
Journal of Information Assurance and Security 4 (2009) 247-255

Received June 10, 2009 1554-1010 $ 03.50 Dynamic Publishers, Inc

Bobby D. Birrer 1, Richard A. Raines, Rusty O. Baldwin, Mark E. Oxley, and Steven K. Rogers2

1Air Force Institute of Technology,

2950 Hobson Way, Bldg 642, WPAFB, OH, USA 45433-7765
john.doe@afit.edu

2 Air Force Research Laboratory,

2241 Avionics Cir., WPAFB, OH, USA 45433-7765
john.doe@wpafb.af.mil

Abstract: Detecting network intruders and malicious software is

a significant problem for network administrators and security
experts. New threats are emerging at an increasing rate, and current

signature and statistics-based techniques are failing to keep pace.
Intelligent systems that can adapt to new threats are needed to

mitigate these new strains of malware as they are released.

This research discusses a proposed system that uses hierarchical

models, contextual relationships, and information across different
layers of abstraction to detect malware based on its qualia, or

essence. By looking for the underlying concepts that make a piece

of software malicious, this system avoids the pitfalls of static
solutions that focus on predefined signatures or anomaly thresholds.
If successful, this type of qualia-based system would provide a

robust detection system that would be able to more readily identify

novel attacks with less human interaction and supervision than
current techniques.

Keywords: malware detection, anti-virus, latent dirichlet

allocation, qualia

1. Introduction

Current malware detectors are in danger of losing their

ongoing struggle with virus authors. In a week-long study by

Symantec in November 2007, over 60% of programs being

downloaded were characterized as malware, showing that

malware was being downloaded at a faster rate than

legitimate programs [1]. This prevalence of malware is a

serious problem as current commercial techniques to detect

and identify malware are reactive processes. Signature-based

detection, the most common form of protection, requires a

human analyst to generate a unique signature for each new

attack released. With the increased number of viruses and

worms being released daily, it is becoming more difficult to

generate signatures quickly enough to keep up with new

attacks. This problem is being further compounded as

metamorphic viruses that are able to automatically change

themselves to avoid detection become more common.

As this trend continues, it appears unlikely that anti-virus

companies will be able to keep signatures current to protect

against all attacks, leaving systems vulnerable to

exploitation. A potential method to counter the rapid

development and appearance of new malware is through the

use of intelligent, adaptive detection systems that are not

reliant on static signatures.

Most of the current work into adaptive systems has

focused primarily on anomaly detection systems which

classify programs based on their “distance” from either

predetermined malicious or benign program training

samples. The classification system adapts by adjusting the

decision boundary used to classify programs. While this

technique allows for the detection of some novel attacks, it is

unable to properly classify malicious programs that are

similar to benign programs and can have false positives if

legitimate programs deviate widely from the observed norm.

This research argues that as signature-based detection falls

behind, anomaly detection systems are unable to provide

reliable protection without unreasonable false positive rates.

These models are inherently unable to make intelligent

classification decisions because they do not address the

fundamental problem of malware detection. Current

implementations do not consider concepts such as context,

intent, and end behavior. They simply look for symptoms or

signatures of the malware rather than the relationships and

behaviors that actually make a specific piece of code

malicious. Fingerprints and DNA can be used to indentify

criminals who have been caught in the past, but are useless in

predicting future offenders. Likewise current malware

detection techniques are unable to predict and identify future

malware.

The goal of this research is to develop a new, robust

malware detection technique that addresses these

shortcomings by looking beyond static signatures and

decision boundaries and instead examine the malware and

the target system as a whole and identify malware based on

the fundamental factors that make a piece of software

malicious. This research draws upon tenets from Qualia

Exploitation of Sensor Technology (QUEST), which

attempts to gain an engineering advantage over current

pattern recognition and object classification techniques

through the use of qualia-based systems [2]. According to

QUEST, qualia are the mental representations that

“intelligent” systems use to process data from the sensed

environment into a useful world model that can be used to

make decisions. These representations are not simply

physical measurements, but are rather an abstraction of those

measurements into meaningful information that takes into

consideration history, current state, and context.

Using Qualia and Hierarchical Models in

Malware Detection

248 Birrer et al.

This paper outlines the current state of malware detection

and describes how a successful QUEST-based solution

would provide an engineering advantage over these

techniques. Further, the paper describes an initial hierarchal

model and mathematical models that can be used to

automatically train the representation without assistance

from human analysts. The paper then closes with ideas for

future work and how the researchers plan to further develop

the model into a usable system.

2. Background

2.1. Current Malware Detection Techniques

Because malware is such a significant problem, multiple

techniques have been developed to help identify both known

and novel malicious software. This section describes some

of the most common malware detection strategies currently

being investigated and their limitations.

2.1.1. Signatures

Signature-based detection is the most common form of

malware detection and works by taking a known malware

sample and looking for specific byte sequences unique to

that strain of malware. Future programs are then searched for

that byte-sequence or signature. If the byte-sequence is not

found in the program, then the program is considered to be

benign. However, an absence of known byte-sequences is not

sufficient to guarantee a program is malware-free. New

malware strains must be manually identified by a human

analyst who can then develop a signature. However, until a

signature is developed and distributed to vulnerable systems,

the malware can propagate undetected. Further, many

malware strains are capable of transforming and changing

themselves, making it extremely difficult to develop

signatures that work for all the transformations. Signature-

based systems are commonly used across the networking

environment and include anti-virus systems such as those

marketed by Symantec.

2.1.2. Normalized Signatures

One focus of current research is to create normalized

signatures that can handle metamorphic malware that

modifies itself to avoid detection. This research [3-5]

demonstrates malware detection systems that can perform

basic code transformations to programs and reduce them to a

normalized form, limiting the need for multiple signatures

for variants of the same strain of malware. While these

systems are effective in mitigating some metamorphic

viruses, they still rely on having seen the malware previously

and having the appropriate signature.

2.1.3. Semantic Signatures

A similar technique to normalized signatures is the use of

signatures that are based on program semantics. [6] describes

a technique for identifying viruses based on the semantic

meaning of code sections rather than specific syntax and byte

sequences. Semantic templates are formed by abstracting out

symbolic information such as register names and memory

addresses which can be changed through obfuscation or the

addition/removal of functionality from the malware.

However, these templates are created manually for each

strain of malware and their usefulness is limited versus

instruction replacement obfuscations.

2.1.4. Control Flow Graphs

A different method being researched is the use of control

flow graphs to fingerprint and identify malicious software.

These methods [7, 8] describe a technique in which the

authors generate control flow graphs for executable code

traveling through a network and compare them with graphs

of known malicious software. The graphs consist of nodes

representing basic blocks, with edges to represent control

structures such as branches and jumps. Graph coloring is

applied to each node based on the general type of

instructions located in the basic block to provide additional

granularity without over-constraining the fingerprints. These

graphs are then broken into k-subgraphs for comparison to

known worms and other traffic. If similar subgraphs are

visible in a large number of network flows, it could be seen

as an indication of a worm outbreak.

2.1.5. Application Program Interface (API) and system

call sequences

While control flow graphs can provide fingerprints of the

structure and function of a program, they are a very low-

level representation and can be fooled by various instruction-

level changes. To counter this weakness, [9-12] attempt to

characterize programs based on system call and API

sequences. APIs and system calls are the interface between

processes and the operating system. Programs must use these

interfaces to access or modify any other part of the system.

Therefore, monitoring the system calls allows a detection

system to observe what the process is doing without having

to follow the assembly-level implementation of the program.

Many of these techniques take an anomaly detection

approach to determine whether a program or system has been

compromised and issue an alert if the system call sequences

of a running program suddenly change or begin to resemble a

known malicious program.

2.1.6. Byte/Opcode Distributions

Researchers are also examining whether inherent byte

distributions and opcode frequencies can be used to identify

malicious software. [13] examines K-nearest neighbors

(KNN), Naïve Bayes, Support Vector Machines, and other

methods to classify the executables based on the n-gram byte

sequences, achieving a success rate of over 99% for several

methods. [14] uses a disassembler to find opcodes within

programs, as the opcodes specify what actions to perform,

providing a way of determining the functionality of the

program. However, their research only focuses on the

frequency of the opcodes and not their ordering or

relationships with one another.

 [15] uses sequences of opcodes to classify programs. The

authors state that sequences provide additional context not

available with opcode distributions alone. The instruction

arguments are ignored in the analysis to provide a more

generalized feature set. The authors applied eight classifiers

to feature sets consisting of sequences between one and six

opcodes long. The technique succeeded in correctly

classifying up to 99% of programs with Boosted Decision

Tree and Boosted Naive Bayes classifiers. [15]

 [16] uses similar features, but it uses relationships between

instructions within basic blocks rather than strict instruction

Using Qualia and Hierarchical Models in Malware Detection

249

sequences. This allows the technique to handle instruction

reordering and/or insertion of “garbage” instructions, two

common techniques malware writers use to avoid signature

detectors [17]. The authors report that the system correctly

classified 93% of the test programs [16].

2.1.7. Limitations

While the techniques described above use a wide variety of

measurements and classification algorithms, they can be

broken into two main categories: signature detection and

anomaly detection. Signature detection relies on specifying a

priori what attributes or features indicate an attack. While

classical signature detection is the most common form,

normalized signatures, semantics signatures, misuse

detection, and control graph matching are all forms of

signature detection. They rely on having previously seen the

exact or similar malware in the past, leaving them prone to

false negatives when faced with novel attacks.

Anomaly detection methods do not require a priori

knowledge of attacks for detection, potentially leading to

fewer false negatives when faced with novel malware.

However, anomaly detection methods assume that malware

will behave significantly different than normal system

operation, which is not always true. Malware writers can

craft their attacks to mimic normal actions or pace their

execution to avoid crossing the detection threshold. A truly

skilled attacker can even slowly escalate their actions in an

attempt to expand the system’s definition of “normal

behavior,” allowing attacks that would have been caught

initially to go undetected.

This research suggests the decision boundary model fails

primarily because malicious and benign programs can

perform the same basic actions. At the assembly level, they

use the same instruction set to manipulate data, perform

calculations, and execute behavior. Both types of programs

use the same set of API and system calls to interact with the

operating system and access resources. Even the high-level

functionality can be similar. For example Microsoft

Windows Update connects to a remote site, downloads code,

and then makes modifications to the operating system—the

same behavior that a Trojan installing a rootkit would exhibit

[18].

This research argues that it is not individual or even

sequences of behaviors alone that makes a program

malicious. It is the combination of behavior with the

program’s end effects and the intent or purpose of the

malware author that causes it to be considered malware.

However, current decision boundary models cannot capture

this type of context, and these model limitations make the

decision boundary model inadequate for performing an

accurate classification. [9, 11, 12, 19]

2.2. QUEST

One initiative to overcome the shortfalls of current

identification and recognition techniques is QUEST [2]. The

primary goal of QUEST is to gain an engineering advantage

over current classification and prediction techniques through

the use of qualia (singular quale). According to QUEST,

qualia are the subjective mental representations that are used

to model information about the environment in a meaningful

way that can be exploited. Qualia are inherently subjective

and relative, depending on not just physical measurements,

but history, current state, and context. It is possible that

presenting the same measurements at different times can

evoke different sets of qualia. For each set of input data,

multiple qualia compete to determine which forms the best

plausible narrative and should be evoked.

QUEST lists a set of tenets which describe an intelligent

system that can process and use a qualia representation to

provide an engineering advantage in classification,

prediction, and decision-making. Any qualia-based system

will adhere to the following tenets and use them as part of

the design process [2]:
 1. Qualia

 2. Physiologically Motivated Information Processing
 (PMIP)

 3. Learning

 4. Architecture

 5. Theory

 6. Driver Problems

Malware detection is one of the driver problems for

QUEST because malware is a concept that is hard to define

in objective terms. Because it is a subjective concept, it is

difficult to capture and characterize with standard

techniques. Malware is extremely context dependent, with

different sources defining it differently. Even anti-virus

companies cannot agree on a definite taxonomy. This is

further complicated by the fact that one user can use a

program on a system legitimately, while another user can use

the exact same program on the exact same system for

malicious purposes. If one was to ask a system administrator

or an anti-virus analyst for a definition of what they looked

for in a malicious program, it is unlikely they would reply

with a more concrete answer than “I know it when I see it.”

QUEST wants to create a computer system capable of

making that type of judgment call based on examining the

entire situation and current context. Such a system would

provide a distinct engineering advantage in the malware

domain as it would reduce the need for human generated

signatures, allowing it to keep up with the release of new,

novel malware.

2.3. Latent Dirichlet Allocation (LDA)

One of the major goals of QUEST is to develop a system that

can learn and adapt with minimal human input. In order to

achieve this goal, the system must be able to automatically

adjust and train a world model and reasoning kernel. A

mathematical model being explored as a method of training

the system is the LDA model described in [20]. LDA is a

generative model that explains sets of observations through

unobserved groupings. It is commonly used in topic

modeling of documents, where observed words are explained

through mixtures of topics in a document. In the model, each

document is assumed to have a Dirichlet distribution of

topics which drives the distribution of words for that

document. The authors provide algorithms for both inference

and parameter estimation and applied their techniques to an

8,000 document corpus with a vocabulary of 16,000 words.

The LDA model successfully clustered words from the

250 Birrer et al.

documents into meaningful topics that could then be used as

features for document classification. [21] applied LDA to

video sequences of busy metropolitan scenes and clustered

similar movements such as cars driving down a street and

pedestrians using crosswalks. Further, they clustered

different co-occurring groups of similar movement to form

interactions such as traffic blocking crosswalks. The system

was able to detect abnormal behavior such as jaywalking.

3. Design

3.1. Design Goals

The goal of this research is to design a qualia-based system

that can make intelligent decisions that can be applied to the

realm of malware detection. After considering the QUEST

tenets, this research argues that the system should be

designed with the following capabilities:

1. Predicts future behavior and events based on past

behavior and events

2. Identifies/classifies objects based on relationships and

 behavior

3. Weighs multiple predictions against each other

4. Uses information from multiple abstraction levels

5. Incorporates provided knowledge

6. Learns from experience

7. Can make decisions based on incomplete data or

 assumptions

8. Reconciles observed behavior with predicted behavior

9. Reevaluates prior decisions using current knowledge

3.2. Basic Architecture

From the QUEST architecture tenet, the system consists of a

set of sensors, a world model, and the kernel that operates on

the model. The sensors provide data that the system reads,

converts, and stores in the model. The kernel examines the

world model and makes decisions and predictions. This

decision-making process is constantly adapting and adjusting

as the system experiences additional situations and the kernel

must interpret the changes to the world model. The first

stage of the research focuses on the model and the kernel as

they are the components most vital to making decisions.

Once they are shown to be effective, the research will shift to

converting the sensor data to the world model format.

3.3. Initial Model Design

The model stores the system’s knowledge and interpretation

of the environment. It must not simply store reams of

physical measurements, but instead represent information

through the use of relative, subjective qualia. These qualia

will be unique to that system and will change as it

incorporates new information that changes its perception of

the world. Further, it must store these qualia in a way that

allows the kernel to efficiently access and interpret them to

make predictions about future events.

Applying the QUEST tenets [2] and [22], the proposed

model is made up of entities and the relationships between

them. Because QUEST stresses the importance of context

and relationships between entities, a reasonable way of

modeling and interpreting the world is through the use of

graphs and graph theory. Entities are represented graphically

as nodes while the relationships are represented as

directional linkages or edges between nodes. Graph theory

provides standard terminology and algorithms which can

potentially be leveraged for this application. Further, a large

number of tools for working with graphs exist, which will be

useful when developing a prototype of the system.

Nodes or vertices represent individual instantiations of

entities observed in the environment and are labeled with

unique identifiers such as “Bob”, “Lamp 1”, or “Attack 2”.

Each node will have certain attributes associated with it such

as height, length, and weight. These attributes could be used

with standard pattern recognition techniques to provide

additional input, or can be used in the determination of

relationships between objects such as “smaller than”.

Additionally, each node has a “color”, or category/class,

that corresponds to a basic category or concept such as

“person”, “small, movable object”, or “network event”. An

entity can belong to a large number of categories or

subcategories, meaning each node could have multiple

“colors”. Being able to model the categories or concepts that

an entity falls under is important as objects in different

classes often behave differently or have different

relationships with other entities. These differences can be

used to either predict future behavior based on an entity’s

class and relationships, or can be used to classify unknown

entities based on their behavior and relationships.

Linkages or edges between nodes represent relationships

between the objects such as “on top of”, “inside”, “moves”,

“smaller than”, or “before”. These directional linkages

represent how entities are tied together in the environment

spatially, temporally, and functionally. Simple relationships

such as “Object 1 is on-top-of Object 2” can be represented

with a one-to-one edge. However, more complex

relationships such as “Puppet 1 hides Object1 from Puppet 2

inside Object 2” require the use of hyperedges that are

capable of connecting multiple vertices. Each edge has an

associated label specifying what relationship it represents,

and can have a weight that indicates the strength of the

relationship or other information.

3.4. Initial Kernel Design

While the model stores the information about the

environment, the kernel is responsible for processing and

interpreting the model, making decisions and predictions

regarding future states and behavior. The kernel must use

both learned and provided knowledge to examine not only

the current state of the model, but also past states. It should

use context and look at the relationships of all the

represented objects and not focus on isolated pieces of data.

 The initial system design uses a graph of vertices and

edges to provide a snapshot of its perception of the world at

an instant of time. As time passes, links are added, removed,

or modified based on changes in the world. The system can

store each of these snapshots to allow for playback of events

or to revisit past decisions.

The changes in edges and vertices form what this research

refers to as patterns. These patterns can either be learned or

provided a priori. The simplest patterns consist of before

and after states, showing the state of a set of nodes and links

at a specified time along with the new state after a set

transition time. Conceptually, this type of pattern states "if

in State 1, expect State 2 next." Such a pattern is no different

Using Qualia and Hierarchical Models in Malware Detection

251

than a simple "if-then" statement, but it provides a basic

foundation for more advanced and robust patterns. Further,

these patterns can be provided as a form of knowledge or

learned over time as a form of experience.

Patterns can be given an associated prediction accuracy,

which states how often the predicted state follows the

observed "before" state. For example, a pattern that predicts

the impact location of a free-falling object would likely have

high prediction accuracy. Likewise, predicting which

direction a car is going to turn at a four-way intersection

would probably have a lower accuracy. Associating

prediction accuracy with each pattern allows the system to

assign a level of certainty to its predictions and provides a

metric to weigh competing predictions.

Modifying the prediction accuracy of patterns can be used

to implement specification and generalization in the system.

This research describes generalization as taking a number of

distinct observations and using them to create a pattern that

can be applied to a variety of situations even if the

measurements do not match any of the original observations.

A general pattern attempts to find the commonalities

between distinct, but similar patterns. Specification is the

reverse of generalization as it adds extra information to a

general pattern in hopes of providing better prediction. It

examines and isolates the differences between patterns and

uses those distinctions to make different predictions.

Generalization allows the system to predict behavior in a

larger number of circumstances, while specification allows

the system to improve prediction by incorporating additional

information.

3.5. Hierarchical Design

One of the intended contributions of this research is to

show that using information from multiple layers of

abstraction will provide an engineering advantage over

signatures from a single layer. The proposed model will

provide functionality to model multiple layers, with

information from each layer being passed both up and down,

as well as within a specific layer in the hierarchy. Entities,

relationships, and patterns from lower layers can be

combined to form higher-level patterns that can represent

more complex or meaningful concepts.

Patterns of behavior at lower layers can be passed up to

other layers as relationship links. For example, if a set of

behaviors matches a pattern for “edits a file”, then an “edits”

link could be evoked at the next level. This allows the upper

level to incorporate the fact that a file has been edited into its

own patterns and decision making, while abstracting away

the specific implementation details. Abstracting away low-

level information allows higher levels to focus only on the

information that is useful to them, reducing the complexity

of patterns and providing a more robust, qualia-like solution.

Additionally, this information from lower levels can be

combined with other evoked links also passed up from lower

layers or measurements and data from the current layer. This

allows the creation of complex and compound concepts and

patterns of behavior.

Having multiple layers allows the system to make

decisions at whichever layer of abstraction is the most useful

for a given situation. It also allows the system to correlate

observations across the different levels. If data from the

lower level does not correspond with observations and

predictions made at a higher level, it could indicate a

measurement error or an incorrect prediction. This could be

especially useful in the malware domain, as many strains of

malware perform low-level actions in an attempt to hide

themselves from higher-level detection processes.

Further, examining data from multiple layers of

abstraction provides a more complete view of what is

happening in the environment or system. Data that is

meaningless at one layer might be extremely useful when

combined with information from another layer. For example,

a program generating a large number of outgoing

connections is not particularly meaningful until it is

combined with a large number of similar connections being

observed across a network. Combining these two pieces of

information could be used as an indication of a worm

propagating over the network, a conclusion that could not be

drawn by either piece of data by itself.

 In addition to the bottom-up benefits described above,

using a hierarchical approach also allows a top-down

feedback loop to be added to the model. Decisions made at

higher levels of abstraction can be used to drive low-level

sensors in order to gain specific information that could

potentially help classification. For example, if a system

administrator watching network traffic suspects a worm is

propagating through the network, this information could be

used to tell host machines to analyze any processes accessing

the network for abnormal behavior. This newly acquired

data could then be used to improve the administrator’s

decision of whether a worm is truly present. Further,

information from the upper levels could be fed down into the

system to affect the normal bottom-up processes of forming

compound qualia, providing a way for the system to adjust

its observations and decisions at individual layers based on

higher level context.

Using the previous example, if a worm is suspected at the

network layer, host level processes could be adjusted to be

more likely to classify border-line suspicious behavior as

malicious. Specifically, any programs or processes

performing unusual network accesses would be examined

more closely than normal. Likewise, any processes deemed

to be suspicious at the host layer could then be examined

again at the program layer, adjusting decision boundaries to

incorporate the data from the upper layers. While this is a

simple example, the ability to feed information up and down

the hierarchy to influence and drive both the sensors and

decision-making processes offers a potentially powerful

engineering advantage over current techniques.

3.6. Defining a Cyber Model

For the system to be effective in detecting malware, a model

for a computer system and network must be defined.

Defining entities and relationships in the cyber realm is

difficult. The cyber domain stretches from the user down

through applications and software to the physical

implementation of the system. Further, individual systems

can be connected in large networks to share information and

resources. Because of this complexity, the entities,

relationships, and layers must be carefully considered.

The first design consideration is given to dividing the

domain into useful layers. A proposed layering setup is:

252 Birrer et al.

physical, program, host, and network layers. These layers are

chosen because they form well-defined boundaries that are

meaningful to a human observer. The physical layer consists

of the hardware used to implement the system including disk

drives, memory, processors, and input devices. The program

layer focuses on individual programs and software running

on the system. The host layer consists of the relationships

between programs and other components that form the file

and operating systems of the host. The network layer follows

the interactions of multiple hosts and their communications

across the internet. While additional research may indicate

the need for additional layers such as a processor layer that

examines the operation of the processor such as cache

hits/misses, core load, temperature, etc, the layers described

above provide a starting set of layers for the model.

Table 1 shows the proposed list of entities and

relationships which will provide the basis for modeling at

each layer of the hierarchy. It should be noted that the top

three layers have entities that have their own corresponding

lower-level model. The network layer is composed of

multiple hosts, each of which has an associated set of

programs and threads, themselves having their own model at

the corresponding layer. This interconnectivity between the

layers can be used to either abstract information being passed

up, or drill down to determine what combination of low-level

actions is creating a specific high-level behavior.

A cyber example involving the Blaster worm is provided

in [23]. This example demonstrates how the proposed qualia

model and kernel could be used at the host layer to identify

worm-like behavior without relying on byte-sequence

signatures. The example follows the execution of the worm,

showing how the entities and relationships within the host

layer change over the time sequence. The paper also

describes how a system using this type of model would be

better able to handle metamorphic variants of the same strain

of malware, as the model would be able to abstract beyond

the implementation details. Further, the writing illustrates

how incorporating data from all the conceptual layers would

help improve detection at the host layer. Figure 1 shows the

host layer model at the end of the Blaster example, including

the major entities and their relationships.

Layer Entities Relationships

Network Hosts and subnets
Connections
(including port and
protocol)

Host

Programs/threads, files
and directories,
registries and settings,
libraries, sockets

Read/Write/Execute
and API/System
Calls

Program
Instruction blocks, data
structures, API/System
calls, registers

Read/Write

Physical
CPU, memory, I/O
devices and storage,
etc

Read/Write

Table 1. List of model entities and their relationships

Figure 1. Host-layer model of Blaster.exe example

3.6.1. Model Training

Having established a starting model, a methodology is

needed to populate the layers of the model. As discussed in

Section 2.3, LDA offers potential methods of finding the

desired model parameters. The model has algorithms for

autonomous parameter estimation and can generate

hierarchical models that fit with this research’s design goals.

LDA provides a way of clustering co-occurring events or

entities into topics or interactions. This clustering mechanism

supplies a method to combine common occurrences at the

lower levels into new entities and relationships at a higher

level.

To use LDA for clustering, the design of the words, topics,

and documents must be slightly adjusted. LDA in its basic

form is a unigram mixture model, meaning that word

ordering and sequences are not considered. Word sequences,

timing, and other temporal or spatial relationships are

important considerations for any qualia-based model, and

must be accounted for when creating the model. For

example, changing the ordering of computer instructions

greatly changes the output of the program. To account for

this, the possible word vocabulary must be changed to accept

k-gram sequences of words.

At the program layer, k-gram sequences of instructions

can be defined as the vocabulary for the program documents.

The k-gram sequences correspond to blocks of instructions

that perform basic operations such as moving data structures.

The latent topics would correspond to combinations of these

blocks that perform more complex tasks. Combining a basic

block that opens and reads a file to with a basic block that

writes to a new file would provide the complex behavior of

copying a file.

Another possible extension of the LDA method is to

define chains of entity-relationship-entities as k-grams. The

LDA method would then group common relationships

between entities into topics. These topics can then be fed into

the higher abstraction levels as entities. These entities could

have their own associated relationships and be combined

with sensor information from their new layer to provide a

more complete model. Using the example above, the

complex behavior of copying a file could be combined with a

DVD-burner access that could indicate the user backing up

Using Qualia and Hierarchical Models in Malware Detection

253

their system files to a DVD. This functionality allows the

abstraction of lower implementation details, focusing only on

the general purpose of the program.

One final possible application of LDA is model changes in

the model state. The vocabulary could be set as k-gram word

sequences. Pieces of the sequences would include a set of

entities joined by relationships representing the state of the

world at a specific time. These states can then be joined by

temporal relationships such as “before”, “during”, or “after”.

This provides the pattern functionality described in Section

3.4, allowing the system to learn likely transitions and

incorporate temporal information into the model. These

learned topic groups could then be used at higher levels as

new relationships between entities. When coupled with the

abstraction entities, this should provide a reduced feature set

that is faster to process and can still represent the major

properties of the system.

4. Preliminary Results

At the time of this writing, the authors have begun testing

LDA as a method to perform malware detection at the

program layer. Similar to [15], sequences of up to ten

opcodes are set as the words in the LDA model, with a

corpus of documents consisting of 300 executables from the

System32 folder of the Windows XP operating system and

628 malicious executables from the VX Heavens malware

database [24]. The authors consider ten opcodes to be a

reasonable starting size for basic functionality blocks,

providing over 150,000 repeatedly occurring opcode

sequences to use as a word dictionary. However, [15]

indicates that opcode sequences of length two or three may

be sufficient for a classification methodology. Further

testing will determine whether smaller sequences can be

effective with LDA clustering.

Using LDA to cluster the sequences into 200 topics

representing basic program functionalities provides a

reduced feature set that can then be used with a number of

classification techniques. This research differs from [15] as

it uses not only the individual opcodes but also sequences

that occur together in the same program. This provides an

additional layer of context not available with individual

sequences alone. The corpus of programs was classified into

benign and malicious programs using a support vector

machine (SVM) with 10-fold validation. The SVM correctly

classified 81.6% of the programs with a 5.6% standard

deviation.

 While these results are not ideal, they show that LDA can

be used to cluster opcodes into a reduced feature-set that

allows basic classification in a cyber domain. The authors

contend that replacing the SVM method with a qualia kernel

will show improvement in the classification rate. The LDA

methodology provides a way to automatically generate the

hierarchical and compound entities and relationships needed

to create a qualia-based model. By creating a model that can

be trained with unlabeled data, the researchers hope to create

a system that can reduce the need for human analysts in

malware detection and allow current defenses to better keep

pace with the increasing amount of malicious software.

5. Future Work

The next goal of the authors is to expand the testing of the

LDA technique to a multi-level hierarchy of the program

layer to determine how much improvement a hierarchical

model will offer over the previous results. Further, the

technique can be expanded to incorporate select data from

multiple levels of abstraction, allowing for context from

other levels to affect the classification at the current level.

 After establishing the technique for a single conceptual

layer, the methodology can be generalized to work across all

layers including not only the program layer, but also the

physical, the host, and the network layers. The SVM

technique currently being used as a temporary classification

kernel will be replaced with a qualia-processing kernel that

incorporates temporal information and other context. The

SVM method is only being used until a suitable qualia-based

kernel can be developed and tested, as this writing argues an

effective qualia system needs both a model and kernel

operating in tandem to provide an engineering advantage.

Another research area will be how to integrate this approach

with other malware detection techniques to improve

detection rates. Results from other detectors can be used to

populate the model of the system state, or the kernel can

drive the operation of multiple detectors based on its

determination of which would be best given a specific

situation.

Conclusions

This paper outlined some of the difficulties facing

researchers and system administrators as they try to detect,

identify, and prevent malware and network attacks. Current

techniques focus on very low-level features that are devoid

of context. This research asserts that malware is a very

subjective and difficult to define concept, with many external

factors determining whether a particular is considered

malicious or benign or a specific system. This work further

argues that identification techniques that function without

considering context and other information beyond the

program being examined will always struggle with malware.

However, if a subjective, qualia representation that

incorporates context and history can be developed, it will

offer a way of describing and identifying “maliciousness”.

Performing identification at this level of generalization

provides greater flexibility than traditional techniques

because it abstracts away implementation details and focuses

on what makes a program undesirable. Detection at higher

levels of abstraction allows for the system to detect

malicious programs that perform similar functions even with

extremely different implementations. Metamorphic malware

that is difficult to detect with signatures would be more

effectively detected by a system focusing on higher-level

concepts. This would reduce the need to generate new

signatures for every new variant of malware released,

helping to mitigate the effectiveness of novel attacks that

would normally be impossible to detect until a signature is

created.

This research describes a proposed hierarchal model for

representing a computer system and the software running on

it. The paper examined LDA as a mathematical technique

254 Birrer et al.

that can be used to generate and train the system model

without prior labeling or human intervention. Further, the

paper provides initial results indicating LDA’s viability in

creating compound abstractions from lower-level data and

describes future research that can take advantage of this

functionality to create a qualia-based system that will

provide an engineering advantage over current detection

techniques.

References

[1] Hines, M., Malware flood driving new AV, in

InfoWorld. 2007.
[2] Rogers, S.K., et al., Computing Machinery and

Intelligence Amplification, in Computational

Intelligence, The Experts Speak (Chapter 3). 2003,
IEEE Press: New Jersey.

[3] Bruschi, D., L. Martignoni, and M. Monga, Using code

normalization for fighting self-mutating malware, in
Conference on Detection of Intrusions and Malware
and Vulnerability Assessment. 2006, IEEE Computer
Society.

[4] Christodorescu, M., et al., Malware normalization.
2005, University of Wisconsin, Madison.

[5] Walenstein, A., et al., Normalizing Metamorphic

Malware Using Term Rewriting, in Sixth IEEE

International Workshop on Source Code Analysis and

Manipulation. 2006.
[6] Christodorescu, M., et al., Semantics-aware malware

detection, in IEEE Security and Privacy Symposium.
2005.

[7] Krugel, C., Behavioral and Structural Properties of
Malicious Code. 2007, Secure Systems Lab, Technical
University.

[8] Krugel, C., et al., Polymorphic worm detection using

structural information of executables, in RAID. 2005.
[9] Li, W., L.-c. Lam, and T.-c. Chiueh, Accurate

Application-Specific Sandboxing for Win32/Intel

Binaries, in Third International Symposium on

Information Assurance and Security. 2007.
 [10] Preda, M. D., et al., A semantics-based approach to

malware detection. ACM Trans. Program. Lang. Syst.
30, 5 (Aug. 2008), 1-54. 2008.

[11] Rabek, J.C., et al., Detection of Injected, Dynamically

Generated, and Obfuscated Malicious Code, in 2003

ACM Workshop on Rapid Malcode. 2003.
[12] Tokhtabayev, A.G. and V.A. Skormin, Non-Stationary

Markov Models and Anomaly Propagation Analysis in

IDS, in Third International Symposium on Information

Assurance and Security. 2007.
[13] Kolter, J.Z. and M.A. Maloof, Learning to detect

malicious executables in the wild, in Tenth ACM

SIGKDD International Conference on Knowledge
Discovery and Data Mining. 2004, ACM Press, New
York, NY: Seattle, WA, USA.

[14] Bilar, D. Opcodes as predictor for malware. Int. J.

Electron. Secur. Digit. Forensic 1, 2 (May. 2007), 156-
168. 2007.

[15] Moskovitch, R., et al., Unknown Malcode Detection

Using OPCODE Representation, in Proceedings of the

1st European Conference on Intelligence and Security

Informatics. Dec. 2008.

[16] Dai, J., R. Guha, and J. Lee., Efficient Virus Detection

Using Dynamic Instruction Sequences, Journal of

Computers, Vol. 4, No. 5. 405-414. 2009.

[17] Collberg, Christian, Clark Thomborson, and Douglas

Low. “A Taxonomy of Obfuscating Transformations”.

Technical report, Department of Computer Science,

University of Auckland, 1997.
[18] Shin, J. and D.F. Spears, The basic building blocks of

malware. 2006, University of Wyoming.
[19] Christodorescu, M., S. Jha, and C. Kruegel, Mining

specifications of malicious behavior, in 6th Joint

Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering 2007, ACM:
Dubrovnik, Croatia.

[20] David, M.B., Y.N. Andrew, and I.J. Michael, Latent

dirichlet allocation. J. Mach. Learn. Res., 2003. 3: p.
993-1022.

[21] Xiaogang, W., M. Xiaoxu, and W.E.L. Grimson,
Unsupervised Activity Perception in Crowded and

Complicated Scenes Using Hierarchical Bayesian

Models. IEEE Trans. Pattern Anal. Mach. Intell., 2009.
31(3): p. 539-555.

[22] Komatsu, L.K., Recent views of conceptual structure.
Psychological Bulletin, 1992. 112(3): p. 500-526.

[23] Birrer, B., et al., Using Qualia and Multi-Layered

Relationships in Malware Detection in IEEE

Symposium Series on Computational Intelligence in

Cyber Security. 2009, IEEE Press: Nashville, TN.
 [24] VX Heavens. http://vx.netlux.org/

6. Author Biographies

Bobby D. Birrer is a Captain in the US Air Force and is working on a PhD

in computer engineering at the Air Force Institute of Technology. His

research interests include software protection, intrusion detection and

prevention, malware detection, and reverse engineering. He is a member of

Tau Beta Pi and Eta Kappa Nu. Contact him at bobby.birrer@wpafb.af.mil.

Richard A. Raines is a professor of electrical engineering in the

Department of Electrical and Computer Engineering, Air Force Institute of

Technology, Wright-Patterson Air Force Base in Ohio. His research

interests include computer communication networks, global communication

systems, intrusion-detection systems, and software protection. Raines has a

PhD in electrical engineering from Virginia Polytechnic Institute and State

University. He is a member of Eta Kappa Nu and a senior member of the

IEEE. Contact him at richard.raines@afit.edu.

Rusty O. Baldwin is an associate professor of computer engineering in the

Department of Electrical and Computer Engineering, Air Force Institute of

Technology, Wright-Patterson Air Force Base in Ohio. His research

interests include computer communication networks, embedded and wireless

networking, information assurance, and reconfigurable computing systems.

Baldwin has a PhD in electrical engineering from the Virginia Polytechnic

Institute and State University. He is a registered professional engineer in

Ohio, a member of Eta Kappa Nu, and a senior member of the IEEE.

Contact him at rusty.baldwin@afit.edu.

Mark Oxley is a Professor of Mathematics in the Department of

Mathematics and Statistics, Graduate School of Engineering and

Management, Air Force Institute of Technology located on Wright-Patterson

Air Force Base, Ohio. Dr. Oxley earned the B.S. degree in mathematics

from Cumberland College in 1978 (renamed to the University of the

Cumberlands in 2005), the M.S. degree in applied mathematics from Purdue

University in 1980, and the Ph.D. degree in mathematics from North

Carolina State University in 1987. He joined the faculty at AFIT in July

1987. Contact him at mark.oxley@afit.edu.

Steve “Capt Amerika” Rogers is a Senior Scientist at the Air Force

Using Qualia and Hierarchical Models in Malware Detection

255

Research Laboratory where he serves as the principle scientific authority for

Automatic Target Recognition and Sensor Fusion. Dr. Rogers’ research

focuses on qualia exploitation of sensor technology, QUEST. After retiring

from active duty in the Air Force, Dr. Rogers founded a company (now

called iCAD) for developing practical applications of advanced information

processing techniques for medical products. The company invented the

world’s most accurate computer aided detection system for breast cancer.

He has over 150 technical publications and 20 patents. Contact him at

steven.rogers@wpafb.af.mil.

The views expressed in this article are those of the authors and do not reflect

the official policy or position of the United States Air Force, Department of

Defense, or the United States Government.

