler. DDosIP makes use of

the networking support in Cloaker and can fill a packet with

arbitrary content before sending it over the network. The

bandwidth of the attack is configurable by modifying the

interval between timer interrupts.

5.3. Informant

The Informant payload uses Cloaker network services to

communicate with an external machine. In this case, the

goal is to send out sensitive information from the host. In-

formant can be statically configured with the IP address of

the machine to which the packets are sent. A custom tool at

the receiver is used to parse incoming packets and present

the contents of messages to the attacker. We currently use

Informant to send out the logs from the keylogger payload

whenever its buffer is full. One can envision other attacks

which use Informant; for example, stealing data from flash

memory or host kernel memory.

It is important to remember that packets sent through the

network by Informant or the DDosIP payload can raise sus-

picions and can be detected by external network-based in-

trusion detection systems that snoop on traffic to and from

the device. It may be possible to use covert channel tech-

niques to bypass such detectors.

6. Limitations

Since Cloaker exploits hardware features to hide, it is

necessarily closely tied to the hardware platform. Features

and settings can change between processor versions result-

ing in the need for possible code or design changes. New

device drivers would have to be written for Cloaker if the

chipsets on the platform are changed. Unlike generic rootk-

its that are mostly tied only to the OS, Cloaker is inherently

less portable across hardware.

To avoid detection, Cloaker does not use the services

provided by the host OS and does not attempt to modify

the behavior of the host OS to hide information such as pro-

cesses and files. Instead, Cloaker provides its own set of

services. Malware writers are forced to use a non-familiar

and highly constrained operating environment to write pay-

load code. Therefore, unlike VMBRs which allow malware

writers to use arbitrary code and still avoid detection, rootk-

its like Cloaker are more difficult to use.

Eschewing the use of OS services does not imply that

Cloaker is OS-independent. While developing Cloaker

and experimenting with various configuration options in

the Linux kernel, we discovered that enabling kernel sup-

port for handling memory access alignment faults disables

Cloaker. On the ARM architecture, accesses to memory

words must be aligned to 32 bit boundaries. Alignment

faults allow the kernel to emulate non-aligned accesses cor-

rectly. Further investigation revealed that, once this func-
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tionality was enabled, the configuration register with the bit

that Cloaker relies on for interrupt redirection was being re-

set every time a user mode program was interrupted. This is

because another bit in the same register determines whether

alignment faults are generated and Linux keeps overwriting

the register to manipulate it. This illustrates that rootkits

such as Cloaker are closely tied to the OS and its configura-

tion.

7. Evaluation

In this Section, we evaluate Cloaker and our sample ma-

licious payloads in terms of size and performance.

7.1. Size and Code Complexity

Cloaker is an extremely small rootkit. Our payloads also

have a small memory footprint. Table 1 shows the number

of lines of code in each component and the corresponding

compiled size. The size of Cloaker includes the trampo-

line vector, private stack, an interrupt management library,

networking support, and a set of minimal device drivers.

The numbers in the table show that we are able to write

extremely small and compact code that can support several

malicious activities using Cloaker. In particular, the small

sizes of the payloads are due to the fact that they are able to

efficiently utilize Cloaker services through simple function

calls. The current code is also not optimized for size. It may

be possible to achieve further reductions in size through ag-

gressive code optimization.

We were able to write all our payload examples without

the use of the optional memory management library. This

library may be required for more complex payloads that re-

quire dynamic memory allocation and deallocation facili-

ties. We list this library’s size in the table because it illus-

trates that a reasonably small dynamic allocator can also be

incorporated if desired.

The total size in bytes for all the components (installer,

rootkit and payload) without the optional memory man-

agement component is 5036 bytes. When packaged as a

Table 1. Sizes of Cloaker and payloads

Component Lines of Code Compiled Size

(C semicolons) (bytes)

Cloaker 147 3544

MemoryManagement 101 2008

Keylogger 34 384

DDosIP 12 256

Informant 11 220

Installer/Dropper 63 632

Linux kernel module, additional code required by the mod-

ule loader mechanism boosts the size to 28,470 bytes. Once

installed, Cloaker, its payloads, its stack and data all fit com-

fortably within the first two 4 KB pages of virtual memory.

7.2. Performance

Since Cloaker intercepts all processor interrupts, and

occasionally executes payload code, system performance

is affected. In order to measure changes in performance,

we use the lmbench [36] benchmarking suite (version 2)

for Linux. The benchmarks were performed using ver-

sion 2.6.23.1 of the Linux kernel, and with the ARM core

clocked at 120 MHz. All performance numbers in this Sec-

tion are reported as an average of 5 independent measure-

ments with error estimates provided by the sample standard

deviation.

Table 2, Table 3 and Table 4 show Cloaker’s effects on

the benchmarks gathered by lmbench. For more details

about each specific benchmark, the reader is referred to the

lmbench documentation. In each table, the first row of re-

sults lists the measurements for Linux without the rootkit.

The second row corresponds to Linux with Cloaker in-

stalled. In this configuration, Cloaker is intercepting all in-

terrupts to the system, but it is not running any payloads.

The third row corresponds to the case when Cloaker is be-

ing used to send attack packets over the Ethernet using the

DDosIP payload. The attack bandwidth for all experiments

is a 2 KB/s data stream.

Table 2 illustrates the effects of Cloaker on user-space

processes interacting with the OS through several stan-

dard system calls. The benchmark measurements show

that Cloaker’s installation has very little effect on the per-

formance of the host OS, even while running the low-

bandwidth DDosIP payload. In all these experiments, there

is no user input and therefore, the keylogger payload is not

involved.

Table 3 shows the effect on context switching time be-

tween different numbers of processes with different work-

ing set sizes. Some additional latency and bandwidth mea-

surements reported by lmbench are shown in Table 4. La-

tencies are shown for pipe and Unix socket communica-

tion and for servicing a memory protection and page fault.

Bandwidth measurements are reported for pipe and Unix

socket communication and file access. Again, the perfor-

mance numbers in all three rows are comparable. This sug-

gests that existing rootkit detection suites that rely on OS

performance changes may not be able to easily discern the

presence of Cloaker.

We use the ttcp network benchmark tool to measure the

impact of Cloaker and the DDosIP payload on network

bandwidth. These experiments were performed using the

OMAP1610 H2’s 10 Mbps Ethernet controller. Bandwidth
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Table 2. lmbench: Process operations - times in microseconds (smaller is better)

null-call null-I/O stat open-close sig-inst sig-handle fork-proc exec-proc

Linux 1.21 ± 0 7.5 ± 0.7 31.4 ± 1.3 65.3 ± 2.4 15.3 ± 2.0 26.4 ± 0.2 7721 ± 178 8958± 33

Linux+Cloaker 1.34 ± 0 8.1 ± 0.1 31.4 ± 0.9 69.9 ± 3.1 13.9 ± 0.6 27.9 ± 0.6 7726 ± 100 9028± 33

Linux+DDosIP 1.34 ± 0 8.1 ± 0.2 32.3 ± 1.4 68.1 ± 2.4 15.2 ± 2.2 27.8 ± 0.3 7847 ± 206 9026± 66

Table 3. lmbench: Context switching times in microseconds (smaller is better)

2p-0K 2p-16K 2p-64K 8p-16K 8p-64K 16p-16K 16p-64K

Linux 332.2± 0.9 659.9± 4.6 1295.1± 10.4 783.7± 5.3 1429.2± 10.0 781.2 ± 4.4 1417.5± 6.10

Linux+Cloaker 339.2± 3.4 669.4± 5.3 1305.8± 6.90 796.6± 7.5 1441.1± 17.7 791.5 ± 6.8 1435.3± 7.70

Linux+DDosIP 338.3± 3.2 665.6± 6.5 1317.7± 28.3 786.9± 3.1 1424.0± 15.1 790.3 ± 2.9 1428.3± 10.7

Table 4. lmbench: Latencies (microseconds, smaller is better) and local I/O bandwidth (MB/s, larger

is better)

Latencies Bandwidth

Pipe AFSocket ProtFault PgFault Pipe AFSocket FileOpenClose

Linux 729.2 ± 2.00 1341± 125 2.6 ± 0.7 167.4 ± 3.7 9.2 ± 0.3 9.6 ± 0.4 15.6 ± 0

Linux+Cloaker 740.5 ± 2.00 1314± 108 1.1 ± 0.3 172.4 ± 6.1 9.4 ± 0.2 9.8 ± 0.1 15.5 ± 0

Linux+DDosIP 720.9 ± 44.1 1364± 132 1.1 ± 0.5 172.6 ± 0.9 9.5 ± 0.2 9.9 ± 0.1 15.5 ± 0

Table 5. Network bandwidth measurement

with ttcp (KB/s, larger is better)

MTU=1500 MTU=500

Linux 774.67± 3.37 566.99± 2.23

Linux+Cloaker 771.42± 5.43 559.62± 2.60

Linux+DDosIP 742.47± 6.93 515.20± 5.45

is measured using a 16 MB data download to the device

through a TCP connection. Table 5 shows the results when

the maximum transmission unit (MTU) is set to 1500 bytes

(Ethernet default) and when the MTU is set to 500 bytes (di-

alup default). Installing Cloaker causes a very small drop in

bandwidth which is more pronounced for the smaller MTU.

When running the DDosIP payload, the bandwidth drops

more significantly. The bandwidth drop is due to some con-

tention for buffers on the network chip and some perfor-

mance issues with our network chip driver (when the host

driver is also using the chip).

We also measured the additional delay introduced by the

keylogger which intercepts keyboard input to the OS. Our

measurements show that the overhead of this operation is

46 nanoseconds. Human users cannot perceive this delay in

keyboard input processing.

The measurements in this Section show that Cloaker’s

techniques minimally affect critical operations in the host

kernel.

8. Existing Rootkit Detection Techniques

Cloaker was designed to demonstrate that rootkits using

hardware-supported concealment can remain undetected by

currently available approaches. This is because few exist-

ing detection techniques attempt to check the integrity of

hardware state. In this Section, we examine this aspect of

Cloaker in additional detail. Existing tools use integrity

checks, signature checks, VMM presence checks and scans

of physical memory using hardware in order to detect rootk-

its.

8.1. Classification

8.1.1. Integrity Checks

Integrity checker tools for rootkit detection can be classi-

fied into three types: file integrity checkers, platform in-

tegrity checkers and kernel integrity checkers. File integrity

checking tools periodically compute hashes of system files

that are not expected to change and compare these hashes

with their original values. Some examples of such tools are

Tripwire [29] and Samhain [46].
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AEGIS [4] and Trusted Platform Module (TPM) [53]

technology can be used to detect rootkits that modify the OS

or firmware. The TPM contains special Platform Configu-

ration Registers (PCRs) that reflect the configuration of the

machine. These PCRs contain a checksum of all code that

is used to boot the machine, including the BIOS, firmware,

bootloader and kernel. If the BIOS or peripheral firmware is

modified, the TPM’s PCR value would not match, thereby

detecting the alteration.

In order to detect rootkits that perform on-the-fly mod-

ifications to code or data in the running kernel, integrity

checks can also be applied to the kernel. Kernel code and

immutable data can be checksummed in order to detect al-

teration. This operation could also be performed using hard-

ware to prevent interference from malware. For example,

CoPilot [40] is a PCI card which directly reads kernel mem-

ory using DMA and uses hashes to ensure that the integrity

of the kernel is not compromised. Some newer ARM chips

include a similar hardware component called the Run-Time

Integrity Checker (RTIC) [7]. Performing such checks us-

ing specialized hardware has the additional benefit of free-

ing up the processor to do other work and thus reduces over-

heads. Another technique is to use performance counters on

the processor, if available, to check if unexpected extra code

is being executed.

Checking the integrity of dynamically changing kernel

data is a challenging problem. The difficulty in performing

such checks is exploited by rootkits that use a technique

called Direct Kernel Object Manipulation (DKOM). Since

rootkits that use DKOM do not interpose any code on the

execution path of the kernel, detection techniques that just

check for changes to kernel code cease to work. In order to

deal with this problem, researchers have developed several

techniques that check for suspicious behavior of the kernel.

Virtual machine introspection [21] provides significant

visibility into the OS being protected and can be used to de-

tect kernel mode rootkits. For example, the kernel process

table can be examined by a VMM and compared against

the process list reported by a user space program. Mem-

ory writes to critical kernel structures may be controlled. In

general, the kernel can be scanned for a number of telltale

signs of intrusion.

Strider Ghostbuster [10] uses a technique called cross-

view diff to detect rootkits. Similar to some of the de-

tection techniques possible with virtual machine introspec-

tion, this involves comparing information from two van-

tage points. For example, inconsistencies between the raw

registry files on disk and information reported by querying

the registry through kernel APIs signal the presence of a

rootkit. While Strider Ghostbuster is not publicly available,

Microsoft has released RootkitRevealer [12] which uses a

similar approach. RootkitRevealer, however, does not de-

tect non-persistent rootkits because it focuses only on hid-

den files and registry entries on disk. Klister [43] reads in-

ternal kernel data structures in order to reveal any hidden

processes in the system.

VICE [13] and Patchfinder [42] check for rootkits that

hook into control flow paths in the kernel. Other re-

lated techniques include proving integrity to a remote

party (remote attestation) as used in SWATT [50] and Pi-

oneer [49] and detecting malware using a semantics-based

approach [41].

8.1.2. Signature Checks

While integrity checking tools attempt to discover any al-

terations to the host system, signature checking tools scan

for the presence of known malware. The benefit of signature

checks is apparent in dynamic environments where integrity

checks are difficult or infeasible to perform. This approach

is used by chkrootkit [38] and many commercial antivirus

tools to identify rootkits that modify files on the system in

known ways. Signature checking tools are heavily depen-

dent upon their database of signatures which needs to be

constantly updated in order to protect against newer threats.

The inability to detect new malware for which signatures

are unavailable is the biggest drawback of this approach.

In addition to scanning the disk, physical memory can

also be scanned for malware signatures. Again, hardware

can be used to avoid reliance on the correctness of the host

kernel. Tribble [14, 23] is a PCI card that can be used to save

a copy of physical memory for analysis. Firewire ports have

also been used to access system memory [9]. An advantage

of using hardware-based scanners is the ability to check the

entirety of physical memory (as opposed to just the kernel

virtual address space) for malware signatures.

Unfortunately, it has already been demonstrated that

such hardware-based memory scanning tools can be de-

ceived [45]. It is interesting to note that the demonstrated

attacks against hardware-based memory scanners also make

use of hardware configuration manipulation (like Cloaker):

in this case, on AMD64 hardware. Yet another attack

against signature scanning tools is adopted by malware code

that is designed to mutate itself (polymorphic malware).

8.1.3. VMM Detectors

VMBRs are susceptible to a variety of detection techniques

that check for hardware and timing discrepancies [20, 18].

Hardware discrepancies arise due to the need for creating

a virtual hardware environment for the host OS. Timing

discrepancies arise because some operations take different

amounts of time on native hardware when compared to vir-

tual hardware. Garfinkel argues that it may not be worth it to

even write VMM-based malware because it essentially re-

duces the difficult problem of detecting rootkits to the easier

problem of detecting unexpected VMMs [20].
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Table 6. Effectiveness of existing rootkit detection techniques

Rootkits

User Mode Kernel Mode
Firmware VMBRs Cloaker

Technique Persistent Non-Persistent Persistent Non-Persistent

File/Disk Integrity Checks X × X × × × ×
Platform Integrity Checks (TPM) × × X × X × ×
Runtime Kernel Integrity Checks - - X X X × ×
File/Disk Signature Checks X × X × × × ×
Physical Memory Signature Checks X X X X X X X

VMM Detectors - - - - - X ×

8.2. Effectiveness

Table 6 lists existing approaches used for rootkit detec-

tion and compares their detection abilities. We classify user

and kernel mode rootkits into persistent and non-persistent

versions. Persistent rootkits modify files or sectors on disk

and can therefore be detected by integrity checks or signa-

ture checks of files or disk sectors. An alternative means

to achieve persistence is to modify firmware. Existing

firmware rootkits eventually modify kernel structures and

can therefore be detected by kernel integrity and signature

checks. It may be possible to operate such rootkits in a

self-contained manner similar to Cloaker to avoid detec-

tion, but this is not used in existing designs. In any case,

all firmware rootkits are detectable using TPM technology.

Non-persistent rootkits can only be detected by scanning

memory at runtime or by watching for suspicious behavior.

Cloaker adopts non-persistence for this reason.

Since Cloaker deliberately avoids modifications to the

running kernel, both checksum-based and behavior-based

kernel integrity checks are rendered ineffective. The version

of Cloaker presented in this paper is vulnerable to signature

scans of physical memory. Polymorphic techniques could

be adopted to weaken this defense against Cloaker, but we

have not yet explored this direction.

In addition to the support for locking down TLB entries,

many ARM processors include support for locking down

lines in the processor cache. This feature can also be used

to hide malware from hardware-based signature scanners on

peripheral buses. While the entire rootkit may not fit inside

the cache, arbitrary portions of the rootkit can be stored in

the cache and the corresponding locations in physical mem-

ory can be overwritten with random data to thwart scanners

that only scan physical memory. Cloaker currently does not

support this feature.

VMM detectors address the specific problem of checking

for unexpected virtual machine monitors and are therefore

not applicable to any of the other types of rootkits.

The analysis in this Section shows that Cloaker is ex-

tremely effective at thwarting most existing rootkit detec-

tion approaches. We would also like to note that the payload

examples that we implement and discuss in Section 5, fol-

low the same hiding principles as Cloaker and are equally

stealthy.

9. Checking Integrity of Hardware State

In order to check for the presence of rootkits like Cloaker

that modify hardware state, this state can be compared with

host kernel expectations. Device drivers generally contain

information about the expected state of the hardware that

they control. Thus, we believe that an effective countermea-

sure against hardware supported rootkits is to allow each in-

dividual device driver to check the integrity of the state in

its corresponding hardware device. We assume that devices

drivers are non-malicious and signed by a trusted party.

We design and implement a framework for the Linux

kernel that allows device drivers to register integrity check

routines which are used at run-time to check for malware.

This framework is not architecture specific and can be used

on any platform supported by Linux. The design for the

framework is illustrated in figure 4. The registered integrity

check functions are grouped together as a table of function

pointers in a separate section of the kernel at compile time.

The kernel has an integrity check management component

which can invoke these functions at run-time to examine

hardware state integrity. All detected inconsistencies are

reported. The presence of even a single inconsistency may

indicate the presence of Cloaker-like malware.

The framework itself needs to be protected from mali-

cious code. This is possible using existing approaches to

ensure code integrity. For example, hashes can be used

to detect unexpected changes to code and static data. This

can be augmented with hardware-supported code protection

technologies such as AEGIS [4], ARM’s TrustZone [2] or

DRTM [28].

We used the framework to add integrity check routines

for several devices on the OMAP1610 H2 platform. An in-
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tegrity check routine implemented using our framework ex-

amines the validity of the contents in the coprocessor CP15

register C1. This would report an inconsistency if Cloaker

were installed because the bit governing the location of the

interrupt vector would be flipped. In addition to this check,

integrity checks were also written for the serial port driver

and the OMAP1610 interrupt controller driver. The serial

port driver controls multiple physical hardware devices and

the associated integrity check routine checks for valid state

in all of them. More specifically, the function checks that

the serial port control registers are consistent with the val-

ues in the kernel. Unfortunately, since our keylogger pay-

load controls serial ports in a way that always restores the

control register state, this integrity checker is ineffective

against it. For the interrupt controller, the integrity checker

detects if any unexpected interrupt is enabled. This detects

the DDosIP payload because it relies on an unused timer

interrupt to execute. These and other similar checks make

it difficult for rootkits like Cloaker to remain undetected in

our framework-enhanced version of Linux.

This detection framework may also be extended and used

to disable the functional or stealth aspects of rootkits. This

is possible if, in addition to raising an alert, the integrity

check routines also attempt to fix the problem by correcting

unexpected state alterations. Care would have to be taken

when disabling rootkits in this manner to prevent incorrect

fixes from crashing the system. We are in the process of

further exploring this direction.

Requiring device drivers to provide check routines seems

like a difficult task to complete for existing operating sys-

tems. It is possible that once such a framework and API is

standardized and made available, manufacturers of devices

can ship drivers with such integrity check routines for their

devices. This should improve security in the long term. In-

tegrity check routines can also be used as a tool for improv-

ing reliability. By running periodic integrity checks, it may

be possible to detect faults sooner and apply fixes, avoiding

system crashes. These reliability and security benefits may

motivate adoption of such frameworks.

Other solutions to detecting Cloaker-like rootkits may be

possible. While hardware memory scanners that sit on pe-

ripheral buses may be tricked, it may be possible to con-

struct better malware detectors by designing hardware that

is located close to the processor and monitors its operations.

This could be achieved by extending existing designs for

processor monitoring hardware such as the Reliability and

Security Engine (RSE) [39] to check for unexpected con-

trol flow changes in the processor. We leave this as an open

research problem.

10. Concluding Remarks

In this paper, we have illustrated the threat posed by

changes to hardware settings made by malicious code. We

have demonstrated that it is possible to construct a usable

rootkit that makes no changes to the host OS code or data

and thus, evades detection by existing approaches.

Cloaker is not without limitations though. Unlike VM-

BRs, which provide a rich and easy-to-use environment for

rootkit writers, Cloaker provides a more constrained envi-

ronment. Rootkits like Cloaker are also closely tied to the

hardware and host OS. Whilst these factors may dissuade

widespread adoption, a determined attacker may still con-

struct and deploy such a rootkit.

We have shown and analyzed in detail one possible hard-

ware configuration based exploit that malware writers can

use for rootkit concealment. Other hardware features can

also be used to hide malware. As described elsewhere in

this paper, cache line lockdowns and the ability to execute

code out of NOR flash can be used to build stronger variants
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of Cloaker. Mobile phones have some unique characteris-

tics that differentiate them from desktop or server systems.

Because of the need to conserve battery life, they are usually

designed to switch to a low power mode whenever possible.

On the ARM processor, an instruction can be executed that

places it in a state called “deep sleep mode”, from which

it can only be awakened by an interrupt. This feature may

be exploited to run malicious code when the host OS ex-

pects the processor to be sleeping. By configuring unused

timers or some other device to wake up the processor earlier

than expected, malware can execute on the processor with-

out being detected by timing based countermeasures in the

OS. While this may result in decreased battery life, we be-

lieve that it is difficult to correlate small variations in battery

life to the presence of malware.

It is important to realize that more sophisticated rootkits

may be constructed by incorporating advanced knowledge

about the host OS. The ability to interpret host kernel struc-

tures may be used to defeat detection mechanisms or sup-

port additional malware. For example, Cloaker only sup-

ports Ethernet-like networks with no encryption. If Cloaker

were augmented with information about host kernel data

structures, it would be possible to intercept encrypted net-

work protocols by stealing keys from the host kernel.

We hope that our work motivates future computer system

designers to carefully evaluate security gaps at the bound-

ary between computer architecture and system software and

consider deploying a defensive framework similar to the one

presented in this paper, or other appropriate countermea-

sures.

Cloaker is not a completely weaponized rootkit and does

not pose an immediate security threat. Nevertheless, we do

not intend to make the source code for Cloaker available to

the general public. Additional details regarding this project

and the source code for the detection framework can be ob-

tained from our website at http://srgsec.cs.uiuc.

edu/.
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