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Abstract: Detecting network intruders and malicious software is 

a significant problem for network administrators and security 
experts. New threats are emerging at an increasing rate, and current 

signature and statistics-based techniques are failing to keep pace. 
Intelligent systems that can adapt to new threats are needed to 

mitigate these new strains of malware as they are released.  

This research discusses a proposed system that uses  hierarchical 

models, contextual relationships, and information across different 
layers of abstraction to detect malware based on its qualia, or 

essence. By looking for the underlying concepts that make a piece 

of software malicious, this system avoids the pitfalls of static 
solutions that focus on predefined signatures or anomaly thresholds. 
If successful, this type of qualia-based system would provide a 

robust detection system that would be able to more readily identify 

novel attacks with less human interaction and supervision than 
current techniques.  

 
Keywords: malware detection, anti-virus, latent dirichlet 

allocation, qualia  

1. Introduction 

Current malware detectors are in danger of losing their 

ongoing struggle with virus authors. In a week-long study by 

Symantec in November 2007, over 60% of programs being 

downloaded were characterized as malware, showing that 

malware was being downloaded at a faster rate than 

legitimate programs [1].  This prevalence of malware is a 

serious problem as current commercial techniques to detect 

and identify malware are reactive processes. Signature-based 

detection, the most common form of protection, requires a 

human analyst to generate a unique signature for each new 

attack released. With the increased number of viruses and 

worms being released daily, it is becoming more difficult to 

generate signatures quickly enough to keep up with new 

attacks. This problem is being further compounded as 

metamorphic viruses that are able to automatically change 

themselves to avoid detection become more common. 

As this trend continues, it appears unlikely that anti-virus 

companies will be able to keep signatures current to protect 

against all attacks, leaving systems vulnerable to 

exploitation. A potential method to counter the rapid 

development and appearance of new malware is through the 

use of intelligent, adaptive detection systems that are not 

reliant on static signatures. 

Most of the current work into adaptive systems has 

focused primarily on anomaly detection systems which 

classify programs based on their “distance” from either 

predetermined malicious or benign program training 

samples. The classification system adapts by adjusting the 

decision boundary used to classify programs. While this 

technique allows for the detection of some novel attacks, it is 

unable to properly classify malicious programs that are 

similar to benign programs and can have false positives if 

legitimate programs deviate widely from the observed norm. 

This research argues that as signature-based detection falls 

behind, anomaly detection systems are unable to provide 

reliable protection without unreasonable false positive rates. 

These models are inherently unable to make intelligent 

classification decisions because they do not address the 

fundamental problem of malware detection. Current 

implementations do not consider concepts such as context, 

intent, and end behavior. They simply look for symptoms or 

signatures of the malware rather than the relationships and 

behaviors that actually make a specific piece of code 

malicious. Fingerprints and DNA can be used to indentify 

criminals who have been caught in the past, but are useless in 

predicting future offenders. Likewise current malware 

detection techniques are unable to predict and identify future 

malware. 

The goal of this research is to develop a new, robust 

malware detection technique that addresses these 

shortcomings by looking beyond static signatures and 

decision boundaries and instead examine the malware and 

the target system as a whole and identify malware based on 

the fundamental factors that make a piece of software 

malicious. This research draws upon tenets from Qualia 

Exploitation of Sensor Technology (QUEST), which 

attempts to gain an engineering advantage over current 

pattern recognition and object classification techniques 

through the use of qualia-based systems [2]. According to 

QUEST, qualia are the mental representations that 

“intelligent” systems use to process data from the sensed 

environment into a useful world model that can be used to 

make decisions. These representations are not simply 

physical measurements, but are rather an abstraction of those 

measurements into meaningful information that takes into 

consideration history, current state, and context. 
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This paper outlines the current state of malware detection 

and describes how a successful QUEST-based solution 

would provide an engineering advantage over these 

techniques. Further, the paper describes an initial hierarchal 

model and mathematical models that can be used to 

automatically train the representation without assistance 

from human analysts. The paper then closes with ideas for 

future work and how the researchers plan to further develop 

the model into a usable system. 

2. Background 

2.1. Current Malware Detection Techniques 

Because malware is such a significant problem, multiple 

techniques have been developed to help identify both known 

and novel malicious software.  This section describes some 

of the most common malware detection strategies currently 

being investigated and their limitations. 

2.1.1. Signatures 

Signature-based detection is the most common form of 

malware detection and works by taking a known malware 

sample and looking for specific byte sequences unique to 

that strain of malware. Future programs are then searched for 

that byte-sequence or signature. If the byte-sequence is not 

found in the program, then the program is considered to be 

benign. However, an absence of known byte-sequences is not 

sufficient to guarantee a program is malware-free. New 

malware strains must be manually identified by a human 

analyst who can then develop a signature. However, until a 

signature is developed and distributed to vulnerable systems, 

the malware can propagate undetected. Further, many 

malware strains are capable of transforming and changing 

themselves, making it extremely difficult to develop 

signatures that work for all the transformations. Signature-

based systems are commonly used across the networking 

environment and include anti-virus systems such as those 

marketed by Symantec. 

2.1.2. Normalized Signatures 

One focus of current research is to create normalized 

signatures that can handle metamorphic malware that 

modifies itself to avoid detection. This research [3-5] 

demonstrates malware detection systems that can perform 

basic code transformations to programs and reduce them to a 

normalized form, limiting the need for multiple signatures 

for variants of the same strain of malware. While these 

systems are effective in mitigating some metamorphic 

viruses, they still rely on having seen the malware previously 

and having the appropriate signature. 

2.1.3. Semantic Signatures 

A similar technique to normalized signatures is the use of 

signatures that are based on program semantics. [6] describes 

a technique for identifying viruses based on the semantic 

meaning of code sections rather than specific syntax and byte 

sequences. Semantic templates are formed by abstracting out 

symbolic information such as register names and memory 

addresses which can be changed through obfuscation or the 

addition/removal of functionality from the malware. 

However, these templates are created manually for each 

strain of malware and their usefulness is limited versus 

instruction replacement obfuscations. 

2.1.4.  Control Flow Graphs 

A different method being researched is the use of control 

flow graphs to fingerprint and identify malicious software. 

These methods [7, 8] describe a technique in which the 

authors generate control flow graphs for executable code 

traveling through a network and compare them with graphs 

of known malicious software. The graphs consist of nodes 

representing basic blocks, with edges to represent control 

structures such as branches and jumps. Graph coloring is 

applied to each node based on the general type of 

instructions located in the basic block to provide additional 

granularity without over-constraining the fingerprints. These 

graphs are then broken into k-subgraphs for comparison to 

known worms and other traffic. If similar subgraphs are 

visible in a large number of network flows, it could be seen 

as an indication of a worm outbreak. 

2.1.5. Application Program Interface (API) and system 

call sequences 

While control flow graphs can provide fingerprints of the 

structure and function of a program, they are a very low-

level representation and can be fooled by various instruction-

level changes. To counter this weakness, [9-12] attempt to 

characterize programs based on system call and API 

sequences. APIs and system calls are the interface between 

processes and the operating system. Programs must use these 

interfaces to access or modify any other part of the system. 

Therefore, monitoring the system calls allows a detection 

system to observe what the process is doing without having 

to follow the assembly-level implementation of the program. 

Many of these techniques take an anomaly detection 

approach to determine whether a program or system has been 

compromised and issue an alert if the system call sequences 

of a running program suddenly change or begin to resemble a 

known malicious program. 

2.1.6. Byte/Opcode Distributions 

Researchers are also examining whether inherent byte 

distributions and opcode frequencies can be used to identify 

malicious software.  [13] examines K-nearest neighbors 

(KNN), Naïve Bayes, Support Vector Machines, and other 

methods to classify the executables based on the n-gram byte 

sequences, achieving a success rate of over 99% for several 

methods.  [14] uses a disassembler to find opcodes within 

programs, as the opcodes specify what actions to perform, 

providing a way of determining the functionality of the 

program. However, their research only focuses on the 

frequency of the opcodes and not their ordering or 

relationships with one another. 

 [15] uses sequences of opcodes to classify programs.  The 

authors state that sequences provide additional context not 

available with opcode distributions alone.  The instruction 

arguments are ignored in the analysis to provide a more 

generalized feature set.  The authors applied eight classifiers 

to feature sets consisting of sequences between one and six 

opcodes long.  The technique succeeded in correctly 

classifying up to 99% of programs with Boosted Decision 

Tree and Boosted Naive Bayes classifiers. [15] 

 [16] uses similar features, but it uses relationships between 

instructions within basic blocks rather than strict instruction 
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sequences.  This allows the technique to handle instruction 

reordering and/or insertion of “garbage” instructions, two 

common techniques malware writers use to avoid signature 

detectors [17].  The authors report that the system correctly 

classified 93% of the test programs [16]. 

2.1.7. Limitations 

While the techniques described above use a wide variety of 

measurements and classification algorithms, they can be 

broken into two main categories: signature detection and 

anomaly detection. Signature detection relies on specifying a 

priori what attributes or features indicate an attack. While 

classical signature detection is the most common form, 

normalized signatures, semantics signatures, misuse 

detection, and control graph matching are all forms of 

signature detection. They rely on having previously seen the 

exact or similar malware in the past, leaving them prone to 

false negatives when faced with novel attacks. 

Anomaly detection methods do not require a priori 

knowledge of attacks for detection, potentially leading to 

fewer false negatives when faced with novel malware. 

However, anomaly detection methods assume that malware 

will behave significantly different than normal system 

operation, which is not always true. Malware writers can 

craft their attacks to mimic normal actions or pace their 

execution to avoid crossing the detection threshold. A truly 

skilled attacker can even slowly escalate their actions in an 

attempt to expand the system’s definition of “normal 

behavior,” allowing attacks that would have been caught 

initially to go undetected.  

This research suggests the decision boundary model fails 

primarily because malicious and benign programs can 

perform the same basic actions. At the assembly level, they 

use the same instruction set to manipulate data, perform 

calculations, and execute behavior. Both types of programs 

use the same set of API and system calls to interact with the 

operating system and access resources. Even the high-level 

functionality can be similar. For example Microsoft 

Windows Update connects to a remote site, downloads code, 

and then makes modifications to the operating system—the 

same behavior that a Trojan installing a rootkit would exhibit 

[18].  

This research argues that it is not individual or even 

sequences of behaviors alone that makes a program 

malicious. It is the combination of behavior with the 

program’s end effects and the intent or purpose of the 

malware author that causes it to be considered malware. 

However, current decision boundary models cannot capture 

this type of context, and these model limitations make the 

decision boundary model inadequate for performing an 

accurate classification. [9, 11, 12, 19] 

2.2. QUEST 

One initiative to overcome the shortfalls of current 

identification and recognition techniques is QUEST [2]. The 

primary goal of QUEST is to gain an engineering advantage 

over current classification and prediction techniques through 

the use of qualia (singular quale). According to QUEST, 

qualia are the subjective mental representations that are used 

to model information about the environment in a meaningful 

way that can be exploited.  Qualia are inherently subjective 

and relative, depending on not just physical measurements, 

but history, current state, and context. It is possible that 

presenting the same measurements at different times can 

evoke different sets of qualia. For each set of input data, 

multiple qualia compete to determine which forms the best 

plausible narrative and should be evoked. 

QUEST lists a set of tenets which describe an intelligent 

system that can process and use a qualia representation to 

provide an engineering advantage in classification, 

prediction, and decision-making. Any qualia-based system 

will adhere to the following tenets and use them as part of 

the design process [2]: 
 1. Qualia 

 2. Physiologically Motivated Information Processing 
 (PMIP)  

 3. Learning  

 4. Architecture  

 5. Theory  

 6. Driver Problems  

Malware detection is one of the driver problems for 

QUEST because malware is a concept that is hard to define 

in objective terms. Because it is a subjective concept, it is 

difficult to capture and characterize with standard 

techniques. Malware is extremely context dependent, with 

different sources defining it differently. Even anti-virus 

companies cannot agree on a definite taxonomy. This is 

further complicated by the fact that one user can use a 

program on a system legitimately, while another user can use 

the exact same program on the exact same system for 

malicious purposes. If one was to ask a system administrator 

or an anti-virus analyst for a definition of what they looked 

for in a malicious program, it is unlikely they would reply 

with a more concrete answer than “I know it when I see it.” 

QUEST wants to create a computer system capable of 

making that type of judgment call based on examining the 

entire situation and current context. Such a system would 

provide a distinct engineering advantage in the malware 

domain as it would reduce the need for human generated 

signatures, allowing it to keep up with the release of new, 

novel malware. 

2.3. Latent Dirichlet Allocation (LDA) 

One of the major goals of QUEST is to develop a system that 

can learn and adapt with minimal human input. In order to 

achieve this goal, the system must be able to automatically 

adjust and train a world model and reasoning kernel. A 

mathematical model being explored as a method of training 

the system is the LDA model described in [20]. LDA is a 

generative model that explains sets of observations through 

unobserved groupings. It is commonly used in topic 

modeling of documents, where observed words are explained 

through mixtures of topics in a document. In the model, each 

document is assumed to have a Dirichlet distribution of 

topics which drives the distribution of words for that 

document. The authors provide algorithms for both inference 

and parameter estimation and applied their techniques to an 

8,000 document corpus with a vocabulary of 16,000 words. 

The LDA model successfully clustered words from the 
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documents into meaningful topics that could then be used as 

features for document classification.   [21] applied LDA to 

video sequences of busy metropolitan scenes and clustered 

similar movements such as cars driving down a street and 

pedestrians using crosswalks. Further, they clustered 

different co-occurring groups of similar movement to form 

interactions such as traffic blocking crosswalks. The system 

was able to detect abnormal behavior such as jaywalking. 

3. Design 

3.1. Design Goals 

The goal of this research is to design a qualia-based system 

that can make intelligent decisions that can be applied to the 

realm of malware detection.  After considering the QUEST 

tenets, this research argues that the system should be 

designed with the following capabilities: 
 

1. Predicts future behavior and events based on past 

behavior and events 

2. Identifies/classifies objects based on relationships and  

  behavior  

3. Weighs multiple predictions against each other  

4. Uses information from multiple abstraction levels 

5. Incorporates provided knowledge 

6. Learns from experience 

7. Can make decisions based on incomplete data or    

  assumptions   

8. Reconciles observed behavior with predicted behavior  

9. Reevaluates prior decisions using current knowledge    

 

3.2. Basic Architecture 

From the QUEST architecture tenet, the system consists of a 

set of sensors, a world model, and the kernel that operates on 

the model.  The sensors provide data that the system reads, 

converts, and stores in the model.  The kernel examines the 

world model and makes decisions and predictions.  This 

decision-making process is constantly adapting and adjusting 

as the system experiences additional situations and the kernel 

must interpret the changes to the world model.  The first 

stage of the research focuses on the model and the kernel as 

they are the components most vital to making decisions.  

Once they are shown to be effective, the research will shift to 

converting the sensor data to the world model format.  

3.3. Initial Model Design 

The model stores the system’s knowledge and interpretation 

of the environment.  It must not simply store reams of 

physical measurements, but instead represent information 

through the use of relative, subjective qualia.  These qualia 

will be unique to that system and will change as it 

incorporates new information that changes its perception of 

the world.  Further, it must store these qualia in a way that 

allows the kernel to efficiently access and interpret them to 

make predictions about future events.   

Applying the QUEST tenets [2] and [22], the proposed 

model is made up of entities and the relationships between 

them.  Because QUEST stresses the importance of context 

and relationships between entities, a reasonable way of 

modeling and interpreting the world is through the use of 

graphs and graph theory.  Entities are represented graphically 

as nodes while the relationships are represented as 

directional linkages or edges between nodes.  Graph theory 

provides standard terminology and algorithms which can 

potentially be leveraged for this application.  Further, a large 

number of tools for working with graphs exist, which will be 

useful when developing a prototype of the system.   

Nodes or vertices represent individual instantiations of 

entities observed in the environment and are labeled with 

unique identifiers such as “Bob”, “Lamp 1”, or “Attack 2”.  

Each node will have certain attributes associated with it such 

as height, length, and weight.  These attributes could be used 

with standard pattern recognition techniques to provide 

additional input, or can be used in the determination of 

relationships between objects such as “smaller than”. 

Additionally, each node has a “color”, or category/class, 

that corresponds to a basic category or concept such as 

“person”, “small, movable object”, or “network event”.  An 

entity can belong to a large number of categories or 

subcategories, meaning each node could have multiple 

“colors”.  Being able to model the categories or concepts that 

an entity falls under is important as objects in different 

classes often behave differently or have different 

relationships with other entities.  These differences can be 

used to either predict future behavior based on an entity’s 

class and relationships, or can be used to classify unknown 

entities based on their behavior and relationships. 

Linkages or edges between nodes represent relationships 

between the objects such as “on top of”, “inside”, “moves”, 

“smaller than”, or “before”.  These directional linkages 

represent how entities are tied together in the environment 

spatially, temporally, and functionally.   Simple relationships 

such as “Object 1 is on-top-of Object 2” can be represented 

with a one-to-one edge.  However, more complex 

relationships such as “Puppet 1 hides Object1 from Puppet 2 

inside Object 2” require the use of hyperedges that are 

capable of connecting multiple vertices.  Each edge has an 

associated label specifying what relationship it represents, 

and can have a weight that indicates the strength of the 

relationship or other information. 

3.4. Initial Kernel Design 

While the model stores the information about the 

environment, the kernel is responsible for processing and 

interpreting the model, making decisions and predictions 

regarding future states and behavior. The kernel must use 

both learned and provided knowledge to examine not only 

the current state of the model, but also past states.  It should 

use context and look at the relationships of all the 

represented objects and not focus on isolated pieces of data.

 The initial system design uses a graph of vertices and 

edges to provide a snapshot of its perception of the world at 

an instant of time.  As time passes, links are added, removed, 

or modified based on changes in the world.  The system can 

store each of these snapshots to allow for playback of events 

or to revisit past decisions. 

The changes in edges and vertices form what this research 

refers to as patterns.  These patterns can either be learned or 

provided a priori.  The simplest patterns consist of before 

and after states, showing the state of a set of nodes and links 

at a specified time along with the new state after a set 

transition time.  Conceptually, this type of pattern states "if 

in State 1, expect State 2 next."  Such a pattern is no different 
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than a simple "if-then" statement, but it provides a basic 

foundation for more advanced and robust patterns.  Further, 

these patterns can be provided as a form of knowledge or 

learned over time as a form of experience. 

Patterns can be given an associated prediction accuracy, 

which states how often the predicted state follows the 

observed "before" state.  For example, a pattern that predicts 

the impact location of a free-falling object would likely have 

high prediction accuracy.  Likewise, predicting which 

direction a car is going to turn at a four-way intersection 

would probably have a lower accuracy. Associating 

prediction accuracy with each pattern allows the system to 

assign a level of certainty to its predictions and provides a 

metric to weigh competing predictions. 

Modifying the prediction accuracy of patterns can be used 

to implement specification and generalization in the system.  

This research describes generalization as taking a number of 

distinct observations and using them to create a pattern that 

can be applied to a variety of situations even if the 

measurements do not match any of the original observations.  

A general pattern attempts to find the commonalities 

between distinct, but similar patterns.  Specification is the 

reverse of generalization as it adds extra information to a 

general pattern in hopes of providing better prediction.  It 

examines and isolates the differences between patterns and 

uses those distinctions to make different predictions.  

Generalization allows the system to predict behavior in a 

larger number of circumstances, while specification allows 

the system to improve prediction by incorporating additional 

information.  

3.5. Hierarchical Design 

One of the intended contributions of this research is to 

show that using information from multiple layers of 

abstraction will provide an engineering advantage over 

signatures from a single layer. The proposed model will 

provide functionality to model multiple layers, with 

information from each layer being passed both up and down, 

as well as within a specific layer in the hierarchy. Entities, 

relationships, and patterns from lower layers can be 

combined to form higher-level patterns that can represent 

more complex or meaningful concepts.  

Patterns of behavior at lower layers can be passed up to 

other layers as relationship links. For example, if a set of 

behaviors matches a pattern for “edits a file”, then an “edits” 

link could be evoked at the next level. This allows the upper 

level to incorporate the fact that a file has been edited into its 

own patterns and decision making, while abstracting away 

the specific implementation details. Abstracting away low-

level information allows higher levels to focus only on the 

information that is useful to them, reducing the complexity 

of patterns and providing a more robust, qualia-like solution. 

Additionally, this information from lower levels can be 

combined with other evoked links also passed up from lower 

layers or measurements and data from the current layer. This 

allows the creation of complex and compound concepts and 

patterns of behavior. 

Having multiple layers allows the system to make 

decisions at whichever layer of abstraction is the most useful 

for a given situation. It also allows the system to correlate 

observations across the different levels. If data from the 

lower level does not correspond with observations and 

predictions made at a higher level, it could indicate a 

measurement error or an incorrect prediction. This could be 

especially useful in the malware domain, as many strains of 

malware perform low-level actions in an attempt to hide 

themselves from higher-level detection processes.  

Further, examining data from multiple layers of 

abstraction provides a more complete view of what is 

happening in the environment or system. Data that is 

meaningless at one layer might be extremely useful when 

combined with information from another layer. For example, 

a program generating a large number of outgoing 

connections is not particularly meaningful until it is 

combined with a large number of similar connections being 

observed across a network. Combining these two pieces of 

information could be used as an indication of a worm 

propagating over the network, a conclusion that could not be 

drawn by either piece of data by itself. 

 In addition to the bottom-up benefits described above, 

using a hierarchical approach also allows a top-down 

feedback loop to be added to the model.  Decisions made at 

higher levels of abstraction can be used to drive low-level 

sensors in order to gain specific information that could 

potentially help classification.  For example, if a system 

administrator watching network traffic suspects a worm is 

propagating through the network, this information could be 

used to tell host machines to analyze any processes accessing 

the network for abnormal behavior.  This newly acquired 

data could then be used to improve the administrator’s 

decision of whether a worm is truly present.  Further, 

information from the upper levels could be fed down into the 

system to affect the normal bottom-up processes of forming 

compound qualia, providing a way for the system to adjust 

its observations and decisions at individual layers based on 

higher level context.   

Using the previous example, if a worm is suspected at the 

network layer, host level processes could be adjusted to be 

more likely to classify border-line suspicious behavior as 

malicious.  Specifically, any programs or processes 

performing unusual network accesses would be examined 

more closely than normal.  Likewise, any processes deemed 

to be suspicious at the host layer could then be examined 

again at the program layer, adjusting decision boundaries to 

incorporate the data from the upper layers.  While this is a 

simple example, the ability to feed information up and down 

the hierarchy to influence and drive both the sensors and 

decision-making processes offers a potentially powerful 

engineering advantage over current techniques. 

3.6. Defining a Cyber Model 

For the system to be effective in detecting malware, a model 

for a computer system and network must be defined.       

Defining entities and relationships in the cyber realm is 

difficult. The cyber domain stretches from the user down 

through applications and software to the physical 

implementation of the system. Further, individual systems 

can be connected in large networks to share information and 

resources. Because of this complexity, the entities, 

relationships, and layers must be carefully considered.  

The first design consideration is given to dividing the 

domain into useful layers. A proposed layering setup is: 
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physical, program, host, and network layers. These layers are 

chosen because they form well-defined boundaries that are 

meaningful to a human observer. The physical layer consists 

of the hardware used to implement the system including disk 

drives, memory, processors, and input devices. The program 

layer focuses on individual programs and software running 

on the system. The host layer consists of the relationships 

between programs and other components that form the file 

and operating systems of the host. The network layer follows 

the interactions of multiple hosts and their communications 

across the internet. While additional research may indicate 

the need for additional layers such as a processor layer that 

examines the operation of the processor such as cache 

hits/misses, core load, temperature, etc, the layers described 

above provide a starting set of layers for the model. 

Table 1 shows the proposed list of entities and 

relationships which will provide the basis for modeling at 

each layer of the hierarchy. It should be noted that the top 

three layers have entities that have their own corresponding 

lower-level model. The network layer is composed of 

multiple hosts, each of which has an associated set of 

programs and threads, themselves having their own model at 

the corresponding layer. This interconnectivity between the 

layers can be used to either abstract information being passed 

up, or drill down to determine what combination of low-level 

actions is creating a specific high-level behavior. 

A cyber example involving the Blaster worm is provided 

in [23].  This example demonstrates how the proposed qualia 

model and kernel could be used at the host layer to identify 

worm-like behavior without relying on byte-sequence 

signatures.  The example follows the execution of the worm, 

showing how the entities and relationships within the host 

layer change over the time sequence.  The paper also 

describes how a system using this type of model would be 

better able to handle metamorphic variants of the same strain 

of malware, as the model would be able to abstract beyond 

the implementation details.  Further, the writing illustrates 

how incorporating data from all the conceptual layers would 

help improve detection at the host layer.  Figure 1 shows the 

host layer model at the end of the Blaster example, including 

the major entities and their relationships. 

 

Layer Entities Relationships 

Network Hosts and subnets 
Connections 
(including port and 
protocol) 

Host 

Programs/threads, files 
and directories, 
registries and settings, 
libraries, sockets 

Read/Write/Execute 
and API/System 
Calls 

Program 
Instruction blocks, data 
structures, API/System 
calls, registers 

Read/Write 

Physical 
CPU, memory, I/O 
devices and storage, 
etc 

Read/Write 

Table 1. List of model entities and their relationships 

 

 
Figure 1. Host-layer model of Blaster.exe example 

3.6.1. Model Training 

Having established a starting model, a methodology is 

needed to populate the layers of the model. As discussed in 

Section 2.3, LDA offers potential methods of finding the 

desired model parameters. The model has algorithms for 

autonomous parameter estimation and can generate 

hierarchical models that fit with this research’s design goals. 

LDA provides a way of clustering co-occurring events or 

entities into topics or interactions. This clustering mechanism 

supplies a method to combine common occurrences at the 

lower levels into new entities and relationships at a higher 

level. 

To use LDA for clustering, the design of the words, topics, 

and documents must be slightly adjusted. LDA in its basic 

form is a unigram mixture model, meaning that word 

ordering and sequences are not considered. Word sequences, 

timing, and other temporal or spatial relationships are 

important considerations for any qualia-based model, and 

must be accounted for when creating the model. For 

example, changing the ordering of computer instructions 

greatly changes the output of the program. To account for 

this, the possible word vocabulary must be changed to accept 

k-gram sequences of words.  

At the program layer, k-gram sequences of instructions 

can be defined as the vocabulary for the program documents. 

The k-gram sequences correspond to blocks of instructions 

that perform basic operations such as moving data structures. 

The latent topics would correspond to combinations of these 

blocks that perform more complex tasks. Combining a basic 

block that opens and reads a file to with a basic block that 

writes to a new file would provide the complex behavior of 

copying a file.   

Another possible extension of the LDA method is to 

define chains of entity-relationship-entities as k-grams. The 

LDA method would then group common relationships 

between entities into topics. These topics can then be fed into 

the higher abstraction levels as entities. These entities could 

have their own associated relationships and be combined 

with sensor information from their new layer to provide a 

more complete model. Using the example above, the 

complex behavior of copying a file could be combined with a 

DVD-burner access that could indicate the user backing up 
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their system files to a DVD. This functionality allows the 

abstraction of lower implementation details, focusing only on 

the general purpose of the program. 

One final possible application of LDA is model changes in 

the model state. The vocabulary could be set as k-gram word 

sequences. Pieces of the sequences would include a set of 

entities joined by relationships representing the state of the 

world at a specific time. These states can then be joined by 

temporal relationships such as “before”, “during”, or “after”. 

This provides the pattern functionality described in Section 

3.4, allowing the system to learn likely transitions and 

incorporate temporal information into the model. These 

learned topic groups could then be used at higher levels as 

new relationships between entities. When coupled with the 

abstraction entities, this should provide a reduced feature set 

that is faster to process and can still represent the major 

properties of the system. 

4. Preliminary Results 

At the time of this writing, the authors have begun testing 

LDA as a method to perform malware detection at the 

program layer.  Similar to [15], sequences of up to ten 

opcodes are set as the words in the LDA model, with a 

corpus of documents consisting of 300 executables from the 

System32 folder of the Windows XP operating system and 

628 malicious executables from the VX Heavens malware 

database [24].  The authors consider ten opcodes to be a 

reasonable starting size for basic functionality blocks, 

providing over 150,000 repeatedly occurring opcode 

sequences to use as a word dictionary.  However, [15] 

indicates that opcode sequences of length two or three may 

be sufficient for a classification methodology.  Further 

testing will determine whether smaller sequences can be 

effective with LDA clustering. 

Using LDA to cluster the sequences into 200 topics 

representing basic program functionalities provides a 

reduced feature set that can then be used with a number of 

classification techniques.  This research differs from [15] as 

it uses not only the individual opcodes but also sequences 

that occur together in the same program. This provides an 

additional layer of context not available with individual 

sequences alone.  The corpus of programs was classified into 

benign and malicious programs using a support vector 

machine (SVM) with 10-fold validation.  The SVM correctly 

classified 81.6% of the programs with a 5.6% standard 

deviation. 

 While these results are not ideal, they show that LDA can 

be used to cluster opcodes into a reduced feature-set that 

allows basic classification in a cyber domain.  The authors 

contend that replacing the SVM method with a qualia kernel 

will show improvement in the classification rate.  The LDA 

methodology provides a way to automatically generate the 

hierarchical and compound entities and relationships needed 

to create a qualia-based model.  By creating a model that can 

be trained with unlabeled data, the researchers hope to create 

a system that can reduce the need for human analysts in 

malware detection and allow current defenses to better keep 

pace with the increasing amount of malicious software. 

5. Future Work 

The next goal of the authors is to expand the testing of the 

LDA technique to a multi-level hierarchy of the program 

layer to determine how much improvement a hierarchical 

model will offer over the previous results.  Further, the 

technique can be expanded to incorporate select data from 

multiple levels of abstraction, allowing for context from 

other levels to affect the classification at the current level. 

 After establishing the technique for a single conceptual 

layer, the methodology can be generalized to work across all 

layers including not only the program layer, but also the 

physical, the host, and the network layers.  The SVM 

technique currently being used as a temporary classification 

kernel will be replaced with a qualia-processing kernel that 

incorporates temporal information and other context.  The 

SVM method is only being used until a suitable qualia-based 

kernel can be developed and tested, as this writing argues an 

effective qualia system needs both a model and kernel 

operating in tandem to provide an engineering advantage.  

Another research area will be how to integrate this approach 

with other malware detection techniques to improve 

detection rates.  Results from other detectors can be used to 

populate the model of the system state, or the kernel can 

drive the operation of multiple detectors based on its 

determination of which would be best given a specific 

situation. 

Conclusions 

This paper outlined some of the difficulties facing 

researchers and system administrators as they try to detect, 

identify, and prevent malware and network attacks. Current 

techniques focus on very low-level features that are devoid 

of context. This research asserts that malware is a very 

subjective and difficult to define concept, with many external 

factors determining whether a particular is considered 

malicious or benign or a specific system. This work further 

argues that identification techniques that function without 

considering context and other information beyond the 

program being examined will always struggle with malware. 

However, if a subjective, qualia representation that 

incorporates context and history can be developed, it will 

offer a way of describing and identifying “maliciousness”.  

Performing identification at this level of generalization 

provides greater flexibility than traditional techniques 

because it abstracts away implementation details and focuses 

on what makes a program undesirable. Detection at higher 

levels of abstraction allows for the system to detect 

malicious programs that perform similar functions even with 

extremely different implementations. Metamorphic malware 

that is difficult to detect with signatures would be more 

effectively detected by a system focusing on higher-level 

concepts. This would reduce the need to generate new 

signatures for every new variant of malware released, 

helping to mitigate the effectiveness of novel attacks that 

would normally be impossible to detect until a signature is 

created.  

This research describes a proposed hierarchal model for 

representing a computer system and the software running on 

it.  The paper examined LDA as a mathematical technique 
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that can be used to generate and train the system model 

without prior labeling or human intervention. Further, the 

paper provides initial results indicating LDA’s viability in 

creating compound abstractions from lower-level data and 

describes future research that can take advantage of this 

functionality to create a qualia-based system that will 

provide an engineering advantage over current detection 

techniques. 
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