
Static Analysis of Binary Code to Isolate Malicious Behaviors�

J. Bergeron & M. Debbabi & M. M. Erhioui & B. Ktari
LSFM Research Group,

Computer Science Department,
Science and Engineering Faculty,

Laval University,
Quebec, Canada

fbergeron,debabi,erhioui,ktarig@ift.ulaval.ca

Abstract

In this paper, we address the problem of static slicing on
binary executables for the purposes of the malicious code
detection in COTS components. By operating directly on
binary code without any assumption on the availability of
source code, our approach is realistic and appropriate for
the analysis of COTS software products. To be able to rea-
son on such low-level code, we need a suite of program
transformations that aim to get a high level imperative rep-
resentation of the code. The intention is to significantly im-
prove the analysability while preserving the original seman-
tics. Next, we apply slicing techniques to extract those code
fragments that are critical from the security standpoint. Fi-
nally, these fragments are subjected to verification against
behavioral specifications to statically decide whether they
exhibit malicious behaviors or not.

1. Motivation and Background

Nowadays, many are the information infrastructures that
are based on the so-called commercial off-the-shelf (COTS)
components. Actually, many organizations are undergoing
a remarkable move from legacy systems towards COTS-
based systems. The main motivation underlying such a mi-
gration is to take advantage of cutting-edge technologies
and also to lower the program life-cycle costs of computer
systems. Nevertheless, this migration phenomenon poses
severe, and very interesting, challenges to the currently es-
tablished computer system technologies in terms of secu-
rity, reliability, integration, interoperability, maintenance,
planning, etc.

�This research is jointly funded by a research grant from the Natural
Sciences and Engineering Research Council, NSERC, Canada and also by
a research contract from the Defense Research Establishment, Valcartier,
DREV, Quebec, Canada.

With the advent and the rising popularity of networks,
Internet, intranets and distributed systems, security is be-
coming one of the focal points of research. As a matter of
fact, more and more people are concerned with malicious
code that could exist in COTS software products. Malicious
code are fragments of code that can affect the secrecy, the
integrity, the data and the control flow, and the functionality
of a system. Therefore, their detection is a major concern
within the computer science community [2]. As these mali-
cious code can affect the data and control flow of a program,
static flow analysis may naturally be required as part of the
detection process.

In this paper, we address the problem of static slicing on
binary executables for the purposes of the malicious code
detection in COTS components. Static slicing is useful
to extract those code fragments that are critical from the
security standpoint. Once computed, these fragments are
subjected to verification against behavioral specifications to
statically decide whether they exhibit malicious behaviors
or not.

The rest of the paper is organized in the following way.
Section 2 reports a methodology for malicious code detec-
tion in binary executable code. Section 3 discusses in de-
tails different issues regarding the translation of assembly
code to a high-level imperative representation. Section 4
is dedicated to the presentation of a slicing algorithm for
a binary code which has been previously translated to an
abstract representation. Section 5 is devoted to the related
work. Finally, a few concluding remarks and a discussion
of future research are ultimately sketched as a conclusion in
Section 6.

2. Methodology

In this section, we report a methodology for malicious
code detection in binary executable code. Our approach is

APIs prototypes

routines signatures

Behaviors
DataBase

Suspicious APIs

Compiler and library

Library routines and

Slice

Abstractions

Binary Code

Report

Program-Checker

Disassembler

Assembly

Representation

Program Slicer

Detection Process Level

Code Analysis Level

High-level

Figure 1. Proposed Architecture.

structured in three major steps. The first step consists in dis-
assembling the binary code, which yields an assembly ver-
sion of the code. The intent of the second step is twofold:
First, we need a suite of program transformations that aim
to get a high level imperative representation of the code.
The intention is to significantly improve the analysability
while preserving the original semantics. As an example of
program transformations, we mention stack elimination, re-
covering of subroutine parameters, recovering of return re-
sults, etc. For that, the assembly version is subjected to
extensive data and control flow analysis. Second, we aim to
decrease the complexity of the detection problem. This is
achieved by extracting a potentially malicious fragment in-
stead of considering the entire code. This is achieved by
applying slicing techniques. In section 4, we present an
algorithm to achieve this goal. The third and last step is
dedicated to the detection process and is based on program
checking. The overall architecture of our methodology is
reported in Figure 1.

3. High-level Imperative Representation

This section is devoted to the presentation of the different
transformations, mainly based on flow analysis, required for
the translation of the binary code into a more abstract rep-
resentation.

Before to be able to apply flow analysis, the binary code

must be disassembled. In this work, we rely on commercial
of the shelf disassemblers since there are excellent ones that
are available on the market. Once disassembled, we still
need to transform it into a more analyzable form. Many
transformations are required:

� Identification of the so-called idioms. An idiom is
a sequence of instructions that has a logical meaning
which cannot be derived from individual instructions.
Actually, in the compilation process, each high-level
instruction is transformed into a sequence of low-level
(assembly) instructions. The aim of this transforma-
tion is not to decompile the assembly code but to de-
crease the complexity of the detection phase. More-
over, without performing such transformation, unnec-
essary and cumbersome dependencies between state-
ments will arise during the flow analysis process.

� By applying data-flow analysis we can improve the
analysability of the assembly code. For example, we
can apply the following transformations to the code:

– Stackless code: The main disadvantage of ana-
lyzing stack-based code is the implicit uses and
definitions of stack locations. The elimination of
assembly instructions push and pop from the
code allows each statement to refer explicitly to
the variables it uses. The elimination is possi-
ble by considering the stack as a set of temporary
variables. Hence, each implicit reference to the
stack is transformed to an explicit reference to a
temporary variable. The following example illus-
trates such transformation:

push eax mov tmp1,eax
push esi mov tmp2, esi
call strcat �! call strcat
pop ecx mov ecx, tmp2
pop ecx mov ecx, tmp1

This method works as long as the depth of the
stack is fixed for every program point through-
out the execution of the program. This is guar-
anteed during the compilation process. The situ-
ation could be different if the binary code is ob-
tained directly from an assembly source code. In
this case, the depth of the stack could be differ-
ent at some program point depending on the ex-
ecution of the program. Figure 2 illustrates an
example of stack elimination when the depth is
not fixed. The solution is to transfer blocks in or-
der to avoid multiple branches in the control flow
graph. In this figure, block B3 is transferred to
bothB1 andB2. By doing so recursively, we can
ensure that the depth is fixed at each point in the
control flow graph.

B1 B2

B3

B4

B1 B2

B3 B3

B4

(a) before (b) after

Figure 2. Stack Elimination Example.

– Parameters and return values: in this case, the
purpose is to compute actual parameters and re-
turn values of different subroutine calls. For ex-
ample, by applying data-flow analysis on regis-
ters, we can identify actual parameters and the
return value of a subroutine call in the program:

mov eax, call subA13(ebx,eax,0)

� With APIs and library subroutine prototypes, we can
compute actual parameters and return values for the
different API and library subroutine calls involved in
the program. For example, we can transform the in-
structions presented below into the following one:

mov eax, call strcat(tmp2,tmp1)

� When a jump or a call on a register is met, it is not pos-
sible to determine statically the target addresses. Calls
on register are used in high-level languages to imple-
ment pointers to function invocation. Also, different
compilers implement the high-level instruction case
by using an indexed table that holds different target la-
bel addresses. In both cases, jump on register are used.
To solve this problem, intraprocedural slicing can be
performed on the register variable to obtain the set of
instructions the register depends on [4]. The analysis
of these instructions reveals the different addresses that
are involved.

As we mentioned previously, the rationale underlying these
transformations is to get an imperative high level represen-
tation that is more suitable for flow analysis.

4. Slicing Algorithm

One of the part of the detection process level in the ar-
chitecture presented in Figure 1 consists to slice the abstract
representation of the program to retain only the relevant in-
structions, especially the API calls, that influence the value
of some registers. Program slicing algorithm uses both con-
trol and data-flow graphs. Given a pair C � (s; V), called

the slicing criterion, where s is a node in the control-flow
graph and V a subset of the program’s variables, it produces
a set SC of program instructions that are relevant for the
computation of the variables in V . The set SC is called a
slice.

By doing so, we focus our analysis only on some inter-
esting statements rather than the entire program. Moreover,
program slicing keeps only those statements that are rele-
vant to the suspicious one i.e. the one specified in the slicing
criterion.

In the presence of subroutines, pointers and uncondi-
tional jumps (JMP), the standard backward slicing algo-
rithms must be adapted. For this purpose, we attempt to
combine and accommodate different techniques to deal with
each of these cases.

The algorithm presented in this section uses the system
dependence graph (SDG) of a program which consists on a
collection of procedure dependence graphs (PDGs), one for
each subroutine in the program, connected by interproce-
dural control and data dependence edges. Each PDGs con-
tains vertices, which represent the different instructions of a
subroutine, and edges which represent data and control de-
pendencies between these vertices. The data dependencies
part of this graph corresponds to the data dependence graph
(DDG) while the control dependencies part corresponds to
the control dependence graph (CDG).

The presence of pointers requires the DDG to be aug-
mented. Intraprocedural aliasing is computed by applying
an iterative technique [3]. This computation requires three
components:

� The aliases holding at entry node of the SEG (Sparse
Evaluation Graph) which is interprocedurally com-
puted.

� The aliases holding immediately after the call-site
which is interprocedurally computed.

� The transfer function for each node that contains a
pointer assignment.

The transfer function describes the data flow effect of nodes
in the CFG.

To compute interprocedural aliases, we use the interpro-
cedural algorithm proposed in [3]. The method to compute
aliases information is based on the procedure call graph
(PCG). The alias information at the entry node of a proce-
dure P is computed by merging the intraprocedural aliases
at the call sites which invoke P and then propagating the
resulting set into the entry node of P. The interprocedural
algorithm traverse the PCG in a topological order until each
aliasing set converges.

Once the aliases sets are computed, we can improve the
data dependence graph of each subroutines in the program

by taking into account the may-aliases relations. This can
be done as follows:

A-DDG(Si,Sj) , Si defines a variable X ,
Sj uses a variable X 0,
X and X 0 are may-aliases.

The following example illustrates the utility of an alias anal-
ysis:

1: mov tmp, 2
2: lea eax, tmp
3: mov ebx, eax
4: mov [eax], 4
5: call putchar([ebx])

Without alias analysis, the instruction 5 and the instruction
3 are connected in the DDG. But after an alias analysis of
the code, it appear that register ebx and register eax are
aliases. Thus, the instruction 5 is connected to the instruc-
tion 4 in the DDG as the later change the content of both
registers.

The presence of unconditional jumps requires the CDG
to be augmented. More precisely, the CDG is constructed
from an augmented flow graph of the program in which new
edges are added from the nodes representing jumps state-
ments to the nodes that immediately lexically succeed them
in the program [1]. By doing so, unconditional jumps could
be correctly included by the conventional slicing algorithm.

Once the augmented CDG and DDG are correctly com-
puted, the PDGs of each subroutines of the program is gen-
erated by merging its two corresponding graphs. In addi-
tion, each call statement in a subroutine is represented in its
corresponding PDGs by a call vertex and two kinds of ver-
tices, actual-in and actual-out, which are control dependent
on it. Similarly, each subroutine entry is represented us-
ing an entry vertex and two kinds of vertices, formal-in and
formal-out, which are control dependent on it. Actual-in
and formal-in vertices, and formal-in and formal-out ver-
tices are included respectively for every parameter that may
be used or modified and for every parameter that may be
modified by the called subroutine.

The SDG is obtained by connecting the different PDGs
of a program. More precisely, each subroutine call in a
PDGs is connected with the corresponding PDGs of the
called subroutine. For this purpose, three kinds of inter-
procedural edges are used: (1) call edges which are used to
connect each call vertex to the corresponding subroutine en-
try vertex; (2) parameter-in edges which are used to connect
each actual-in vertex at the call site to the corresponding
formal-in vertex in the called subroutine; (3) and parameter-
out edges which are used to connect each formal-out vertex
in the called subroutine to the corresponding actual-out ver-
tex in the call site.

To consider calling context of a called subroutine, the
SDG is augmented with a particular kind of edges, sum-
mary edges, which represent transitive dependencies be-
tween actual-in and actual-out vertices due to the effects of
subroutine calls.

Table 1 presents the slicing algorithm of a program,
which corresponds to the algorithm proposed in [6]. This
algorithm is computed using two passes over the SDG.
In the first pass, the algorithm starts from some specific
vertices, and goes backwards along flow edges, control
edges, summary edges and parameter-in edges, but not
along parameter-out edges. Summary edges permit to move
across a call site without having to descend into the called
subroutine. In the second pass, the algorithm starts from all
the vertex reached in the first pass, and goes backward along
flow edges, control edges, summary edges and parameter-
out, but not along call or parameter-in edges. The result
of the algorithm is the sets of vertices reached during both
passes.

The following example illustrates how the slicing is use-
ful to extract potentially malicious fragment of code. In Ta-
ble 2, we propose a fragment of a high-level representation
of a disassembled code. Table 3 presents the slice obtaining
by slicing the fragment of code from location 15 and the
variable esi. As shown in this table, and more precisely
in the figure, the result of the analysis reveals that the infor-
mation sent on the Net comes from a specific file named
‘‘security.txt’’. Through slicing techniques, we
drew the conclusion that the program has a fragment of code
where some sensitive1 information is transmitted over the
network.

5. Related Work

Very few has been published about the static slicing of
binary executables. In [4], the authors propose an intrapro-
cedural static slicing approach to be applied to binary ex-
ecutables for the purposes of determining the instructions
that affect an indexed jump or an indirect call on a regis-
ter. They identify the different changes required to apply
conventional slicing techniques on binary code. Data de-
pendencies are determined using use-definition chains on
registers and condition codes. However, no alias analysis
are performed.

As related work, we can also cite all what have been done
in reverse engineering of software systems and program un-
derstanding. More specifically, we distinguish the decompi-
lation research whose aim is to translate an executable pro-
gram into an equivalent high-level language program [5].
Our work is close to this research. In fact, many tools used

1We suppose that all the information contained in the file ‘‘secu-
rity.txt’’ are security critical.

RetReachingNodes(G; l; kinds):
return a set of nodes from G that can reach a given set of nodes
l along certain kinds of edges.

SelectAndRemove(l): select and remove an element from l.
Add(n; l): add node n to the list l.
RetDepNotKindAndNotReaching(G;n; kinds; l):

return the nodes in G that can reach node n and that are not in l

and are not of kind kinds.

. .

Procedure Slicing (P, s)
begin

sdg = SDG(P)
l = RetReachingNodes(sdg, fsg, fparam-outg)
l’ = RetReachingNodes(sdg, l, fparam-in,callg)
return (l’)

end

Procedure RetReachingNodes (G, l, kinds)
begin

wlist = l
rlist = ;
while (wlist 6= ;) do

n = SelectAndRemove(wlist)
Add(n,rlist)
dlist = RetDepNotKindAndNotReaching(G, n, kinds, rlist)
wlist = wlist [dlist

od
return (rlist)

end

Table 1. Slicing Algorithm.

0: lea var3, var2 subA proc near
1: mov tmp1, 7 varx dword ptr 4
2: mov tmp2, 4 20: mov eax, Call OpenFile (“security.txt”)
3: lea edx, tmp2 21: mov ebx, eax
4: lea ebx, tmp1 22: mov tmp1, ecx
5: mov ebx, edx 23: mov eax, Call ReadFile (ebx, varx)
6: mov tmp1, [ebx] 24: mov ecx, eax
7: mov tmp3, var3 25: mov eax, Call CloseFile (ebx)
8: mov eax, ebx 26: mov ecx, eax
9: call subA(tmp3) 27: ret

10: test tmp3, tmp3
11: jz 14
12: mov tmp4, edx
13: jmp 15
14: mov esi, var3
15: mov eax, call Send (var1, esi)

Table 2. Fragment of a high-level representation of a disassembled code.

0: lea var3, var2
7: mov tmp3, var3
9: call subA(tmp3)

10: test tmp3, tmp3
11: jz 14
13: jmp 15
14: mov esi, var3
15: mov eax, call Send (var1, esi)

subA proc near
varx dword ptr 4

20: mov eax, Call OpenFile (“security.txt”)
21: mov ebx, eax
23: mov eax, Call ReadFile (ebx, varx)
27: ret

15

0

7

9

11

14 13

OpenFile

ReadFile

sub A

21

23

27

20

10

Send

Table 3. Slicing Result with its CFG representation.

by them are also required in our work. For example, load-
ers, disassemblers, signature generator, etc. are tools that
are necessary for the analysis of binary code and its transla-
tion to a more abstract representation.

Finally, in [7], the authors propose a method for stati-
cally detecting malicious code in C programs. Their method
is based on the so-called tell-tale signs which are program
properties that allow one to distinguish between malicious
code and benign programs. The authors combine the tell-
tale sign approach with program slicing in order to produce
small fragments of large programs that could be easily ana-
lyzed.

6. Conclusion

This work is part of our research on the malicious code
detection in COTS components. In this research, we have
reported a methodology that is structured in three major
steps. The first step consists in disassembling the binary
code, which yields an assembly version of the code. The in-
tent of the second step is twofold: First, we need a suite of
program transformation that aim to get a high level imper-
ative representation of the code. The intention is to signifi-
cantly improve the analysability while preserving the orig-
inal semantics. Second, we aim to decrease the complexity
of the detection problem. This is achieved by applying slic-
ing techniques. Moreover, slicing techniques allow us to ex-
tract those code fragments that are critical from the security
standpoint. Finally, these fragments are subjected to verifi-
cation against behavioral specifications to statically decide
whether they exhibit malicious behaviors or not.

As future work, we plan to put the emphasis on the elab-
oration of techniques to achieve efficient and practical pro-
gram checking of potentially malicious slices against be-

havioral specifications. Furthermore, we hope to come up
with practical tools that address the automatic detection of
malicious code in COTS.

References

[1] T. Ball and S. Horwitz. Slicing Programs with Arbitrary
Control-flow. In Automated and Algorithmic Debugging,
First International Workshop, AADEBUG’93, volume 749 of
LNCS, pages 206–222, 1993.

[2] J. Bergeron, M. Debbabi, J. Desharnais, B. Ktari, M. Salois,
and N. Tawbi. Detection of Malicious Code in COTS Soft-
ware: A Short Survey. In First International Software Assur-
ance Certification Conference (ISACC’99), Washington D.C,
Mar. 1999.

[3] J.-D. Choi, M. Burke, and P. Carini. Efficient Flow-sensitive
Interprocedural Computation of Pointer-Induced Aliases and
Side Effects. In Conference Record of the 20th ACM Sympo-
sium on Principles of Programming Languages, pages 232–
245, 1993.

[4] C. Cifuentes and A. Fraboulet. Intraprocedural Static Slicing
of Binary Executables. In I.-C. Press, editor, Proceedings of
the International Conference on Software Maintenance, pages
188–195, Bari, Italy, Oct. 1997.

[5] C. Cifuentes and K. J. Gough. Decompilation of Binary Pro-
grams. Software - Practice and Experience, 25(7):811–829,
July 1995.

[6] S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing
using Dependence Graphs. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, vol-
ume 23, pages 25–46, Atlanta, Georgia, June 1988.

[7] R. W. Lo, K. N. Levitt, and R. A. Olsson. MCF: A Malicious
Code Filter. Computers and Security, 14(6):541–566, 1995.

[8] F. Tip. A Survey of Program Slicing Techniques. Journal of
Programming Languages, 3(3):121–189, 1995.

[9] M. Weiser. Program Slicing. IEEE Transactions on Software
Engineering, 10(4):352–357, July 1984.

