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The Impact of Countermeasure Spreading on the Prevalence of Computer Viruses 

Abstract 

How can virus countermeasures such as software patches or warnings be disseminated and 

installed more efficiently than they are currently so that fewer organizations will suffer virus 

infection problems? The relative effectiveness of four anti-virus strategies is examined formally 

using simulations. One of these strategies is the countermeasure spreading strategy (CMS). CMS 

is based on the idea that computer viruses and countermeasures spread through two separate 

complex networks -- the virus-spreading network and the countermeasure-spreading network, in 

which a countermeasure acts as a competing species against the computer virus. We find 

evidence to support the adoption of CMS. CMS is as, or more, effective than other strategies. 

The proposed CMS reduces the prevalence of computer viruses significantly when the 

countermeasure-spreading network has properties that favor countermeasures over viruses, or 

when the countermeasure-spreading rate is higher than the virus-spreading rate. Another 

advantage is that CMS can be flexibly adapted to different uncertainties in the real world, 

enabling it to be “tuned” to a greater variety of situations than other strategies.  
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The Impact of Countermeasure Spreading on the Prevalence of Computer Viruses 

 

I. INTRODUCTION 

Computer virus1 infections have imposed significant financial losses and loss of productivity to 

organizations even though most organizations have installed anti-virus software. The 2002 

CSI/FBI Survey [8] estimates that the average annual loss due to virus infections is about 283 

thousand dollars per organization based on 223 samples, in which 90% of them have installed 

anti-virus software. The 2001 ICSA Computer Virus Prevalence Survey [13] reports that virus 

infections have caused server down time, loss of productivity and loss of data for organizations, 

in which 92% of them have installed anti-virus software to cover about 90% of their computers. 

These evidences show that installing anti-virus software alone cannot solve the virus prevalence 

problem effectively unless appropriate anti-virus strategy is taken. Vulnerable computers can still 

be infected by new variants of old viruses that exploit the same software vulnerability if virus 

countermeasures, such as software patches or new virus definition files, have not been installed 

on these computers. How can virus countermeasures be disseminated and installed more 

efficiently than they are currently so that fewer organizations will suffer virus infection 

problems?  

In this paper, we investigate the relative effectiveness of several anti-virus strategies using 

computer simulation. A traditional approach to study viruses is to use the Susceptible-Infected-

Removed (SIR) model. SIR is widely used to study the spread of epidemics in human populations 

[1][2][10]. The problem with the SIR model is that it only describes the state changes of 

populations and cannot explain variations in the underlying networks. However, previous studies 

 
1 A computer virus is a segment of program code that will copy its code into one or more larger “host” programs when it is 

activated. A worm is a program that can run independently and travel from machine to machine across network connections [7][23]. 
In this paper, the term computer virus will refer to both computers viruses and worms since most malicious programs today can be 
propagated themselves in both ways. 
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[1][18][21] have shown that the spread of epidemics in human populations is dramatically 

affected by the topology of the underlying network. The same is true of computer viruses [15]. 

Three anti-virus strategies have been proposed, which add network consideration to the SIR 

model to present the spread of viruses. These three strategies are the random immunization 

strategy (RANDOM), the targeted immunization strategy (TARGET) [9][18][21], and the kill-

signal strategy (KS) [14][16]. Both RANDOM and TARGET originated in the study of 

immunization of human populations to prevent epidemics [10]. These models do not explain how 

countermeasures are disseminated for computer viruses. KS considers how countermeasures 

spread but does not consider that the network of spreading countermeasures can be different from 

the network of spreading viruses. In addition, KS assumes that countermeasures only spread to 

computers that have been infected, and does not consider that decision makers for non-infected 

computers may also spread countermeasures. We propose an anti-virus strategy called the 

countermeasure spreading strategy (CMS) in which countermeasures are spread through a 

separate network. Using computer simulation, CMS will be compared with RANDOM, 

TARGET and KS. 

We can think of a countermeasure as a competing species that acts to suppress the spread of 

computer viruses. Decision makers (representing either people or anti-virus software programs) 

who receive the countermeasures will adopt them (e.g. install new software patches) and spread 

them at a certain probability. CMS is based on the hypothesis that the spread of computer viruses 

and the spread of countermeasures are through two separate complex networks: the virus-

spreading network and the countermeasure-spreading network. The real world representations of 

these two networks can be either physical networks (connecting computers/programs) or social 

networks (connecting people/groups). For example, computer viruses that spread through email 

mailing lists utilize the social network connecting email accounts (representing people/groups). 

Countermeasures that automatically spread by anti-virus software programs utilize the physical 
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network connecting computers that have been installed anti-virus software programs. Whether or 

not each of these two networks is a social network or a physical network depends on the 

vulnerability/information that the virus/countermeasure utilizes in order to spread. 

The rest of the paper is outlined as follows. The next section reviews the theoretical 

background of our model, briefs other anti-virus strategies and explains CMS in more detail. 

Section III describes the virus spreading model and the simulation tool we have developed. 

Section IV presents the results of analyzing empirical virus reporting records. Section V 

describes the virtual experiments obtained by running our model on hypothetical networks and 

on the network inferred from the analysis in section IV. Section VI discusses the results of the 

virtual experiments. Contributions and limitations are then discussed. 

II. BACKGROUND 

The spread of computer viruses is a non-linear dynamic system, which is similar to the spread 

of epidemics in human populations [14][21]. The Susceptible-Infected-Removed (SIR) model has 

been widely used to model the spread of epidemics, and to study immunization strategies 

[1][2][10]. This model2 categorizes the entire populations into three states: susceptible (S), 

infected (I) and removed (R). In this model, some of the susceptible population is infected at a 

certain rate through contacts with the infected population. At the same time, some of the infected 

population recovers at a certain rate, and will not be infected again. The problem with the SIR 

model is that it only describes the state changes of the population over time. There are no explicit 

network assumptions in the SIR model. However, implicitly it is assuming that everyone is 

connected to everyone. This is assuredly not the case in either human or computer networks. 

Moreover, previous studies have shown that the spread of epidemics and the spread of computer 

 
2 In this model, α denotes the infection rate of susceptible population and γ denotes the recovery rate of infected population. 

Changes of populations in the three states over time can be represented mathematically as 
I

dt

dR
ISI

dt

dI
SI

dt

dS γγαα =−=−= ,,
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viruses are dramatically affected by the topology of the underlying networks 

[1][15][17][18][19][20][21]. Thus, assuming that the topology is a fully connected network is 

leading the SIR to overestimate the rate at which the epidemic, or in this case, the computer 

virus, spreads. 

Three anti-virus strategies that add network consideration into the SIR model have been 

proposed. These strategies are the random immunization strategy (RANDOM), the targeted 

immunization strategy (TARGET) [21], and the kill-signal strategy (KS) [14]. RANDOM 

proposes to immunize a certain portion of nodes randomly picked from the network of spreading 

viruses so that the virus will not prevail because the immunized nodes cannot be used to spread 

viruses from one node to another. TARGET proposes a similar strategy but immunizes nodes that 

have high connectivity. Both strategies have been studied for controlling epidemic spreading in 

human populations [1] and for controlling computer virus spreading through complex networks 

[9][18][21][24]. KS proposes that once virus infection is found in a computer, the computer will 

disseminate countermeasures to other infected computers. KS assumes that the adoption of 

countermeasures is mandatory, and does not assume countermeasures are spread through a 

separate network. In addition, KS assumes that countermeasures only spread to the computers 

that have been infected, and does not consider that decision makers for other computers may 

spread countermeasures as well. We refer the model proposed in [14] as the KW model.  

The countermeasure-spreading strategy (CMS) we propose is based on the hypothesis that 

countermeasures against a new computer virus can be spread through a countermeasure-

spreading network. The spread of countermeasures is similar to the spread of computer viruses 

but countermeasures act to suppress the spread of computer viruses. You can think of this as 

having two viruses spreading at the same time – a good one and a bad one. Factors that influence 

the spread of the good over the bad enable the overall system to be less likely to be impacted by 

the bad virus. The content of countermeasures depends on the implementation of this strategy. A 
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common example is spreading email warnings that ask people to be aware of new computer 

viruses or new software vulnerabilities. Another example is to create an automatic mechanism 

for spreading software patches exploited by new viruses. Users who like to adopt the automatic 

mechanism can install a software program on their computers to authenticate and spread the 

software patches. A similar mechanism has been implemented in most current anti-virus software 

products3 but these products only allow a server to disseminate countermeasures to other client 

computers, which cannot further spread countermeasures.  

The paper will focus on investigating the relative effectiveness of CMS so that we can draw 

implications for real world implementations. However, the specific implementation details are 

beyond the scope of this paper. In the next section, we will explain our model that extends the 

SIR model to simulate CMS.  

III. MODELING THE DYNAMICS OF COMPUTER VIRUS PROPAGATION 

This section describes the model of virus spreading and countermeasure spreading, and the 

simulation tool to examine CMS. Table A-I in Appendix A lists the notations and meanings of 

parameters used in the model. The goal of the model is to generate implications on the anti-virus 

strategies of reducing the prevalence of computer viruses. Our approach is to model the computer 

virus prevalence problem in the real world at an abstract level that can generate useful policy 

conclusions. We are not trying to model the exact real world details. 

A. The model of virus spreading and countermeasure spreading 

We define virus-spreading network Gv as the network for spreading viruses, and 

countermeasure-spreading network Gc as the network for spreading countermeasures. Both Gv 

and Gc are undirected graphs. In the real world, both networks can represent either physical 

networks (connecting computers/programs) or social networks (connecting people/groups). The 

 
3 For example, Symantec, McAfee and Sophos all have products to support this functionality. 
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real world representation of Gv depends on the vulnerabilities that the virus exploits. For 

example, the computer virus that spreads through emails or mailing lists, such as Love Letter, 

propagates itself to other email accounts only when email receivers click on the malicious email 

attachments. In this case, Gv is a social network because the virus exploits the 

social/organizational connections among people/groups that are built upon email 

communications, in which the virus spread from one email account (representing one person or 

one group) to another email account. On the contrary, the computer virus that exploits specific 

software vulnerabilities, such as Nimda, can propagate itself without user interventions. In this 

case, Gv is a physical network connected by vulnerable computers/programs. Similarly, the real 

world representation of Gc depends on the implementation of anti-virus policies. For example, Gc 

is a social network if countermeasures are implemented as email warnings, because the warnings 

spread from one email account (representing one person or one group) to another. In contrast, Gc 

is a physical network if countermeasures automatically spread through anti-virus programs that 

have been installed by system administrators on computers beforehand. In summary, the 

differences in these two complex networks in the model are not exactly the differences between a 

physical network and a social network. Whether or not Gv or Gc is a social network or a physical 

network depends on the vulnerability/information that the virus/countermeasure utilizes in order 

to spread. 

In this paper, we make two simplifying assumptions which facilitate evaluating the 

effectiveness of CMS. These assumptions can be relaxed in future applications of our model. 

First, we assume that countermeasures have only a positive effect, no negative effect, on the 

action of decision makers. For example, a software patch is authenticated that can actually patch 

the software vulnerability, but is not another computer virus. Secondly, we assume that each 

node in Gv maps to one node in Gc. For example, the decision maker that receives a 

countermeasure will only apply it on the set of computers in the administrative domain of the 
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decision maker. 

The changes of each node in these two complex networks are described as state machines. 

Each node in Gv changes over time among three states: “susceptible (S)”, “infected (I)”, and 

“removed (R)” due to computer virus spreading, as illustrated in the state machine in Fig. 1. In 

the meantime, each node in Gc changes among three states: “unwarned (U)”, “warning (WG)” 

and “warned (WD)” due to countermeasure spreading, as illustrated in the state machine in Fig. 

2. In each state machine, circles represent states and arrows represent state transition rules. We 

label each arrow with the name of the state transition rule and a Roman symbol representing the 

probability of change for each node from one state to another state. All probabilities of change 

for state transition rules are in range [0,1]. We describe these states and rules in details as 

follows. 

1) The state machine of spreading computer viruses  

Each state in the state machine of spreading computer viruses represents an observable fact 

Unwarned 
(U) 

Warning 
(WG) 

Propagating 
countermeasures (λ) 

Stopping countermeasures 
spreading (δ) 

Warned 
(WD) 

 
 

Fig. 2. The state machine of spreading countermeasures  

Susceptible 
(S) 

Infected 
(I) 

Removed 
(R) 

Patching 
computers from 
susceptible (κ) 

Propagating viruses (α) 

Patching computers 
from infected (γ+κ) 

 
 

Fig. 1. The state machine of spreading computer viruses 
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of a node. A state is a Boolean variable in value either “true” or “false”. The state machine is 

revised from the SIR model, which includes three states: 

1. Susceptible (S): A node has the software vulnerability that the computer virus exploits. 

2. Infected (I): A node is infected by the computer virus, which means the node can infect its 

neighbors with this virus and the virus has not been removed from the node. For example, 

computers that receive a Melissa Virus are in infected “state” only if the users click on the 

email attachments and only if the computers can spread this virus. 

3. Removed (R): A node that has installed a detection tool that has the functionality to detect 

the computer virus, or the node has installed a software patch to eliminate the software 

vulnerability that this computer virus exploits.  

There are three state transition rules for spreading viruses: 

1. Propagating viruses: A node in the “susceptible” state will change to “infected” state 

with the probability α only if one of its neighbors is infected, where α is the birth rate of 

the computer virus. 

2. Patching computers from infected: A node in the “infected” state will change to 

“removed” state at the probability γ, where γ is the die out rate of the computer virus 

because decision makers have discovered virus infections and patched the computers. In 

addition, if the corresponding node in Gc is in either the “warning” state or the “warned” 

state, the probability of patching is increased from γ to γ+κ. κ denotes the countermeasure 

adoption rate and represents the probability that decision makers will adopt the 

countermeasure. In order to discuss how fast a virus can spread when no countermeasure 

is applied, we define the virus-spreading rate ρv = 
γ
α

. 

3. Patching computers from susceptible: A node in the “susceptible state will change to 

“recovered” state at the probability κ if the corresponding node in Gc is in either the 



 

— 9 — 

“warning” state or the “warned” state. We assume that κ for susceptible nodes is the same 

as the one for infected nodes. These two adoption rates may be different in the real world 

but it does not influence our purpose of investigating the relative effectiveness of CMS. 

2) The state machine of spreading countermeasures  

Each state in the state machine of spreading countermeasures represents if a decision maker 

will adopt and spread countermeasures. A state is a Boolean variable in value either “true” or 

“false”. This state machine includes three states:  

1. Unwarned (U): The node has not received the countermeasure and the computers 

administrated by this node will not be influenced by the countermeasure.  

2. Warning (WG): The node has received countermeasures and spreads the countermeasure. 

The decision maker will adopt the countermeasure at a certain probability and spread the 

countermeasure to its neighbors. 

3. Warned (WD): The node has received countermeasures but does not spread the 

countermeasure anymore. Nodes at this state will adopt the countermeasure at a certain 

probability but does not spread the countermeasure to its neighbors.  

There are two state transition rules for spreading countermeasures: 

1. Propagating countermeasures: A node in the “unwarned” state will change to the 

“warning” state with the probability λ if one of its neighbors is in the “warned” state, 

where λ is the birth rate of the countermeasure. 

2. Stopping countermeasures spreading: A node in the “warning” state will change to 

“warned” state at the probability δ, where δ is the die out rate of the countermeasure. We 

model that a node stops spreading the countermeasure at a certain probability for two 

reasons: First, if the countermeasure represents an email warning, people who have 

received the emails may not keep propagating the emails all the time. Secondly, if the 

countermeasure represents a software patch sent by an automatic mechanism, the die out 
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rate will prevent the patch spreading from saturating the computer network. In order to 

discuss how fast a countermeasure can spread, we define the countermeasure-spreading 

rate ρc = 
δ
λ

. 

B. The simulation on the prevalence of computer viruses 

The simulation is designed to be flexible enough so that it can examine the relative 

effectiveness of four different anti-virus strategies on different network topologies using Monte-

Carlo sampling techniques. The four strategies are RANDOM, TARGET, KS, and CMS, as 

described in the Section II. These four strategies are based on four different state machines: our 

state machine of spreading viruses, our state machine of spreading countermeasures, the state 

machines from the KW model, and the state machine from the SIR model. In addition, the 

simulation tool is able to import a given network topology, and to simulate the spread of 

Input 
 
 
 
 
 

Countermeasure-spreading 
network (Gc) 

Virus-spreading network (Gv) 
Virus-spreading rate (ρv) 

 

Strategies (State machines) 
 
 
 
 
 
 

Countermeasure spreading (CMS) 

Kill-signal spreading (KS) 

Random immunization (RANDON) 

Targeted immunization (TARGET) 

Output 
 
 

Prevalence (P) 

Converge time (T) The SIR model 

The KW model 

The state machine of 
spreading countermeasures  

The state machine of 
spreading computer viruses  

The SIR model Relative Prevalence (RP) 

Countermeasure adoption rate (κ) 

Percentage of nodes immunized (n) 

Countermeasure-spreading rate (ρc)

 
 

Fig. 3. The simulation on the prevalence of computer viruses 
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computer viruses using this network.  

Fig. 3 illustrates the design of the simulation. The inputs include Gc and κ, which are only used 

by CMS, ρc, which is used by CMS and KS, Gv and ρv, which are used by all four strategies, and 

percentage of immunized nodes (n), which are used by RANDOM and TARGET. Each 

simulation stops when the dynamic system is converged to a steady state. In our simulation, the 

steady state means that no nodes are in the “infected” state or all nodes have been infected. The 

outputs include converge time (T), prevalence (P) and relative prevalence (RP). Converge time 

(T) is the time that the system converges, which is the time that the simulation stops. Prevalence 

(P) is the number of nodes that have been infected divided by the total number of nodes in the 

network. Relative prevalence (RP) is the relative value of P comparing to no anti-virus strategy. 

In the next section, we will estimate the empirical values of P and T from The Wild List data.  

IV. ANALYSIS OF VIRUS REPORTING RECORDS 

A computer virus propagates itself based on the infection mechanism coded in this virus 

program. The virus-spreading network Gv and the virus-spreading rate ρv depend on the design of 

the infection mechanisms coded in a virus program, and the vulnerability that is exploited by the 

computer virus. In this section, we calibrate Gv and ρv based on The Wild List4 (TWL) virus 

prevalence records. The data set we analyzed is from January 1996 to September 2002, which 

includes 106 reporting sites and 958 computer viruses across 71 reporting5 time periods. TWL 

was originally published in one-month chucks. It reports the name of the viruses that have been 

discovered in each reporting site (a site refers to a company or a reporting center) over time but 

does not report the number of infected computers in each site. For this reason, this data set is 

only enough to investigate the prevalence of compute viruses among organizations but not within 

 
4 The Wild List is available at http://www.thewildlist.com. It is a cooperative listing of viruses reported as being in the wild by 

virus information professionals. ICSA, Virus Bulletin and Secure Computing are currently using The Wild List as the basis for virus 
testing and certification of anti-virus products [12]. 

5 From 1996-1998, The Wild List reported the records every two months. 
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an organization.  

A. Prevalence and converge time 

We categorize viruses in TWL data set into two types: one-to-one and one-to-many, because 

we would like to know if P and T in these two types are different. One-to-one refers to the virus 

that is designed to infect one target during one infection process and this infection process is 

triggered by a certain user behavior, such as a MS macro virus. One-to-many refers to the virus 

that is designed to infect multiple targets during one infection process and the virus itself can 

trigger the infection process automatically, such as the Melissa virus [5] or the Love Letter virus 

[6]. Table I lists minimum, mean, maximum, and standard deviation of P6 and T7. 

Table I: Prevalence and converge time from TWL data set 

  All data One-to-one One-to-many 

Number of viruses  958 821 137 

Prevalence (P) Minimum 0.02 0.02 0.02 

 Mean 0.09 0.08 0.14 

 Maximum 0.60 0.60 0.57 

 

Standard 

deviation 0.11 0.10 0.14 

Converge time (T) Minimum 1 1 2 

 Mean 15.9 16.2 15.0 

 Maximum 71 71 60 

 

Standard 

deviation 12.6 13.1 8.5 

From this analysis, we have found the following characteristics of computer virus spreading: 

1. On average, one-to-many viruses spread faster than one-to-one viruses since the average P 

is higher and the average T is shorter. However, the fastest spreading one-to-one virus can 

infect as many sites as one-to-many viruses. In addition, the variations of P between the 

two types are similar (standard deviation=0.10 and 0.14 respectively). 

 
6 Prevalence= the number of sites that have reported a virus/ the total number of reporting sites 
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2. The standard deviation of T is 12.6 months and the average T is 15.9 months. This result 

implies that the variation of T among different viruses is relatively large (more than a 

year). By further examining the data set, we found that viruses spread much faster in the 

first three months than the rest of their lifetime. In the first three months, one-to-many 

viruses have infected average 83% of the sites that are infected when the viruses 

converge, and one-to-one viruses have infected average 77% of those. 

Since both types of viruses are able to cause P as high as 0.6, it is more meaningful to 

examine the effectiveness of CMS based on the fastest spreading virus. We will use P =0.6 

(maximum) and T= three months (infect roughly 80% of sites) as base values to calibrate ρv in 

the next section. ρv calibrated from this data set may be underestimated due to two reasons. 

First, TWL data set is an observed virus prevalence records in which it is possible that some 

virus infection incidents are not reported because they have not been discovered. Secondly, the 

observed prevalence records may be a result of applying some anti-virus strategies. For this 

reason, we examine the variation of ρv in the simulation in the Section VI. 

B. The network of computer virus spreading 

To order to infer Gv, we investigate the change of reporting sites over time for each virus. We 

coded the reporting records for each virus as a network. The data coding assumes that two 

                                                                                                                                                                             
7 Converge time= the last time period that a virus was shown on the list - the first time period that the virus was reported. 

A

C 
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Fig. 4. An example of inferring the virus-spreading network  
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reporting sites have a link to each other if one site reports a virus during the current time period 

and the other site reports the same virus the first time during the next time period. This 

assumption implies that the virus is spread from one site to another either directly from this site 

or indirectly through another sites during this time period. Fig. 4 shows an example. This 

example illustrates that a virus is reported in three continuous reporting periods: T1, T2, and T3. 

Site A reported the virus in the time period T1, and sites A, B, and C reported the same virus in 

the time period T2. We assume that a link exists between A and B, and A and C since B and C 

were reported in the next time period that A was reported. The same coding assumption is 

applied to the next time period until all time periods are included. At the end, we obtain Gv for 

this computer virus. A similar approach to investigate the time evolution of networks has been 

used in the social network analysis [3]. 

By applying the same assumption to each virus, we obtain a set of virus-spreading networks G 

={Gk| k = 1, 2,…, 958}. Each graph in G contains the observable nodes that a virus actually 

infects but does not contain the nodes that are susceptible to the virus. Gv should be larger than 

the observable one. For this reason, we calculate Gv as the conjunction of graphs in G, in which a 

link exists only if the link is observed at least in ϕ networks in G. In the social network analysis, 

this method has been used to find a central graph from a set of networks [22]. We set ϕ=2 which 

is the largest possible network that has been used by at least two viruses. Gv calculated from this 

method represents the worst possible case of computer virus spreading, which can examine the 

lower bound of CMS. We refer Gv inferred from TWL data set as TWL in the following sections. 

V. VIRTUAL EXPERIMENTS 

In this section, we describe simulation experiments to evaluate the effectiveness of CMS. For 

each experiment, parameters are initialized as specified in the experiment designs in the next 

sub-sections. Each experiment is run 105 times so that the standard deviations and the mean 
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values of outputs converge. One starting infected node is randomly selected each run  

A. Base scenario 

All parameters in an experiment will be set to a base scenario except for specified in the 

experiment designs. The base scenario will be used as a benchmark for anti-virus strategies since 

it describes the situation that a virus is spreading but no anti-virus strategy is applied. In the base 

scenario, we calibrate ρv= 0.13 (ρv= α/γ where α = 0.013 and γ = 0.1) in which the average P = 

0.6 and the average T = 90 days (3 months) as we estimated in the Section IV.A. All other 

parameters are set to zero in the base scenario. TWL network is used in the base scenario. 

B. Measures of effectiveness 

In order to measure how effective an anti-virus strategy is, we will report the results in P or RP 

in the next Section. P is calculated as the average value in 105 runs. RP is calculated as the ratio 

of P based on one strategy to P without any anti-virus strategy. RP indicates how much 

prevalence an anti-virus strategy can reduce relative to the prevalence without any strategy at all. 

For example, RP = 0.5 means that the strategy can reduce prevalence to a half of prevalence 

without this strategy. Both P and RP are in range [0,1]. 

C. Designs of virtual experiments 

How effective CMS is? We will run 6 sets of virtual experiments to investigate this question. 

Table A-II in Appendix B lists the values of parameters in each experiment.  

Both Experiment 1 and 2 investigate the effectiveness of CMS based on TWL network, in 

which Experiment 1 varies ρv and κ and Experiment 2 varies ρc and κ. Experiment 3 and 4 

investigate how network topology influences the effectiveness of CMS by varying either Gv or 

Gc. In Experiment 3, the networks include TWL network, a scale-free network (SF)8, a Small-

World network with reconnecting probability=0 (SM0)9, a Small-World network with 

 
8 All scale-free networks are generated based on the algorithm in [4].  
9 All Small-World networks are generated based on the algorithm in [26]. SM0 refers to a lattice. SM1 refers to the edges in a 

lattice are reconnecting to other nodes with the probability =1. 
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reconnecting probability=1 (SM1), and a fully connected network (FULL). All SF, SM0, SM1 

and FULL networks are the same size as TWL network (106 nodes). In Experiment 5, we 

investigate networks with more nodes. An Internet autonomous system network topology10 (AS) 

is used, which has 11,716 nodes. The link distribution of Internet autonomous system network 

topology is proportional to several power-law relationships [11], which is different from 

topologies in Experiment 3. Three other networks with the same number of nodes are compared 

to AS, which include a scale-free network (SF-L), a Small-World network with reconnecting 

probability=0 (SM0-L), a Small World network with reconnecting probability=1 (SM1-L), and a 

fully connected network (FULL-L). Properties of networks used in Experiment 3 and 4 are listed 

in Table A-III in Appendix C. Experiment 5 compares CMS with three other anti-virus strategies, 

including RANDOM, TARGET and KS. 

VI. RESULTS OF VIRTUAL EXPERIMENTS 

Using results from simulation experiments, this section investigates the relative effectiveness of 

CMS by varying ρv, ρc, κ, Gv, and Gc. In addition, the section compares CMS with three other 

anti-virus strategies.  

A. The impact of virus-spreading rate 

 
10 Available at “http://moat.nlanr.net/AS/ “, downloaded on August 2001. 
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First, we investigate CMS under various ρv. As in Fig. 5, the results from Experiment 1 show 

that CMS reduces prevalence11 to about one third of its original level (from 0.6 to 0.2) if the 

probability that decision makers will adopt countermeasures is 0.05, in which the virus spreads at 

the maximum ρv observed in TWL data set. 

To examine viruses that may spread much faster than the observed one, we investigate ρv that 

are higher than the observed maximal value. From Fig. 5, when ρv is twice of the observed 

maximal value and κ=0.1, prevalence is reduced to about one third of its original level (from 0.85 

to 0.25). When ρv is ten times of the observed maximal value, κ =0.5 is needed for the same 

result. These results imply that CMS is only effective when κ increases with ρv. From Fig. 5, we 

also found that increasing κ from 0.01 to 0.5 reduces prevalence more than increasing κ from 0.5 

to 1. This result implies that CMS can be effective even though less than 50% of nodes adopt 

 
11 We present the result of experiment 1 in prevalence instead of relative prevalence so that we can show the result for the base 

scenario (adoption rate = 0). Later in this section, results will be reported in relative prevalence in order to show the relative change of 
prevalence because of anti-virus strategies. 
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countermeasures once they receive them. 

B. The impact of countermeasure-spreading rate 

How fast should the countermeasure spread in order to significantly reduce prevalence? The 

results from Experiment 2 (Fig. 6) address this question. If the countermeasure spreads as fast as 

the computer virus does (ρc/ρv = 1), prevalence will be reduced to less than 0.6 of its original 

level even though all nodes adopt the countermeasure. However, prevalence is reduced to more 

than a half of its original level if ρc is larger than ρv (ρc/ρv > 1), and if each node has at least 0.05 

possibilities to adopt the countermeasure ( κ ≥ 0.05). This result implies that, when ρc is larger 

than ρv, CMS can significantly reduce prevalence even though the probability of decision makers 

to adopt countermeasures is low. 

C. The impact of network topology 

The topology of Gv may vary from one virus to another. For example, Gv for a virus spreading 

through emails is different from Gv for a virus spreading through web browsing. Similarly, the 
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topology of Gc may vary from one anti-virus policy to another. For example, Gc for sending email 

warnings is different from Gc for sending software patches by system administrators. The 

variation of networks in the real world is the reason why we need to study the impact of network 

topology.  

Table II: Correlations between properties of countermeasure-spreading networks (Gc) and 
relative prevalence (RP) 

  The ratio of countermeasure-spreading rate to virus spreading rate (ρc/ρv) 
  0 0.5 1 2 4 6 12 
Epidemic threshold 0 0.65 0.84 0.93 0.94 0.92 0.92 
Density 0 -0.98 -0.86 -0.71 -0.58 -0.51 -0.49 
Average path length 0 0.24 0.30 0.36 0.47 0.56 0.64 
Clustering coefficient 0 -0.83 -0.82 -0.68 -0.52 -0.42 -0.36 
Degree centralization12 0 -0.75 -0.55 -0.25 -0.18 -0.18 -0.22 

First, we ask how does Gc influence the effectiveness of CMS? As in both Fig. 7 and Fig. 8, we 

find that the effectiveness of CMS varies with Gc. In order to investigate what properties in a 

network actually influence this strategy, we correlate properties of networks to relative 
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prevalence generated in Experiment 3 and 4. As in Table II, we find that the correlation varies 

with both ρc and the properties of networks.  

Among the properties we calculated, epidemic threshold has the highest positive correlation to 

relative prevalence when ρc is larger than ρv (ρc/ρv>1). Epidemic threshold is defined as the 

minimal epidemic spreading rate that an epidemic can prevail [1]. In a complex network, 

epidemic threshold varies with the edge distribution of networks13[19]. Applying this property on 

countermeasure spreading, we find that the countermeasure-spreading network with a lower 

epidemic threshold is more effective to reduce the prevalence of computer viruses than the ones 

with higher epidemic thresholds. For example, Fig. 7 illustrates this result where the order of 

epidemic thresholds is SM0>SM1>SF>TWL>FULL. In general, this result confirms that the 

prevalence of an epidemic increases when the epidemic threshold of the network decreases. 

                                                                                                                                                                             
12 Degree centralization can be used as an index only if it is larger than 1 because all graphs that have the same number of edges 

per node have degree centralization = 1. For example, both a fully connected network and a lattice network have degree centralization 
=1. For this reason, this index cannot distinguish edge distribution among nodes well when it is equal to 1.  
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In addition, density14 has a negative correlation with relative prevalence. This result implies 

that our strategy is more effective if the connectivity of Gc is larger. This confirms that the 

prevalence of epidemics (applied to countermeasures in this case) increases with the connectivity 

of the network for spreading epidemics. Moreover, the effectiveness of CMS increases with 

clustering coefficient15 (negatively correlated to relative prevalence), and decreases with average 

path length (positively correlated to relative prevalence). This result implies that the prevalence 

of epidemics increases when the cliquishness of the network for epidemic spreading increases, 

and decreases when the average path length of the network increases. This result confirms the 

finding in [26] about epidemic spreading on a network with the Small-World property. Finally, 

we found that the effectiveness of CMS increases when the degree centralization16[25] of a 

network increases. However, the correlation is smaller comparing to other measures. 

In Experiment 3 and 4, we also investigate the effectiveness of CMS when Gv varies. We find 

that the influence of network topology is two folds. If Gc and Gv have the same property, this 

property influences the spread of viruses as the same way as the spread of countermeasures. In 

this case, the effectiveness of CMS increases when the ratio of ρc to ρv increases, as in Fig. 7 

(both networks=TWL) and Fig. 8 (both networks=AS). However, if the properties of Gc are 

different from those of Gv, the effectiveness depends on the ratio between the properties of these 

two networks. For example, in Fig. 8, relative prevalence for different topologies is higher when 

the epidemic threshold of Gc (SM0-L, SM1-L and SF-L) is larger than the epidemic threshold of 

Gv (AS). Hence, to suppress the spread of computer viruses, Gc needs to have the properties that 

will spread the countermeasures faster than the viruses. 

                                                                                                                                                                             

13 When an epidemic spreads on a complex network, the epidemic threshold can be estimated by 
><
><=

2e

e
thresholdρ  where 

<e> denotes the average number of edges and <e2> denotes the average square of edges [19]. 
14 Density measures the connectivity of a network, which is defined as the number of edges of a network divided by the largest 

possible number of edges of this network [25]. 
15 Clustering coefficient measures the cliquishness of a network. Node clustering coefficient is defined as the connectivity of the 

neighbors of a node. Clustering coefficient is the average of node clustering coefficients in a network [26]. 
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D. Large networks 

Is CMS applicable to larger networks? Experiment 4 confirms that CMS has the same property 

in larger networks as in small networks. In Experiment 4, an Internet autonomous system 

network topology (AS) is compared with other hypothetical network topologies that have the 

same number of nodes (11,716 nodes) and the same connectivity. Assume that in the future AS is 

used for spreading viruses, the effectiveness of CMS (FULL-L>AS>SF-L>SM1-L>SM0-L) is 

correlated to the properties of Gc, as in Table II and as in Fig. 8.  

E. Comparison of different anti-virus strategies 

Comparing to other anti-virus strategies, how effective CMS is? Experiment 5 (Fig. 9) shows 

how relative prevalence varies if a different anti-virus strategy is applied. For example, to reduce 

prevalence to a half of its original level (RP=0.5), KS requires ρc is 10 times of ρv; CMS requires 

ρc is twice of ρv and κ=0.1; RANDOM requires 35% of the nodes are immunized and TARGET 

                                                                                                                                                                             
16 Degree centralization measures the differences of the connectivity among nodes, which takes the average of the difference of 

individual node connectivity and the average node connectivity [25]. 
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requires 25% of the nodes are immunized.  

Each of these four strategies has its strength and weakness. Both RANDOM and TARGET 

require a few nodes immunized before a virus infect them. In the real world, to immunize a node 

is possible because patching software vulnerabilities in computers or setting a virus filter at the 

email server of an organizational network can be regarded as a form of immunization. In theory, 

TARGET is more effective because it can reduce prevalence to the same level as RANDOM 

does by immunizing fewer nodes [21]. However, it is hard to determine which nodes have high 

connectivity in the computer virus problem. In this aspect, RANDOM is more applicable to the 

real problem than TARGET. 

Both KS and CMS focus on distributing countermeasures for a virus, which has not been 

addressed by both RANDOM and TARGET. The idea of propagating countermeasures through a 

certain type of network compensates the disadvantage of TARGET to identify highly connected 

nodes.  

At the same ρc, CMS reduces prevalence more than KS does because of two assumptions. First, 

CMS assumes that both susceptible and infected nodes will adopt countermeasures, but KS 

assumes that only the infected nodes will adopt countermeasures. Secondly, CMS assumes that 

Gc can be different from Gv. These two assumptions explain more uncertain factors than KS does 

in immunizing susceptible nodes and in the dynamics of spreading countermeasures. 

The limitation of CMS is that a countermeasure has to spread faster than the computer virus, 

such as through a network with a lower epidemic threshold or by a higher countermeasure-

spreading rate.  

VII. CONCLUSIONS 

 In this paper, we investigated four strategies for reducing the prevalence of computer viruses – 

RANDOM, TARGET, KS and CMS. Of these, CMS was the most effective. CMS is based on 
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the idea that the countermeasure against a computer virus can spread as a competing species on a 

separate network from the network used to spread the computer virus. The relative effectiveness 

of this strategy depends on whether countermeasures can spread faster than computer viruses.  

A countermeasures can spread faster than a computer virus under two circumstances: The first 

circumstance is when the countermeasure-spreading rate is higher than the virus-spreading rate, 

which refers to a higher countermeasure birth rate or a lower countermeasure die out rate. In the 

real world, this result implies that the prevalence of viruses can be reduced if decision makers are 

more likely to spread countermeasures to their neighbors than to spread computer viruses, or if 

decision makers are more likely to discover virus infections than to stop spreading 

countermeasures. The second circumstance is when the topology of countermeasure-spreading 

network has the properties that can increase prevalence of countermeasures more than prevalence 

of viruses. For example, a network with a lower epidemic threshold has this property. A network 

that has a few nodes with high connectivity, such as a scale-free network, also has this property. 

Based on this result, it will be effective to spread countermeasures on a network of major 

response centers or anti-virus companies to their large customer base even when the possibility 

of decision makers to adopt the countermeasure is as low as 0.1.  

Future work could be done based on our model. The model and the simulation developed in 

this paper can be extended to describe a more complicated agent with more states by revising the 

state machines. Additionally, our model simulates the spread of countermeasures and viruses 

through two separate complex networks. This model can be applied to other problems where 

there are two competing contagious agents, such as the effect of spreading rumors on the 

diffusion of correct information. 

We presented a model for virus spreading and countermeasure spreading based on various 

network topologies. Then using simulations, we examined the effectiveness of CMS to reduce 

the prevalence of computer viruses. This approach clarifies the uncertainty of virus spreading 
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and countermeasure spreading through different network topologies. CMS is as, or more, 

effective than three other anti-virus strategies, and it incorporates more variables to describe the 

uncertainty in the real world for disseminating countermeasures. In the future, we expect to 

further apply this network modeling approach to understand the diffusion and defenses for other 

classes of security incidents. 
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APPENDIX 

A. A list of notations 

Table A-I: Notations of model parameters 

Input parameters 

Notations Meaning Range of parameter value 

Gv Virus-spreading network Undirected graph 

Gc Countermeasure-spreading network Undirected graph 

α Virus birth rate [0,1] 

γ Virus death rate [0,1] 

ρv Virus-spreading rate =α/γ 

λ Countermeasure birth rate [0,1] 

δ Countermeasure death rate [0,1] 

ρc Countermeasure-spreading rate =λ/δ 

κ Countermeasure adoption rate [0,1] 

Output parameters 

Notations Meaning Range of parameter value 

P Prevalence [0,1] 

RP Relative prevalence [0,1] 

T Converge time >0 
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B. Experiment designs 

Table A-II: Experiment designs 

Parameters Experiment1 Experiment2 Experiment3 Experiment4 Experiment5 

Virus spreading 
network (Gv) 

TWL TWL TWL, SF, 
SM0, SM1, 
FULL 

AS, SF-L, 
SM0-L, 
SM1-L, 
FULL-L 

TWL 

Effective virus 
spreading rate 
(ρv) 

0.01, 0.05, 
0.1, 0.2, 0.3 
0.4, 0.5, 0.6, 
0.7, 0.8, 0.9, 1 

0.13 

 

0.13 0.13 0.13 

Countermeasure 
spreading 
network (Gc) 

TWL TWL TWL, SF, 
SM0, SM1, 
FULL 

AS, SF-L, 
SM0-L, 
SM1-L, 
FULL-L 

TWL 

Effective 
countermeasure 
spreading rate (in 
ρc/ρv) 

10  0, 0.5, 1, 2, 
4, 6, 12  

0, 0.5, 1, 2, 
4, 6, 12 

0, 0.5, 1, 2, 
4, 6, 12 

0.05, 0.01, 0.5, 1, 2, 5, 10, 
50, 97 (applicable to CMS 
and KS) 

Countermeasure 
adoption rate (κ) 

0, 0.01, 0.05, 
0.1, 0.5, 1 

0, 0.01, 
0.05, 0.1, 
0.5, 1 

0.1 0.1 0.1 

Percentage of 
nodes immunized 

(n) 

N.A. N.A. N.A. N.A. 1%, 5%, 10%, 20%, 30%, 
50%, 70%, 90% 
(applicable to RANDOM 
and TARGET) 

Anti-virus 
strategy 

CMS CMS CMS CMS CMS, KS, RANDOM, 
TARGET 
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C. Measures of networks used in simulation experiments 

 

Table A-III: Properties of networks used in simulation experiments 

 

Number 

of nodes 

Number 

of edges Density 

Average 

path 

length 

Clustering 

coefficient 

Degree 

centralization 

Epidemic 

threshold 

SM0 106 212 0.02 13.6 0.50 0.00E+00 0.25 

SM1 106 212 0.02 3.4 0.04 6.47E-04 0.21 

SF 106 208 0.02 3.1 0.10 1.58E-03 0.15 

TWL 106 2710 0.24 1.5 0.77 3.78E-03 0.02 

FULL 106 11130 1.00 1.0 1.00 0.00E+00 0.01 

SM0-L 11716 23432 1.7E-04 1464.9 0.50 0.00E+00 0.25 

SM1-L 11716 23432 1.7E-04 7.3 1.5E-04 0.00E+00 0.22 

SF-L 11716 23428 1.7E-04 5.1 4.9E-03 2.00E-06 0.07 

AS 11716 24480 1.8E-04 3.6 0.30 1.80E-05 3.7E-03 

FULL-L 11716 1.4E+08 1.00 1.0 1.00 0.00E+00 8.5E-05 
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