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Abstract— Today’s signature-based anti-viruses are very 

accurate, but are limited in detecting new malicious code. 

Currently, dozens of new malicious codes are created every day, 

and this number is expected to increase in the coming years. 

Recently, classification algorithms were used successfully for the 

detection of unknown malicious code. These studies used a test 

collection with a limited size where the same malicious-benign-file 

ratio in both the training and test sets, which does not reflect real-

life conditions. In this paper we present a methodology for the 

detection of unknown malicious code, based on text categorization 

concepts. We performed an extensive evaluation using a test 

collection that contains more than 30,000 malicious and benign 

files, in which we investigated the imbalance problem. In real-life 

scenarios, the malicious file content is expected to be low, about 

10% of the total files. For practical purposes, it is unclear as to 

what the corresponding percentage in the training set should be. 

Our results indicate that greater than 95% accuracy can be 

achieved through the use of a training set that contains below 

20% malicious file content. 

 
Index Terms— Malicious Code Detection, Classification 

Algorithms  

 

I. INTRODUCTION 

HE term malicious code (malcode) commonly refers to 

pieces of code, not necessarily executable files, which are 

intended to harm, generally or in particular, the specific 

owner of the host. Malcodes are classified, mainly based on 

their transport mechanism, into five main categories: worms, 

viruses, Trojans and new group that is becoming more 

common, which is comprised of remote access Trojans and 

backdoors. The recent growth in high-speed internet 

connections and in internet network services has led to an 

increase in the creation of new malicious codes for various 

purposes, based on economic, political, criminal or terrorist 

motives (among others). Some of these codes have been used 

to gather information, such as passwords and credit card 

numbers, as well as behavior monitoring. 

Current anti-virus technology is primarily based on two 

approaches: signature-based methods, which rely on the 
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identification of unique strings in the binary code; while being 

very precise, it is useless against unknown malicious code. The 

second approach involves heuristic-based methods, which are 

based on rules defined by experts, which define a malicious 

behavior, or a benign behavior, in order to enable the detection 

of unknown malcodes [1]. Other proposed methods include 

behavior blockers, which attempt to detect sequences of events 

in operating systems, and integrity checkers, which 

periodically check for changes in files and disks. However, 

besides the fact that these methods can be bypassed by viruses, 

their main drawback is that, by definition, they can only detect 

the presence of a malcode after it has been executed. 

Therefore, generalizing the detection methods to be able to 

detect unknown malcodes is crucial. Recently, classification 

algorithms were employed to automate and extend the idea of 

heuristic-based methods. As we will describe in more detail 

shortly, the binary code of a file is represented by n-grams and 

classifiers are applied to learn patterns in the code and classify 

large amounts of data. A classifier is a rule set which is learnt 

from a given training-set, including examples of classes, both 

malicious and benign files in our case. Recent studies, which 

we survey in the next section, have shown that this is a very 

successful strategy. However, these studies present evaluations 

based on test collections, having similar proportion of 

malicious versus benign files in the test collections (50% of 

malicious files). This proportion has two potential drawbacks. 

These conditions do not reflect real life situation, in which 

malicious code is commonly significantly less than 50% and 

additionally these conditions, as will be shown later, might 

report optimistic results. Recent survey
1
 made by McAfee 

indicates that about 4% of search results from the major search 

engines on the web contain malicious code. Additionally, [2] 

found that above 15% of the files in the KaZaA network 

contained malicious code. Thus, we assume that the percentage 

of malicious files in real life is about or less than 10%, but we 

also consider other percentages. 

In this study, we present a methodology for malcode 

categorization based on concepts from text categorization. We 

present an extensive and rigorous evaluation of many factors 

in the methodology, based on eight types of classifiers. The 

evaluation is based on a test collection 10 times larger than any 

previously reported collection, containing more than 30,000 

 
1 McAfee Study Finds 4 Percent of Search Results Malicious,By Frederick 

Lane,June 4, 2007 

[http://www.newsfactor.com/story.xhtml?story_id=010000CEUEQO] 
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files. We introduce the imbalance problem, which refers to 

domains in which the proportions of each class instances is not 

equal, in the context of our task, in which we evaluate the 

classifiers for five levels of malcode content (percentages) in 

the training-set and 17 (percentages) levels of malcode content 

in the test-set. We start with a survey of previous relevant 

studies. We describe the methods we used, including: concepts 

from text categorization, data preparation, and classifiers. We 

present our results and finally discuss them. 

A. Detecting Unknown Malcode via Data Mining 

Over the past five years, several studies have investigated 

the direction of detecting unknown malcode based on its 

binary code. [3] were the first to introduce the idea of applying 

machine learning (ML) methods for the detection of different 

malcodes based on their respective binary codes. They used 

three different feature extraction (FE) approaches: program 

header, string features and byte sequence features, in which 

they applied four classifiers: a signature-based method (anti-

virus), Ripper – a rule-based learner, Naïve Bayes and Multi-

Naïve Bayes. This study found that all of the ML methods 

were more accurate than the signature-based algorithm. The 

ML methods were more than twice as accurate when the out-

performing method was Naïve Bayes, using strings, or Multi-

Naïve Bayes using byte sequences. [4] introduced a framework 

that used the common n-gram (CNG) method and the k nearest 

neighbor (KNN) classifier for the detection of malcodes. For 

each class, malicious and benign, a representative profile was 

constructed and assigned a new executable file. This 

executable file was compared with the profiles and matched to 

the most similar. Two different data sets were used: the I-

worm collection, which consisted of 292 Windows internet 

worms and the win32 collection, which consisted of 493 

Windows viruses. The best results were achieved by using 3-6 

n-grams and a profile of 500-5000 features. [5] presented a 

collection that included 1971 benign and 1651 malicious 

executables files. N-grams were extracted and 500 features 

were selected using the information gain measure [6]. The 

vector of n-gram features was binary, presenting the presence 

or absence of a feature in the file and ignoring the frequency of 

feature appearances (in the file). In their experiment, they 

trained several classifiers: IBK (KNN), a similarity based 

classifier called TFIDF classifier, Naïve Bayes, SVM (SMO) 

and Decision tree (J48). The last three of these were also 

boosted. Two main experiments were conducted on two 

different data sets, a small collection and a large collection. 

The small collection included 476 malicious and 561 benign 

executables and the larger collection included 1651 malicious 

and 1971 benign executables. In both experiments, the four 

best-performing classifiers were Boosted J48, SVM, boosted 

SVM and IBK. Boosted J48 out-performed the others. The 

authors indicated that the results of their n-gram study were 

better than those presented by [3]. Recently, [7] reported an 

extension of their work, in which they classified malcodes into 

families (classes) based on the functions in their respective 

payloads. In the categorization task of multiple classifications, 

the best results were achieved for the classes' mass mailer, 

backdoor and virus (no benign classes). In attempts to estimate 

the ability to detect malicious codes based on their issue dates, 

these techniques were trained on files issued before July 2003, 

and then tested on 291 files issued from that point in time 

through August 2004. The results were, as expected, lower 

than those of previous experiments. Those results indicate the 

importance of maintaining the training set by acquisition of 

new executables, in order to cope with unknown new 

executables. [8] presented a hierarchical feature selection 

approach which enables the selection of n-gram features that 

appear at rates above a specified threshold in a specific virus 

family, as well as in more than a minimal amount of virus 

classes (families). They applied several classifiers: ID3, J48 

Naïve Bayes, SVM- and SMO to the data set used by [3] and 

obtained results that were better than those obtained through 

traditional feature selection, as presented in [3], which mainly 

focused on 5-grams. However, it is not clear whether these 

results are more reflective of the feature selection method or 

the number of features that were used. 

B. The Imbalance Problem 

The class imbalance problem was introduced to the machine 

learning research community about a decade ago. Typically it 

occurs when there are significantly more instances from one 

class relative to other classes. In such cases the classifier tends 

to misclassify the instances of the low represented classes. 

More and more researchers realized that the performance of 

their classifiers may be suboptimal due to the fact that the 

datasets are not balanced. This problem is even more 

important in fields where the natural datasets are highly 

imbalanced in the first place [9], like the problem we describe. 

II. METHODS 

A. Text Categorization 

For the detection and acquisition of unknown malicious 

code, we suggest the use of well-studied concepts from 

information retrieval (IR) and more specific text 

categorization. In our problem, binary files (executables) are 

parsed and n-gram terms are extracted. Each n-gram term in 

our problem is analogous to words in the textual domain. Here 

are descriptions of the IR concepts used in this study. 

Salton presented the vector space model [10] to represent a 

textual file as a bag of words. After parsing the text and 

extracting the words, a vocabulary, of the entire collection of 

words is constructed. Each of these words may appear zero to 

multiple times in a document. A vector of terms is created, 

such that each index in the vector represents the term 

frequency (TF) in the document. Equation 1 shows the 

definition of a normalized TF, in which the term frequency is 

divided by the maximal appearing term in the document with 

values in the range of [0-1]. Another common representation is 

the TF Inverse Document Frequency (TFIDF), which 

combines the frequency of a term in the document (TF) and its 

frequency in the documents collection, denoted by Document 
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Frequency (DF), as shown in Equation 2, in which the term's 

(normalized) TF value is multiplied by the IDF = log (N/DF), 

where N is the number of documents in the entire file 

collection and DF is the number of files in which it appears.. 

)max( documentinfrequencyterm

frequencyterm
TF =   (1) 

)log(*
DF

N
TFTFIDF =           (2) 

B. Data Set Creation 

We created a data set of malicious and benign executables 

for the Windows operating system, as this is the system most 

commonly used and most commonly attacked. To the best of 

our knowledge and according to a search of the literature in 

this field, this collection is the largest one ever assembled and 

used for research. We acquired the malicious files from the 

VX Heaven website
2
. The dataset contains 7688 malicious 

files. To identify the files, we used the Kaspersky
3
 anti-virus 

and the Windows version of the Unix ‘file’ command for file 

type identification. The files in the benign set, including 

executable and DLL (Dynamic Linked Library) files, were 

gathered from machines running Windows XP operating 

system on our campus. The benign set contained 22,735 files. 

The Kaspersky anti-virus program was used to verify that these 

files do not contain any malicious code. 

C. Data Preparation and Feature Selection 

We parsed the files using several n-gram lengths moving 

windows, denoted by n. Vocabularies of 16,777,216, 

1,084,793,035, 1,575,804,954 and 1,936,342,220, for 3-gram, 

4-gram, 5-gram and 6-gram respectively were extracted. Later 

TF and TFIDF representations were calculated for each n-

gram in each file. 

In machine learning applications, the large number of 

features (many of which do not contribute to the accuracy and 

may even decrease it) in many domains presents a huge 

problem. Moreover, in our problem, the reduction of the 

amount of features is crucial, but must be performed while 

maintaining a high level of accuracy. This is due to the fact 

that, as shown earlier, the vocabulary size may exceed billions 

of features, far more than can be processed by any feature 

selection tool within a reasonable period of time. Additionally, 

it is important to identify those terms that appear in most of the 

files, in order to avoid vectors that contain many zeros. Thus, 

we first extracted the top features based on the Document 

Frequency (DF) measure (Equation 2). We selected the top 

5,500 features which appear in most of the files, (those with 

high DF scores), on which later three feature selection methods 

were applied. Since it is not the focus of this paper, we will 

describe the feature selection preprocessing very briefly. We 

used a filters approach, in which the measure was independent 

of any classification algorithm to compare the performances of 

 
2 http://vx.netlux.org 
3 http://www.kaspersky.com 

the different classification algorithms. In a filters approach, a 

measure is used to quantify the correlation of each feature to 

the class (malicious or benign) and estimate its expected 

contribution to the classification task. We used three feature 

selection measures. As a baseline, we used the document 

frequency measure DF (the amount of files in which the term 

appeared in), Gain Ratio (GR) [6] and Fisher Score (FS) [11]. 

We selected the top 50, 100, 200 and 300 features based on 

each of the feature selection techniques. 

D. Classification Algorithms 

We employed four commonly used classification 

algorithms: Artificial Neural Networks (ANN), Decision Trees 

(DT), Naïve Bayes (NB), as well as Support Vector Machines 

(SVM) with three kernel functions. We briefly describe the 

classification algorithms we used in this study. 

1) Artificial Neural Networks 

An Artificial Neural Network (ANN) [12] is an information 

processing paradigm inspired by the way biological nervous 

systems, such as the brain, process information. The key 

element is the structure of the information processing system, 

which is a network composed of a large number of highly 

interconnected neurons working together in order to 

approximate a specific function. An ANN is configured for a 

specific application, such as pattern recognition or data 

classification, through a learning process during which the 

individual weights of different neuron inputs are updated by a 

training algorithm, such as back-propagation. The weights are 

updated according to the examples the network receives, 

which reduces the error function. All the ANN manipulations 

were performed within the MATLAB(r) environment using the 

Neural Network Toolbox. 

2) Decision Trees 

Decision tree learners [13] are a well-established family of 

learning algorithms. Classifiers are represented as trees whose 

internal nodes are tests of individual features and whose leaves 

are classification decisions (classes). Typically, a greedy 

heuristic search method is used to find a small decision tree, 

which is induced from the data set by splitting the variables 

based on the expected information gain. This method correctly 

classifies the training data. Modern implementations include 

pruning, which avoids the problem of over-fitting. In this 

study, we used J48, the Weka [14] version of the C4.5 

algorithm [13]. An important characteristic of decision trees is 

the explicit form of their knowledge, which can be easily 

represented as rules. 

3) Naïve Bayes 

The Naïve Bayes classifier is based on the Bayes theorem, 

which in the context of classification states that the posterior 

probability of a class is proportional to its prior probability, as 

well as to the conditional likelihood of the features, given this 

class. If no independent assumptions are made, a Bayesian 

algorithm must estimate conditional probabilities for an 

exponential number of feature combinations. Naive Bayes 

simplifies this process by assuming that features are 
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conditionally independent, given the class, and requires that 

only a linear number of parameters be estimated. The prior 

probability of each class and the probability of each feature, 

given each class is easily estimated from the training data and 

used to determine the posterior probability of each class, given 

a set of features. Empirically, Naive Bayes has been shown to 

accurately classify data across a variety of problem domains 

[15]. 

4) Support Vector Machines 

SVM is a binary classifier, which finds a linear hyperplane 

that separates the given examples of two classes known to 

handle large amounts of features. Given a training set of 

labeled examples in a vector format, the SVM attempts to 

specify a linear hyperplane that has the maximal margin, 

defined by the maximal (perpendicular) distance between the 

examples of the two classes. The examples lying closest to the 

hyperplane are known as the supporting vectors. The normal 

vector of the hyperplane is a linear combination of the 

supporting vectors multiplied by LaGrange multipliers. Often 

the data set cannot be linearly separated, so a kernel function K 

is used. The SVM actually projects the examples into a higher 

dimensional space to create a linear separation of the 

examples. We examined three commonly used kernels: Linear 

(SVM-LIN), Polynomial (SVM-POL) and RBF (SVM-RBF). 

We used the Lib-SVM implementation
4
. 

III. EVALUATION 

A. Research Questions 

We wanted to evaluate the proposed methodology for the 

detection of unknown malicious codes through two main 

experiments. The first experiment was designed to determine 

the best conditions, including four aspects: 

1. Which term representation is better, TF or TFIDF? 

2. Which n-gram is the best: 3, 4, 5 or 6? 

3. Which top-selection is the best: 50, 100, 200 or 300 and 

which features selection: DF, FS and GR? 

After identifying the best conditions, we performed a second 

experiment to investigate the imbalance problem introduced 

earlier. 

B. Evaluation Measures 

For evaluation purposes, we measured the True Positive 

Rate (TPR) measure, which is the number of positive instances 

classified correctly, as shown in Equation 5, False Positive 

Rate (FPR), which is the number of negative instances 

misclassified (Equation 5), and the Total Accuracy, which 

measures the number of absolutely correctly classified 

instances, either positive or negative, divided by the entire 

number of instances shown in Equation 6. 

||||

||

FNTP

TP
TPR

+
= ; 

||||

||

TNFP

FP
RFP

+
=    (5) 
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C. Experiments and Results 

1) Experiment 1 

To answer the three questions, presented earlier, we 

designed a wide and comprehensive set of evaluation runs, 

including all the combinations of the optional settings for each 

of the aspects, amounting to 1,152 runs in a 5-fold cross 

validation format for all six classifiers. Note that the files in 

the test-set were not in the training-set representing unknown 

files to the classifier. 

Term representation vs n-grams. Figure 1 presents the 

mean accuracy of the combinations of the term representations 

and n-grams. The TF representation outperformed the TFIDF 

along all the n-grams, however, the 5-gram outperformed the 

other n-grams in both cases. Having the TF out-performing has 

meaningful computational advantages; we will elaborate on 

these advantages in the Discussion.  

 
Fig 1. The TF out-performed the TFIDF and the 5-gram features out-

performed the other n-gram features. 

Feature Selections and Top Selections. Figure 2 presents 

the mean accuracy of the three feature selections and the four 

top selections. Generally, the Fisher score was the best 

method, starting with high accuracy even with 50 features. 

Unlike the others, in which the 300 features out-performed, the 

DF’s accuracy decreased after the selection of more than 200 

features, while the GR accuracy significantly increased as 

more features were added. 

Classifiers. In Table 2, we present the results of each 

classifier under the best conditions observed for all the 

classifiers (averaged)- top 300 features selected by Fisher 

score where each feature is 5-gram represented by TF from the 

top 5500 features. The DT and ANN out-perform and have 

low false positive rates, while the SVM classifiers also 

perform very well. The poor performance of the Naïve Bayes, 

may be explained by the independence assumption of the NB 

classifier. 
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Fig. 2. The performance increased as the number of features increased. Most 

of the time the Fischer Score outperform. 

TABLE 2 THE DT AND ANN OUT-PERFORMED, WHILE MAINTAINING LOW 

LEVELS OF FALSE POSITIVES. 

Classifier Accuracy FP FN 

ANN 0.941 0.033 0.134 

DT 0.943 0.039 0.099 

NB 0.697 0.382 0.069 

SVM-lin 0.921 0.033 0.214 

SVM-poly 0.852 0.014 0.544 

SVM-rbf 0.939 0.029 0.154 

2) Experiment 2 – The Imbalance Problem 

In the second experiment we present our main contribution. 

In this set of experiments, we used - top 300 features selected 

by Fisher score where each feature is 5-gram represented by 

TF from the top 5500 features. We created five levels of 

Malicious Files Percentage (MFP) in the training set (16.7, 

33.4, 50, 66.7 and 83.4%). For example, when referring to 

16.7%, we mean that 16.7% of the files in the training set were 

malicious and 83.4% were benign. The test set represents the 

real-life situation, while the training set represents the set-up of 

the classifier, which is controlled. While we assume that a 

MFP above 30% (of the total files) is not a realistic proportion 

in real networks, but we examined high rates in order to gain 

insights into the behavior of the classifiers in these situations. 

Our study examined 17 levels of MFP (5, 7.5, 10, 12.5, 15, 20, 

30, 40, 50, 60, 70, 80, 85, 87.5, 90, 92.5 and 95%) in the test 

set. Eventually, we ran all the product combinations of five 

training sets and 17 test sets, for a total of 85 runs for each 

classifier. We created two sets of data sets in order to perform 

a 2-fold cross validation-like evaluation to make the results 

more significant. 

Training-Set Malcode Percentage. Figure 3 presents the 

mean accuracy (for all the MFP levels in the test-sets) of each 

classifier for each training MFP level. The ANN and DT had 

the most accurate, and relatively stable, performance across 

the different MFP levels in the training set, while NB and 

SVM_Poly generally performed poorly. SVM-RBF and SVM-

LIN performed well, but not consistently. They were both most 

accurate at the 50% level. 

 
Fig. 3. Mean accuracy for various MFPs in the test set. ANN and DT out-

performed, with consistent accuracy, across the different malcode content 

levels. 

10% Malcode Percentage in the Test Set. We consider 

the 10% MFP level in the test set as a realistic scenario. Figure 

4 presents the mean accuracy in the 2-fold cross validation of 

each classifier for each malcode content level in the training 

set, with a fixed level of 10% MFP in the test set. Accuracy 

levels above 95% were achieved when the training set had a 

MFP of 16.7%, while a rapid decrease in accuracy was 

observed when the MFP in the training set was increased. 

Thus, the optimal proportion of malicious files in a training set 

for practical purposes should be in the range of 10% to 40% 

malicious files. 

 
Fig. 4. Detection accuracy for 10% Malcode in the test set. Greater than 95% 

accuracy was achieved for the scenario involving a low level (16.7%) of 

malicious file content in the training set. 

Relations among MFPs in Training and Test Sets. To 

further our presentation of the mean accuracy from the training 

set point of view (Figs. 3 and 4), we present a detailed 

description of the accuracy for the MFP levels in the two sets 

in a 3-dimensional presentation for each classifier (Figs. 6-10). 

Most of the classifiers behaved optimally when the MFP levels 

in the training-set and test-set were similar, except for NB, 

which showed low performance levels earlier. This indicates 

that when configuring a classifier for a real-life application, the 

MFP in the training-set has to be similar to the MFP in the test 

set. 
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Fig 5 – ANN Fig 6 – DT 

  
Fig 7 – NB Fig 8 – SVM-LIN 

  
Fig 9 - SVM-POL Fig 10 – SVM-RBF 

IV. DISCUSSION AND CONCLUSIONS 

We presented a methodology for the representation of 

malicious and benign executables for the task of unknown 

malicious code detection. This methodology enables the highly 

accurate detection of unknown malicious code, based on 

previously seen examples, while maintaining low levels of 

false alarms. In the first experiment, we found that the TFIDF 

representation has no added value over the TF, which is not 

the case in information retrieval applications. This is very 

important, since using the TFIDF representation introduces 

some computational challenges in the maintenance of the 

collection when it is updated. In order to reduce the number of 

n-gram features, which ranges from millions to billions, we 

first used the DF measure to select the top 5500 features. The 

Fisher Score feature selection outperformed the other methods 

and using the top 300 features resulted in the best 

performance. Generally, the ANN and DT achieved high mean 

accuracies, exceeding 94%, with low levels of false alarms. 

In the second experiment, we examined the relationship 

between the MFP in the test set, which represents real-life 

scenario, and in the training-set, which being used for training 

the classifier. In this experiment, we found that there are 

classifiers which are relatively inert to changes in the MFP 

level of the test set. In general, the best mean performance 

(across all levels of MFP) was associated with a 50% MFP in 

the training set (Fig. 3). However, when setting a level of 10% 

MFP in the test-set, as a real-life situation, we looked at the 

performance of each level of MFP in the training set. A high 

level of accuracy (above 95%) was achieved when less than 

33% of the files in the training set were malicious, while for 

specific classifiers, the accuracy was poor at all MFP levels 

(Fig. 4). Finally, we presented a 3-dimensional representation 

of the results at all the MFP levels for each classifier (Figs. 5-

10). In General, the best performance was on the diagonal, 

where the MFP levels in the training-set and the test-set were 

equal. We found a decreased accuracy as the MFP of the 

training set and test set differs, while NB did not seem to be 

affected by the level of MFP in the training-set and was 

influenced only by the MFP level in the test-set. In NB the 

accuracy increased as the MFP in the test-set increased.  

Based on our extensive and rigorous experiments, we 

conclude that when one sets up a classifier for use in a real-life 

situation, he should consider the expected proportion of 

malicious files in the stream of data. Since we assume that, in 

most real-life scenarios, low levels of malicious files are 

present, training sets should be designed accordingly. As 

future work we plan to apply this method on a dated test 

collection, in which each file has its initiation date, to evaluate 

the real capability to detect unknown malcode, based on 

previous known malcodes. 
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