
IEEE INTELLIGENCE AND SECURITY INFORMATICS 2008

1

Abstract— Today’s signature-based anti-viruses are very

accurate, but are limited in detecting new malicious code.

Currently, dozens of new malicious codes are created every day,

and this number is expected to increase in the coming years.

Recently, classification algorithms were used successfully for the

detection of unknown malicious code. These studies used a test

collection with a limited size where the same malicious-benign-file

ratio in both the training and test sets, which does not reflect real-

life conditions. In this paper we present a methodology for the

detection of unknown malicious code, based on text categorization

concepts. We performed an extensive evaluation using a test

collection that contains more than 30,000 malicious and benign

files, in which we investigated the imbalance problem. In real-life

scenarios, the malicious file content is expected to be low, about

10% of the total files. For practical purposes, it is unclear as to

what the corresponding percentage in the training set should be.

Our results indicate that greater than 95% accuracy can be

achieved through the use of a training set that contains below

20% malicious file content.

Index Terms— Malicious Code Detection, Classification

Algorithms

I. INTRODUCTION

HE term malicious code (malcode) commonly refers to

pieces of code, not necessarily executable files, which are

intended to harm, generally or in particular, the specific

owner of the host. Malcodes are classified, mainly based on

their transport mechanism, into five main categories: worms,

viruses, Trojans and new group that is becoming more

common, which is comprised of remote access Trojans and

backdoors. The recent growth in high-speed internet

connections and in internet network services has led to an

increase in the creation of new malicious codes for various

purposes, based on economic, political, criminal or terrorist

motives (among others). Some of these codes have been used

to gather information, such as passwords and credit card

numbers, as well as behavior monitoring.

Current anti-virus technology is primarily based on two

approaches: signature-based methods, which rely on the

Robert Moskovitch Phd is a student at the Deutche Telekom Laboratories

at Ben Gurion University, Be’er Sheva, 84105 Israel. : robertmo@bgu.ac.il)

Dima Stopel, Clint Feher and Nir Nissim are Msc students at the Deutche

Telekom Laboratories at Ben Gurion University (stopel, clint,

nirni@bgu.ac.il).

Dr Yuval Elovici is the head of the Deutche Telekom Laboratories at Ben

Gurion University (elovici@bgu.ac.il).

identification of unique strings in the binary code; while being

very precise, it is useless against unknown malicious code. The

second approach involves heuristic-based methods, which are

based on rules defined by experts, which define a malicious

behavior, or a benign behavior, in order to enable the detection

of unknown malcodes [1]. Other proposed methods include

behavior blockers, which attempt to detect sequences of events

in operating systems, and integrity checkers, which

periodically check for changes in files and disks. However,

besides the fact that these methods can be bypassed by viruses,

their main drawback is that, by definition, they can only detect

the presence of a malcode after it has been executed.

Therefore, generalizing the detection methods to be able to

detect unknown malcodes is crucial. Recently, classification

algorithms were employed to automate and extend the idea of

heuristic-based methods. As we will describe in more detail

shortly, the binary code of a file is represented by n-grams and

classifiers are applied to learn patterns in the code and classify

large amounts of data. A classifier is a rule set which is learnt

from a given training-set, including examples of classes, both

malicious and benign files in our case. Recent studies, which

we survey in the next section, have shown that this is a very

successful strategy. However, these studies present evaluations

based on test collections, having similar proportion of

malicious versus benign files in the test collections (50% of

malicious files). This proportion has two potential drawbacks.

These conditions do not reflect real life situation, in which

malicious code is commonly significantly less than 50% and

additionally these conditions, as will be shown later, might

report optimistic results. Recent survey
1
 made by McAfee

indicates that about 4% of search results from the major search

engines on the web contain malicious code. Additionally, [2]

found that above 15% of the files in the KaZaA network

contained malicious code. Thus, we assume that the percentage

of malicious files in real life is about or less than 10%, but we

also consider other percentages.

In this study, we present a methodology for malcode

categorization based on concepts from text categorization. We

present an extensive and rigorous evaluation of many factors

in the methodology, based on eight types of classifiers. The

evaluation is based on a test collection 10 times larger than any

previously reported collection, containing more than 30,000

1 McAfee Study Finds 4 Percent of Search Results Malicious,By Frederick

Lane,June 4, 2007

[http://www.newsfactor.com/story.xhtml?story_id=010000CEUEQO]

Unknown Malcode Detection via Text

Categorization and the Imbalance Problem

Robert Moskovitch, Dima Stopel, Clint Feher, Nir Nissim, Yuval Elovici

T

IEEE INTELLIGENCE AND SECURITY INFORMATICS 2008

2

files. We introduce the imbalance problem, which refers to

domains in which the proportions of each class instances is not

equal, in the context of our task, in which we evaluate the

classifiers for five levels of malcode content (percentages) in

the training-set and 17 (percentages) levels of malcode content

in the test-set. We start with a survey of previous relevant

studies. We describe the methods we used, including: concepts

from text categorization, data preparation, and classifiers. We

present our results and finally discuss them.

A. Detecting Unknown Malcode via Data Mining

Over the past five years, several studies have investigated

the direction of detecting unknown malcode based on its

binary code. [3] were the first to introduce the idea of applying

machine learning (ML) methods for the detection of different

malcodes based on their respective binary codes. They used

three different feature extraction (FE) approaches: program

header, string features and byte sequence features, in which

they applied four classifiers: a signature-based method (anti-

virus), Ripper – a rule-based learner, Naïve Bayes and Multi-

Naïve Bayes. This study found that all of the ML methods

were more accurate than the signature-based algorithm. The

ML methods were more than twice as accurate when the out-

performing method was Naïve Bayes, using strings, or Multi-

Naïve Bayes using byte sequences. [4] introduced a framework

that used the common n-gram (CNG) method and the k nearest

neighbor (KNN) classifier for the detection of malcodes. For

each class, malicious and benign, a representative profile was

constructed and assigned a new executable file. This

executable file was compared with the profiles and matched to

the most similar. Two different data sets were used: the I-

worm collection, which consisted of 292 Windows internet

worms and the win32 collection, which consisted of 493

Windows viruses. The best results were achieved by using 3-6

n-grams and a profile of 500-5000 features. [5] presented a

collection that included 1971 benign and 1651 malicious

executables files. N-grams were extracted and 500 features

were selected using the information gain measure [6]. The

vector of n-gram features was binary, presenting the presence

or absence of a feature in the file and ignoring the frequency of

feature appearances (in the file). In their experiment, they

trained several classifiers: IBK (KNN), a similarity based

classifier called TFIDF classifier, Naïve Bayes, SVM (SMO)

and Decision tree (J48). The last three of these were also

boosted. Two main experiments were conducted on two

different data sets, a small collection and a large collection.

The small collection included 476 malicious and 561 benign

executables and the larger collection included 1651 malicious

and 1971 benign executables. In both experiments, the four

best-performing classifiers were Boosted J48, SVM, boosted

SVM and IBK. Boosted J48 out-performed the others. The

authors indicated that the results of their n-gram study were

better than those presented by [3]. Recently, [7] reported an

extension of their work, in which they classified malcodes into

families (classes) based on the functions in their respective

payloads. In the categorization task of multiple classifications,

the best results were achieved for the classes' mass mailer,

backdoor and virus (no benign classes). In attempts to estimate

the ability to detect malicious codes based on their issue dates,

these techniques were trained on files issued before July 2003,

and then tested on 291 files issued from that point in time

through August 2004. The results were, as expected, lower

than those of previous experiments. Those results indicate the

importance of maintaining the training set by acquisition of

new executables, in order to cope with unknown new

executables. [8] presented a hierarchical feature selection

approach which enables the selection of n-gram features that

appear at rates above a specified threshold in a specific virus

family, as well as in more than a minimal amount of virus

classes (families). They applied several classifiers: ID3, J48

Naïve Bayes, SVM- and SMO to the data set used by [3] and

obtained results that were better than those obtained through

traditional feature selection, as presented in [3], which mainly

focused on 5-grams. However, it is not clear whether these

results are more reflective of the feature selection method or

the number of features that were used.

B. The Imbalance Problem

The class imbalance problem was introduced to the machine

learning research community about a decade ago. Typically it

occurs when there are significantly more instances from one

class relative to other classes. In such cases the classifier tends

to misclassify the instances of the low represented classes.

More and more researchers realized that the performance of

their classifiers may be suboptimal due to the fact that the

datasets are not balanced. This problem is even more

important in fields where the natural datasets are highly

imbalanced in the first place [9], like the problem we describe.

II. METHODS

A. Text Categorization

For the detection and acquisition of unknown malicious

code, we suggest the use of well-studied concepts from

information retrieval (IR) and more specific text

categorization. In our problem, binary files (executables) are

parsed and n-gram terms are extracted. Each n-gram term in

our problem is analogous to words in the textual domain. Here

are descriptions of the IR concepts used in this study.

Salton presented the vector space model [10] to represent a

textual file as a bag of words. After parsing the text and

extracting the words, a vocabulary, of the entire collection of

words is constructed. Each of these words may appear zero to

multiple times in a document. A vector of terms is created,

such that each index in the vector represents the term

frequency (TF) in the document. Equation 1 shows the

definition of a normalized TF, in which the term frequency is

divided by the maximal appearing term in the document with

values in the range of [0-1]. Another common representation is

the TF Inverse Document Frequency (TFIDF), which

combines the frequency of a term in the document (TF) and its

frequency in the documents collection, denoted by Document

IEEE INTELLIGENCE AND SECURITY INFORMATICS 2008

3

Frequency (DF), as shown in Equation 2, in which the term's

(normalized) TF value is multiplied by the IDF = log (N/DF),

where N is the number of documents in the entire file

collection and DF is the number of files in which it appears..

)max(documentinfrequencyterm

frequencyterm
TF = (1)

)log(*
DF

N
TFTFIDF = (2)

B. Data Set Creation

We created a data set of malicious and benign executables

for the Windows operating system, as this is the system most

commonly used and most commonly attacked. To the best of

our knowledge and according to a search of the literature in

this field, this collection is the largest one ever assembled and

used for research. We acquired the malicious files from the

VX Heaven website
2
. The dataset contains 7688 malicious

files. To identify the files, we used the Kaspersky
3
 anti-virus

and the Windows version of the Unix ‘file’ command for file

type identification. The files in the benign set, including

executable and DLL (Dynamic Linked Library) files, were

gathered from machines running Windows XP operating

system on our campus. The benign set contained 22,735 files.

The Kaspersky anti-virus program was used to verify that these

files do not contain any malicious code.

C. Data Preparation and Feature Selection

We parsed the files using several n-gram lengths moving

windows, denoted by n. Vocabularies of 16,777,216,

1,084,793,035, 1,575,804,954 and 1,936,342,220, for 3-gram,

4-gram, 5-gram and 6-gram respectively were extracted. Later

TF and TFIDF representations were calculated for each n-

gram in each file.

In machine learning applications, the large number of

features (many of which do not contribute to the accuracy and

may even decrease it) in many domains presents a huge

problem. Moreover, in our problem, the reduction of the

amount of features is crucial, but must be performed while

maintaining a high level of accuracy. This is due to the fact

that, as shown earlier, the vocabulary size may exceed billions

of features, far more than can be processed by any feature

selection tool within a reasonable period of time. Additionally,

it is important to identify those terms that appear in most of the

files, in order to avoid vectors that contain many zeros. Thus,

we first extracted the top features based on the Document

Frequency (DF) measure (Equation 2). We selected the top

5,500 features which appear in most of the files, (those with

high DF scores), on which later three feature selection methods

were applied. Since it is not the focus of this paper, we will

describe the feature selection preprocessing very briefly. We

used a filters approach, in which the measure was independent

of any classification algorithm to compare the performances of

2 http://vx.netlux.org
3 http://www.kaspersky.com

the different classification algorithms. In a filters approach, a

measure is used to quantify the correlation of each feature to

the class (malicious or benign) and estimate its expected

contribution to the classification task. We used three feature

selection measures. As a baseline, we used the document

frequency measure DF (the amount of files in which the term

appeared in), Gain Ratio (GR) [6] and Fisher Score (FS) [11].

We selected the top 50, 100, 200 and 300 features based on

each of the feature selection techniques.

D. Classification Algorithms

We employed four commonly used classification

algorithms: Artificial Neural Networks (ANN), Decision Trees

(DT), Naïve Bayes (NB), as well as Support Vector Machines

(SVM) with three kernel functions. We briefly describe the

classification algorithms we used in this study.

1) Artificial Neural Networks

An Artificial Neural Network (ANN) [12] is an information

processing paradigm inspired by the way biological nervous

systems, such as the brain, process information. The key

element is the structure of the information processing system,

which is a network composed of a large number of highly

interconnected neurons working together in order to

approximate a specific function. An ANN is configured for a

specific application, such as pattern recognition or data

classification, through a learning process during which the

individual weights of different neuron inputs are updated by a

training algorithm, such as back-propagation. The weights are

updated according to the examples the network receives,

which reduces the error function. All the ANN manipulations

were performed within the MATLAB(r) environment using the

Neural Network Toolbox.

2) Decision Trees

Decision tree learners [13] are a well-established family of

learning algorithms. Classifiers are represented as trees whose

internal nodes are tests of individual features and whose leaves

are classification decisions (classes). Typically, a greedy

heuristic search method is used to find a small decision tree,

which is induced from the data set by splitting the variables

based on the expected information gain. This method correctly

classifies the training data. Modern implementations include

pruning, which avoids the problem of over-fitting. In this

study, we used J48, the Weka [14] version of the C4.5

algorithm [13]. An important characteristic of decision trees is

the explicit form of their knowledge, which can be easily

represented as rules.

3) Naïve Bayes

The Naïve Bayes classifier is based on the Bayes theorem,

which in the context of classification states that the posterior

probability of a class is proportional to its prior probability, as

well as to the conditional likelihood of the features, given this

class. If no independent assumptions are made, a Bayesian

algorithm must estimate conditional probabilities for an

exponential number of feature combinations. Naive Bayes

simplifies this process by assuming that features are

IEEE INTELLIGENCE AND SECURITY INFORMATICS 2008

4

conditionally independent, given the class, and requires that

only a linear number of parameters be estimated. The prior

probability of each class and the probability of each feature,

given each class is easily estimated from the training data and

used to determine the posterior probability of each class, given

a set of features. Empirically, Naive Bayes has been shown to

accurately classify data across a variety of problem domains

[15].

4) Support Vector Machines

SVM is a binary classifier, which finds a linear hyperplane

that separates the given examples of two classes known to

handle large amounts of features. Given a training set of

labeled examples in a vector format, the SVM attempts to

specify a linear hyperplane that has the maximal margin,

defined by the maximal (perpendicular) distance between the

examples of the two classes. The examples lying closest to the

hyperplane are known as the supporting vectors. The normal

vector of the hyperplane is a linear combination of the

supporting vectors multiplied by LaGrange multipliers. Often

the data set cannot be linearly separated, so a kernel function K

is used. The SVM actually projects the examples into a higher

dimensional space to create a linear separation of the

examples. We examined three commonly used kernels: Linear

(SVM-LIN), Polynomial (SVM-POL) and RBF (SVM-RBF).

We used the Lib-SVM implementation
4
.

III. EVALUATION

A. Research Questions

We wanted to evaluate the proposed methodology for the

detection of unknown malicious codes through two main

experiments. The first experiment was designed to determine

the best conditions, including four aspects:

1. Which term representation is better, TF or TFIDF?

2. Which n-gram is the best: 3, 4, 5 or 6?

3. Which top-selection is the best: 50, 100, 200 or 300 and

which features selection: DF, FS and GR?

After identifying the best conditions, we performed a second

experiment to investigate the imbalance problem introduced

earlier.

B. Evaluation Measures

For evaluation purposes, we measured the True Positive

Rate (TPR) measure, which is the number of positive instances

classified correctly, as shown in Equation 5, False Positive

Rate (FPR), which is the number of negative instances

misclassified (Equation 5), and the Total Accuracy, which

measures the number of absolutely correctly classified

instances, either positive or negative, divided by the entire

number of instances shown in Equation 6.

||||

||

FNTP

TP
TPR

+
= ;

||||

||

TNFP

FP
RFP

+
= (5)

4 http://www.csie.ntu.edu.tw/˜cjlin/libsvm

||||||||

||||

FNTNFPTP

TNTP
AccuracyTotal

+++

+
= (6)

C. Experiments and Results

1) Experiment 1

To answer the three questions, presented earlier, we

designed a wide and comprehensive set of evaluation runs,

including all the combinations of the optional settings for each

of the aspects, amounting to 1,152 runs in a 5-fold cross

validation format for all six classifiers. Note that the files in

the test-set were not in the training-set representing unknown

files to the classifier.

Term representation vs n-grams. Figure 1 presents the

mean accuracy of the combinations of the term representations

and n-grams. The TF representation outperformed the TFIDF

along all the n-grams, however, the 5-gram outperformed the

other n-grams in both cases. Having the TF out-performing has

meaningful computational advantages; we will elaborate on

these advantages in the Discussion.

Fig 1. The TF out-performed the TFIDF and the 5-gram features out-

performed the other n-gram features.

Feature Selections and Top Selections. Figure 2 presents

the mean accuracy of the three feature selections and the four

top selections. Generally, the Fisher score was the best

method, starting with high accuracy even with 50 features.

Unlike the others, in which the 300 features out-performed, the

DF’s accuracy decreased after the selection of more than 200

features, while the GR accuracy significantly increased as

more features were added.

Classifiers. In Table 2, we present the results of each

classifier under the best conditions observed for all the

classifiers (averaged)- top 300 features selected by Fisher

score where each feature is 5-gram represented by TF from the

top 5500 features. The DT and ANN out-perform and have

low false positive rates, while the SVM classifiers also

perform very well. The poor performance of the Naïve Bayes,

may be explained by the independence assumption of the NB

classifier.

IEEE INTELLIGENCE AND SECURITY INFORMATICS 2008

5

Fig. 2. The performance increased as the number of features increased. Most

of the time the Fischer Score outperform.

TABLE 2 THE DT AND ANN OUT-PERFORMED, WHILE MAINTAINING LOW

LEVELS OF FALSE POSITIVES.

Classifier Accuracy FP FN

ANN 0.941 0.033 0.134

DT 0.943 0.039 0.099

NB 0.697 0.382 0.069

SVM-lin 0.921 0.033 0.214

SVM-poly 0.852 0.014 0.544

SVM-rbf 0.939 0.029 0.154

2) Experiment 2 – The Imbalance Problem

In the second experiment we present our main contribution.

In this set of experiments, we used - top 300 features selected

by Fisher score where each feature is 5-gram represented by

TF from the top 5500 features. We created five levels of

Malicious Files Percentage (MFP) in the training set (16.7,

33.4, 50, 66.7 and 83.4%). For example, when referring to

16.7%, we mean that 16.7% of the files in the training set were

malicious and 83.4% were benign. The test set represents the

real-life situation, while the training set represents the set-up of

the classifier, which is controlled. While we assume that a

MFP above 30% (of the total files) is not a realistic proportion

in real networks, but we examined high rates in order to gain

insights into the behavior of the classifiers in these situations.

Our study examined 17 levels of MFP (5, 7.5, 10, 12.5, 15, 20,

30, 40, 50, 60, 70, 80, 85, 87.5, 90, 92.5 and 95%) in the test

set. Eventually, we ran all the product combinations of five

training sets and 17 test sets, for a total of 85 runs for each

classifier. We created two sets of data sets in order to perform

a 2-fold cross validation-like evaluation to make the results

more significant.

Training-Set Malcode Percentage. Figure 3 presents the

mean accuracy (for all the MFP levels in the test-sets) of each

classifier for each training MFP level. The ANN and DT had

the most accurate, and relatively stable, performance across

the different MFP levels in the training set, while NB and

SVM_Poly generally performed poorly. SVM-RBF and SVM-

LIN performed well, but not consistently. They were both most

accurate at the 50% level.

Fig. 3. Mean accuracy for various MFPs in the test set. ANN and DT out-

performed, with consistent accuracy, across the different malcode content

levels.

10% Malcode Percentage in the Test Set. We consider

the 10% MFP level in the test set as a realistic scenario. Figure

4 presents the mean accuracy in the 2-fold cross validation of

each classifier for each malcode content level in the training

set, with a fixed level of 10% MFP in the test set. Accuracy

levels above 95% were achieved when the training set had a

MFP of 16.7%, while a rapid decrease in accuracy was

observed when the MFP in the training set was increased.

Thus, the optimal proportion of malicious files in a training set

for practical purposes should be in the range of 10% to 40%

malicious files.

Fig. 4. Detection accuracy for 10% Malcode in the test set. Greater than 95%

accuracy was achieved for the scenario involving a low level (16.7%) of

malicious file content in the training set.

Relations among MFPs in Training and Test Sets. To

further our presentation of the mean accuracy from the training

set point of view (Figs. 3 and 4), we present a detailed

description of the accuracy for the MFP levels in the two sets

in a 3-dimensional presentation for each classifier (Figs. 6-10).

Most of the classifiers behaved optimally when the MFP levels

in the training-set and test-set were similar, except for NB,

which showed low performance levels earlier. This indicates

that when configuring a classifier for a real-life application, the

MFP in the training-set has to be similar to the MFP in the test

set.

IEEE INTELLIGENCE AND SECURITY INFORMATICS 2008

6

Fig 5 – ANN Fig 6 – DT

Fig 7 – NB Fig 8 – SVM-LIN

Fig 9 - SVM-POL Fig 10 – SVM-RBF

IV. DISCUSSION AND CONCLUSIONS

We presented a methodology for the representation of

malicious and benign executables for the task of unknown

malicious code detection. This methodology enables the highly

accurate detection of unknown malicious code, based on

previously seen examples, while maintaining low levels of

false alarms. In the first experiment, we found that the TFIDF

representation has no added value over the TF, which is not

the case in information retrieval applications. This is very

important, since using the TFIDF representation introduces

some computational challenges in the maintenance of the

collection when it is updated. In order to reduce the number of

n-gram features, which ranges from millions to billions, we

first used the DF measure to select the top 5500 features. The

Fisher Score feature selection outperformed the other methods

and using the top 300 features resulted in the best

performance. Generally, the ANN and DT achieved high mean

accuracies, exceeding 94%, with low levels of false alarms.

In the second experiment, we examined the relationship

between the MFP in the test set, which represents real-life

scenario, and in the training-set, which being used for training

the classifier. In this experiment, we found that there are

classifiers which are relatively inert to changes in the MFP

level of the test set. In general, the best mean performance

(across all levels of MFP) was associated with a 50% MFP in

the training set (Fig. 3). However, when setting a level of 10%

MFP in the test-set, as a real-life situation, we looked at the

performance of each level of MFP in the training set. A high

level of accuracy (above 95%) was achieved when less than

33% of the files in the training set were malicious, while for

specific classifiers, the accuracy was poor at all MFP levels

(Fig. 4). Finally, we presented a 3-dimensional representation

of the results at all the MFP levels for each classifier (Figs. 5-

10). In General, the best performance was on the diagonal,

where the MFP levels in the training-set and the test-set were

equal. We found a decreased accuracy as the MFP of the

training set and test set differs, while NB did not seem to be

affected by the level of MFP in the training-set and was

influenced only by the MFP level in the test-set. In NB the

accuracy increased as the MFP in the test-set increased.

Based on our extensive and rigorous experiments, we

conclude that when one sets up a classifier for use in a real-life

situation, he should consider the expected proportion of

malicious files in the stream of data. Since we assume that, in

most real-life scenarios, low levels of malicious files are

present, training sets should be designed accordingly. As

future work we plan to apply this method on a dated test

collection, in which each file has its initiation date, to evaluate

the real capability to detect unknown malcode, based on

previous known malcodes.

REFERENCES

[1] Gryaznov, D. Scanners of the Year 2000: Heuritics, Proceedings of the

5th International Virus Bulletin, 1999.

[2] S. Shin, J. Jung, H. Balakrishnan, Malware Prevalence in the KaZaA

File-Sharing Network, Internet Measurement Conference (IMC), Brazil,

October 2006.

[3] Schultz, M., Eskin, E., Zadok, E., and Stolfo, S. (2001) Data mining

methods for detection of new malicious executables, in Proceedings of

the IEEE Symposium on Security and Privacy, 2001, pp. 178-184.

[4] Abou-Assaleh, T., Cercone, N., Keselj, V., and Sweidan, R. (2004) N-

gram Based Detection of New Malicious Code, in Proceedings of the

28th Annual International Computer Software and Applications

Conference (COMPSAC'04).

[5] Kolter, J.Z. and Maloof, M.A. (2004). Learning to detect malicious

executables in the wild, in Proceedings of the Tenth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,

470–478. New York, NY: ACM Press.

[6] Mitchell T. (1997) Machine Learning, McGraw-Hill.

[7] Kolter J., and Maloof M., Learning to Detect and Classify Malicious

Executables in the Wild, Journal of Machine Learning Research 7

(2006) 2721-2744.

[8] Henchiri, O. and Japkowicz, N., A Feature Selection and Evaluation

Scheme for Computer Virus Detection. Proceedings of ICDM-2006:

891-895, Hong Kong, 2006.

[9] Chawla, N. V., Japkowicz, N., and Kotcz, A. (2004) Editorial: special

issue on learning from imbalanced data sets. SIGKDD Explorations

Newsletter 6(1):1-6.

[10] Salton, G., Wong, A., and Yang, C.S. (1975) A vector space model for

automatic indexing. Communications of the ACM, 18:613-620.

[11] Golub, T., Slonim, D., Tamaya, P., Huard, C., Gaasenbeek, M.,

Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M., Bloomfield,

C., and E. Lander, E. (1999) Molecular classification of cancer: Class

discovery and class prediction by gene expression monitoring, Science,

286:531-537

[12] Bishop, C. (1995) Neural Networks for Pattern Recognition. Clarendon

Press, Oxford..

[13] Quinlan, J.R. (1993) C4.5: programs for machine learning. Morgan

Kaufmann Publishers, Inc., San Francisco, CA, USA.

[14] Witten, I.H., and Frank, E. (2005) Data Mining: Practical machine

learning tools and techniques, 2nd Edition, Morgan Kaufmann

Publishers, Inc., San Francisco, CA, USA.

[15] Domingos, P., and Pazzani, M. (1997) On the optimality of simple

Bayesian classifier under zero-one loss, Machine Learning, 29:103-130.

