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Abstract. Malware detection and prevention is critical for the protec-
tion of computing systems across the Internet. The problem in detecting
malware is that they evolve over a period of time and hence, traditional
signature-based malware detectors fail to detect obfuscated and previ-
ously unseen malware executables. However, as malware evolves, some
semantics of the original malware are preserved as these semantics are
necessary for the effectiveness of the malware. Using this observation, we
present a novel method for detection of malware using the correlation be-
tween the semantics of the malware and its API calls. We construct a
base signature for an entire malware class rather than for a single speci-
men of malware. Such a signature is capable of detecting even unknown
and advanced variants that belong to that class. We demonstrate our ap-
proach on some well known malware classes and show that any advanced
variant of the malware class is detected from the base signature.
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1 Introduction

Malware or malicious code refers to the broad class of software threats to com-
puter systems and networks. It includes any code that modifies, destroys or steals
data, allows unauthorized access, exploits or damages a system, or does some-
thing that the user does not intend to do. Perhaps the most sophisticated types
of threats to computer systems are presented by malicious codes that exploit
vulnerabilities in applications. Pattern based signatures are the most common
technique employed for malware detection. Implicit in a signature-based method
is an apriori knowledge of distinctive patterns of malicious code. The advantage
of such malware detectors lies in their simplicity and speed. While the signature-
based approach is successful in detecting known malware, it does not work for
new malware for which signatures have not yet been prepared. There is a need
to train the detector often in order to detect new malware.

One of the most common reasons that the signature-based approaches fail
is when the malware mutates, making signature based detection difficult. The
presence of such a metamorphism has already been witnessed in the past [5, 9].
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Malware authors often tend to obfuscate the executable so as to make analysis
difficult and to evade detection. Four techniques [15] are commonly employed
for obfuscating executables. The first approach, insertion of dead code involves
insertion of code that does not change the malware behavior, such as a sequence
of NOPs (no operation instructions). The second approach, register reassignment
involves changing the usage of one register with another such as eax with ebx to
evade detection. The third approach, instruction substitution replaces a sequence
of instructions with an equivalent instruction sequence. Finally, the fourth ap-
proach, code transposition involves jumbling the sequences of instructions in such
a way that the behavior of the code remains the same. We note that, although
all of these approaches change the code pattern in order to evade detection, the
behavior of the malware still remains the same.

Past research has focused on modeling program behavior for intrusion and
malware detection. Such modeling of program behavior was first studied by
Forrest et al [24]. Their approach called N-Grams used short sequences of system
calls to model normal program behavior. Sekar et al [25], used system calls to
construct a control flow graph of normal program behavior. Peisert et al [26], use
sequence of function calls to represent program behavior. Based on such results,
in our approach, we have used API calls as measure of the malware program
behavior. Specifically, we use only a subset of API calls, called critical API calls
in our analysis. These critical API calls are the ones that can possibly cause
malicious behavior. API calls have been used in the past research for modeling
program behavior [20, 22] and for detecting malware [19, 21, 27].

We use static analysis to extract critical API calls from known malicious
programs to construct signatures for an entire malware class rather than for a
single specimen of malware. In our approach, a malicious program is detected by
statistical comparison of its API calls with that of a malware class. The technique
presented in this paper aims to detect known and unknown malicious programs,
including self-mutating malware. Also, it is capable of detecting malware that
use common obfuscations. Our approach relies on the fact that the behavior
of the malicious programs in a specific malware class differs considerably from
programs in other malware classes and benign programs. The main contributions
of this paper include:

– Detection using API calls. We extract critical API calls from the binary
executable of a program to classify it as malicious or benign. The extracted
calls are subjected to a statistical likelihood test to determine the malware
class.

– Effective against common obfuscations. Common obfuscations such as
those explained above change the code pattern but do not affect the behavior
of the malware. By generating a signature that reflects the behavior of the
malware, our technique is able to defeat such common obfuscations. Also,
since we consider only critical API calls, such obfuscations have no effect on
our signature generation approach.
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– Effective against new variants. By constructing a signature for a malware
family, our approach is automatically able to detect future variants that
belong to that family.

Paper Organization. In Section 2, we present the related work done in the
field of malware detection. In Section 3, we describe our approach for malware
detection. In Section 4, we describe a prototype implementation of our approach,
present experimental results and evaluate the effectiveness of our approach. Fi-
nally, we conclude in Section 5.

2 Related Work

Several techniques have been studied in the past for malware detection. Cohen
[11] and Chess & White [12] use sandboxing to detect viruses. They proved that
in general the problem of virus detection is undecidable. Christodorescu and
Jha [15] use static analysis to detect malicious code in executables. Their im-
plementation called SAFE handles most common types of obfuscations used by
malware writers, such as insertion of NOPs between instructions, that are used
to evade detection. In [4], Christodorescu et al exploited semantic heuristics to
detect obfuscated malware. Although, their approach works well for obfuscated
malicious programs, the time taken (over a minute to classify) by their approach
makes it impractical for use in commercial antivirus scanners. Kruegel et al [16]
use control flow graph information and statistical methods for disassembling
obfuscated executables. Bergeron et al [18] consider critical API calls and se-
curity policies to test for presence of malicious code. Their approach does not
work for obfuscated malicious executables. Zhang et al [19] use fuzzy pattern
recognition to detect unknown malicious code. The approach does not handle
obfuscated program binaries and gives many false positives. Martignoni et al
[7] use real-time program monitoring to detect deobfuscation in memory. Their
implementation OmniUnpack detects obfuscation for both known and unknown
packers. MetaAware [27] identifies patterns of system or library functions called
from a malware sample to detect its metamorphic version. Bilar [10] uses sta-
tistical structures such as opcode frequency distribution and graph structure
fingerprints to detect malicious programs. The approach presented in this paper
detects malicious programs including those with common obfuscations as well
as previously unknown variants of malware families.

In [17], Krugel et al use dynamic analysis to detect obfuscated malicious code,
using mining algorithm. Their approach works well for obfuscated malicious
programs but takes several seconds to test a single program. DOME [23] uses
static analysis to detect system call locations and run-time monitoring to check
all system calls are made from a location identified during static analysis. Min-
Sun et al [22] use dynamic monitoring to detect worms and other exploits. Their
approach is limited to detection of worms and exploits that use hard-coded
addresses of API calls, and does not work for other malware types such as trojans
or backdoors. Also, as evident by our experimental results, our approach is much
faster than all other approaches described above.
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3 Our Approach for Malware Detection

In this section, first, we briefly outline our approach for malware signature gener-
ation and classification. Next, we describe our program behavior model used for
signature generation and the statistical comparison technique. Then, we present
our malware detection algorithm using our program behavior model. Finally, we
describe our prototype implementation in detail and show a sample signature of
a malware extracted using our approach.

Test
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Test
File

Trojans

IDA Pro Disassembler

Trojans

API Calls

Malicious

Classifier

Backdoors

Benign

Backdoors

Signature

Signature Signature

Worms
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Fig. 1. Architecture of our malware detector

3.1 Malware Signature Generation and Classification Approach

We create signatures based on the characteristics of an entire malware class
rather than a single sample of malware. Malware classes are defined based on
similar behavior. The behavior of a malware class can be specified based on
the API calls that the members of the malware calls use. For instance, a virus
trying to search for executable files will typically make use of API calls such
as FindFirstFileA, FindNextFileA and FindClose in KERNEL32.DLL. The be-
havior of searching files is captured by the use of these API calls. Rather than
considering all API calls, we consider only critical API calls [17, 18]. Critical
API calls include all API calls that can lead to security compromise such as calls
that change the way the operating system behaves or those used for communi-
cation, such as Registry API, File I/O API, WinSock etc. We do not consider
API calls which can be added or removed in a sample of malware without chang-
ing its malicious behavior, such as MessageBox, printf, malloc etc. For each
malware class, we extract API calls and their call frequency from several ma-
licious programs. The signature for the malware class is then computed using
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several samples that are known to belong to that class. From our results, we
have observed that 2 or 3 samples from a malware class are adequate to cre-
ate a signature. Given any test file, it is classified as malicious or benign by
statistical comparison of the frequency of its critical API calls with that of the
malware classes. Figure 1 shows the architecture of our malware detector. Next,
we describe our strategy for malware behavior profiling and show our method is
used to generate signatures and classify programs as benign or malicious. In our
classification, we not only differentiate between benign and malicious programs,
but also between different malware classes.

Malware Behavior Profiling. Malicious programs exhibit a behavior that
can be distinguished from behavior of benign programs. The signature for a
malware class is based on the frequency of critical API calls. Let the vector
P = (f1, f2, . . . , fn) be a profile created from a program by extracting its critical
API calls, where fi represents the frequency of ith critical API call and n being
the total number of critical API calls.

We use a statistical measure to differentiate between malware and benign
programs. To detect malware, we measure the difference between the propor-
tions of the critical API calls in a signature and that of a test program using
Chi-square test [6]. Chi-square test is a likelihood-ratio or maximum likelihood
statistical significance test that measures the difference between proportions in
two independent samples. The signature Si for a malware class Mi specifies the
frequencies of critical API calls that a sample of malware which belongs to Mi

is expected to have. To test the membership of a given test file in a malware
class, its API calls are extracted and compared to that in the signature. The
Chi-square is then computed as:

χ2
i =

(Oi − Ei)2

Ei
; 1 ≤ i ≤ n

Here, Oi is the observed frequency of the ith critical API call in the test file
and Ei is its expected frequency, i.e. frequency in the signature of a malware
class. Now, χ2 is compared against a threshold value ε from a standard Chi-
square distribution table with one degree of freedom. The degrees of freedom is
associated with the number of parameters that can vary in a statistical model.
A significance level of 0.05 was selected. This means that 95% of the time we
expect χ2 to be less than or equal to ε. For one degree of freedom and signif-
icance level 0.05, ε = 3.84. Let U = {APIi | χ2

i ≤ εi}. We define a degree of
membership λ as

λ =
|U |
n

Degree of membership λ is a measure of belongingness of test file to a malware
class. The statistical profiling algorithm is shown in Algorithm 1.
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Input: API frequency set for a file, P = {O1, O2, . . . , On}, and another API
frequency set M = {E1, E2, . . . , En}

Output: Degree of membership, λ
for i = 1 to n do1

χ2
i = (Oi−Ei)

2

Ei
;2

end3

U = {APIi | χ2
i ≤ 3.84};4

λ = |U|
n

;5

return λ6

Algorithm 1. STAT(P, M)

Signature Generation. The signature for a malware class is then computed
as follows. Let Ri = {P i

1, P
i
2, . . . , P

i
m} be the set of profiles of samples in malware

class Mi. The signature vector Si for the malware class Mi is then defined as
the set of the mean frequency of every critical API call occurring in Mi.

Si =
1
m

m∑

j=0

P i
j

This signature vector is then tested against samples T = {T1, T2, . . . , Tk} known
to belong to the same malware class Mi using the statistical analysis. We here
define a threshold δ as

δi =
1
k

k∑

j=0

λj

Here λ is the outcome of a statistical analysis test. This signature Si and thresh-
old δi is computed for every malware class Mi. We note that each individual test
sample shows a distinct set of frequencies, which differ noticeably from those
shown by benign programs and other malware classes.

Classification Strategy. Let P be the profile obtained from a test file T. Let
Si be a signature for the malware class Mi, and δi be the corresponding degree
of membership. Let B be the benign set and t be the total number of malware
classes.

Then, if

∃ i, 1 ≤ i ≤ t, δT ≥ δi

⇒ T ∈ Mi

Otherwise, if

∀ i, 1 ≤ i ≤ t, δT < δi

⇒ T ∈ B
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Also, if

∃ i, j, 1 ≤ i, j ≤ t, δT ≥ δi AND δT ≥ δj

⇒ T ∈ Mi ∪ Mj

Note that if δT ≥ δi and δT ≥ δj , then it means the test file T contains features
of both malware classes Mi and Mj .

A false positive occurs when a benign program is classified as malicious. A
false positive for a signature Si is defined as the probability

Pr (δT ≥ δi | T ∈ B)

A false negative occurs when a malicious program is classified as benign. For a
specific malware class Mi and signature Si, this is defined as

Pr (δT < δi | T ∈ Mi)

This usually happens when the data in the profile is distorted and therefore
Mi cannot be detected. We now formally state our malware detection algo-
rithm. The algorithm is composed of two parts: the signature generator SIGNA-
TURE GENERATE (Algorithm 2) and the detector DETECT (Algorithm 3).

Input: The set of profiles Ri = {P i
1 , P i

2 . . . , P i
m} for a malware class Mi

Output: Signature Si and threshold δi

Select an arbitrary set U ⊂ Mi. Let U = {U1, U2, . . . , Uk}.1

Let Q = Mi − U . Let Q = {Q1, Q2, . . . , Qm−k}.2

Compute signature as Si = 1
m−k

∑m−k
j=1 Qj ;3

for j = 1 to k do4

λj = STAT (Si, Uj);5

end6

Compute threshold as δi = 1
k

∑k
j=1 λj .7

Algorithm 2. SIGNATURE GENERATE(Mi)

3.2 Prototype Implementation Details

We have implemented a prototype of the technique. Our implementation is writ-
ten for malware on Win32 platform and it consists of two components - API call
extractor and Classifier.

API Call Extractor. The API Call Extractor component is implemented as
a plugin to the IDA Pro Disassembler [8]. It begins by locating the .idata seg-
ment which is an EXTERN segment that contains list of addresses of API functions
imported by the PE file. For each address in the .idata segment, it retrieves
the corresponding API function name and its set of cross-references. The API
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Input: A test file T with API frequency set P = {f1, f2, . . . , fn}, a signature Si

and corresponding threshold δi for a malware class Mi

Output: TRUE if T ∈ Mi, FALSE otherwise
δT = STAT (P,Si);1

if δT ≥ δi then2

return TRUE3

end4

return FALSE5

Algorithm 3. DETECT(T, Mi)

.idata :0040 F2F0 ; int __stdcall send(SOCKET s, const char *buf , int len , int flags)

.idata :0040 F2F0 extrn __imp_send:dword ; DATA XREF: send

Fig. 2. API function send in .idata segment

.text :004019 A7 loc_4019A7:
; CODE XREF: sub_401990 +31
.text :004019 A7 push 0 ; flags
.text :004019 A9 push 1 ; len
.text :004019 AB push esi ; buf
.text :004019 AC push ebx ; s
.text :004019 AD call send
....
....
....
.text :004019 C3 loc_4019C3:
; CODE XREF: sub_401990 +13
.text :004019 C3 push 0 ; flags
.text :004019 C5 add edi , ebp
.text :004019 C7 push 1 ; len
.text :004019 C9 push edi ; buf
.text :004019 CA push ebx ; s
.text :004019 CB call send

Fig. 3. Calls to API function send that actually transfer control to an intermediate
thunk

.text :00401 FE6

.text :00401 FE6 ; Attributes : thunk

.text :00401 FE6

.text :00401 FE6 ; int __stdcall send(SOCKET s, const char *buf , int len , int flags)

.text :00401 FE6 send proc near
; CODE XREF: sub_401990 +1D
.text :00401 FE6 ; sub_401990 +3B
.text :00401 FE6 jmp ds:__imp_send
.text :00401 FE6 send endp

Fig. 4. Thunk for API function send

call frequency is given by the number of cross-references in the code region. Note
that, in many cases compiler generates code in such a way that a call to an
API function is made through an intermediate jmp instruction, called a thunk.
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...

...
GetWindowsDirectory 1.625000
WriteFile 9.375000
GetFileAttributes 1.125000
CopyFile 3.000000
DeleteFile 6.375000
CreateFile 9.000000
SetFileAttributes 1.125000
GetTempPath 2.375000
GetSystemDirectory 3.250000
GetModuleFileName 6.500000
...
...

Fig. 5. Signature for MyDoom worm family

In such a case, if a cross-reference is a thunk, it may lead to an incorrect API call
frequency since several API calls will transfer control to the thunk which in turn
would jump to the actual API function. Therefore, we check each cross-reference
and if it is a thunk, we retrieve all cross-references for this thunk as well to
get the correct API call frequency. Such a code taken from the disassembly of
Borzella worm [3] is shown in Figures 2,3 and 4.

Classifier. The classifier reads the entire set of profiles produced by the API
call extractor for each malware class and produces a signature. When given a
file containing API call frequencies of a test file, it uses the above algorithm
to classify the test file as benign or as the appropriate malware class. Figure 5
shows a sample signature created for MyDoom worm family.

4 Experimental Analysis

The testing environment consisted of a Windows XP Service Pack 2 machine.
The hardware configuration included a Pentium 4 3.2 GHz processor and 512
MB of RAM. We used IDA Pro version 5.2.0.

4.1 Effectiveness

Testing on new variants. To test the effectiveness of our malware detector
against new variants of malware families, we tested it on eight malware families.
The malware families were gathered from VX Heavens [2]. For each malware
family, we used two earliest possible variants to construct the signature and the
rest for testing the signature. We tested our approach on the following malware
families: MyDoom(30 variants), Bifrose (18 variants), Agent (14 variants), Delf
(13 variants), InvictusDLL (13 variants), Netsky (10 variants), Bagle (9 variants)
and Chiton (19 variants). Our approach was able to detect all variants in the
above malware families except one variant in Netsky family. The detailed results
are presented in Table 1 and 2.

Although, from Table 1, Netsky.r could not be detected when using the signa-
ture created from Netsky.c and Netsky.d, but it was detected when the signature
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was generated from Netsky.c and Netsky.p. From these results, we note that our
approach is most suited for detecting many variants of a malware family. This
implies that if there is a new variant that is not classified by our approach, it
is probable that the malware writer has made some significant changes in its
behavior. In such a case, that variant can be used for training which will be
sufficient for detecting many more advanced variants of the family. We have
illustrated this from the Netsky worm example.

Testing on generic malware classes. Above experiments tested specific mal-
ware families. We wanted to test our approach for detecting arbitrary and un-
known malware classes by using only signatures generated from some known
broad classes of malware. So, we constructed signatures for broad classes of mal-
ware such as trojans, worms, backdoors and viruses. To test the effectiveness
of our detection method and to identify potential false negatives, we gathered
800 malicious programs in Portable Executable (PE) [1] format. To test the
false positive rate, we gathered 200 benign programs from a fresh installation
of Windows XP service pack 2. Signatures for malware classes were constructed
by incrementally chosing higher number of training samples such 10, 20 and so
on upto 60 samples from each malware class. 29 benign programs out of 200
were incorrectly classified as malicious. The evaluation results are presented in
Table 3.

We found that several benign programs share behavior (for instance, searching
files, copying files to network drives etc.) with certain malicious programs. The
observed false positive rate is due to such shared behavior. Figure 6 shows the
plot of detection rate, false negative rate and false positive rate with increasing

Table 1. Effectiveness evaluation to detect malware variants

Malware Variants in
training set

Variants
Tested

Detected Malware Variants in
training set

Variants
Tested

Detected

Netsky

e �

Chiton

c �
c gen � a d �
d l � b e �

m � f �
n � h �
p � i �
r ✕ j �
x � k �

Bagle

b � l �
a ab � m �
bb ad � n �

ae � o �
al � p �
as � q �
bi � r �

t �
Chiton �
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Table 2. Effectiveness evaluation to detect malware variants (contd.)

Malware Variants in
training set

Variants
Tested

Detected Malware Variants in
training set

Variants
Tested

Detected

MyDoom

d �

Bifrose

ae �
a e � a ag �
c f � ab aq �

g � at �
h � ax �
l � bb �
o � bc �
q � bf �
r � bg �
u � bh �
v � bk �
y � bl �
aa � bo �
ae � bs �
af � ca �
ag � cc �
ai �

Agent

ad �
aj � a ae �
ak � ab ah �
al � aj �
an � bc �
aq � bd �
ar � abz �
as � aci �
at � acx �
av � adr �
ay � ads �
az � aec �

Delf

d �

InvictusDLL

099 �
62976 f � 101.a 201.b �

c g � 101.b 102 �
h � 103.a �
j � 200.b �
k � 201.a �
m � 200.a �
n � a �
r � b �
v � c �
w � d �

number of training samples. As shown in the figure, the false positive and false
negative rate falls and the detection rate increases with an increase in the number
of training samples. Hence, it can be inferred from the plot that the accuracy
of the signature increases with an increase in the number of training samples.
The results show that even in the absence of the base signature, our technique
was able to detect a new malware using the signature constructed from broad
malware classes with reasonable accuracy. Once the new malware is detected,
its base signature can easily be constructed to detect its future variants.
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Table 3. Evaluation Results

Class Tested Detected False negatives

Worms 131 121 10

Trojans 362 300 62

Backdoors 161 103 58

Viruses 146 146 0
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Fig. 6. Change in Detection Rate and False Negative Rate with change in number of
training samples

Table 4. Time (in seconds) comparison with SAFE

Malware Annotator/API Call Extractor Detector
SAFE Our Approach SAFE Our Approach

Chernobyl 1.444 2.172 0.535 0.0138

zombie-6.b 4.600 1.718 1.149 0.0314

f0sf0r0 4.900 1.781 0.923 0.0256

Hare 9.142 1.665 1.604 0.0282

4.2 Performance Testing

We tested the time it requires to classify a given file as malicious or benign. We
consider the time taken by our approach to extract the API calls and to classify it
as malicious or benign. We compare our approach to SAFE [15]. SAFE creates
an abstraction pattern of the malicious code and converts it into an internal
representation. Given a test program, it creates a control flow graph (CFG) of
the test program, and checks whether the internal representation of malicious
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code is present in the CFG. SAFE has been tested only on a very few malware
samples. Table 4 compares the time taken by our approach with that of SAFE
for four samples of malware. Clearly, our approach is much faster than SAFE.

5 Conclusion and Future Work

We presented a method to generate signatures for malware classes to detect pre-
viously unknown malicious programs. Our malware detection approach is space
efficient. Rather than creating a new signature for every variant in a malware
family, it creates a single signature that reflects the behavior of the entire family.
It reduces the human effort required to generate a signature for a new malware.
Also, it is able to detect malicious programs with common obfuscations, a prob-
lem which the commercial antivirus scanners being used today do not address.
Thus, our malware detection approach is most suitable for use in commercial
antivirus scanners.

The accuracy of our signature generation method for detecting future variants
of a malware family is good. Although the detection error rate for new malware
in broad classes such as trojans and backdoors seems high in our experiments
but the results are encouraging. Malware authors often tend to pack malware
in order to evade detection and to make analysis difficult. Such malware use
a decompression or decryption routine to extract the compressed or encrypted
malicious code in memory. A limitation of our approach is that it does not work
for packed malware. The future work involves incorporating a generic unpack-
ing technique to detect even the packed malware and extending the signature
generation algorithm to better utilize API calls to reduce the error rate.
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