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Abstract

We discuss the dynamics of a minimal model for spreading of infectious diseases,
such as various types of influenza. The spreading takes place on a dynamic small-
world network and can be viewed as comprising short- and long-range spreading
processes. We derive approximate equations for the epidemic threshold as well as
the spreading dynamics, and show that there is a good agreement with numerical
discrete time-step simulations. We then analyze the dependence of the epidemic
saturation time on the initial conditions, and outline a possible method of utilizing
the model in predicting the development of epidemics based on early figures of
infected. Finally, we compare time series calculated with our model to real-world
data.
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1 Introduction

Traditionally, mathematical models for the spread of a disease have relied on
differential equations, describing the dynamics of spreading within uniformly
mixed populations (Bailey, 1975; Anderson and May, 1991; Murray, 2001). The
basic premise of uniform mixing is that all individuals in a group are equally
likely to become infected. The spreading process itself is then captured using
compartments, i.e. individuals belonging to epidemiological classes such as sus-
ceptible (S), exposed (E), infective (I) and recovered (R), between which the
flows of population are described with rate equations. Within this framework,
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the simplest model is the widely-utilized SIR (Susceptible-Infected-Removed)
model (see e.g. Anderson and May, 1991; Hethcote, 2000), in which suscepti-
ble individuals may become infected and continue to infect others until finally
removed from the system due to recovery, death, or containment.

The apparent shortcomings of the uniform mixing hypothesis have long been
realized, and spatial effecs and heterogeneity have been show to have profound
effects on the transmission, persistence and evolution of diseases (Mollison,
1977; Rand et al., 1995; Lloyd and May, 1996; Rhodes and Anderson, 1996;
Keeling, 1999; Grenfell et al., 2001). Partially owing to the recent advances
in the science of complex networks (Albert and Barabási, 2002; Dorogovtsev
and Mendes, 2002; Newman, 2003), there has been increased interest in try-
ing to capture the effects of contact patterns between individuals instead of
relying on mean-field models. These patterns can be described using contact
networks, where the vertices correspond to individuals and the edges to con-
tacts between them (Wallinga et al., 1999). One of the major motivations for
studying complex networks has been to better understand the structure of so-
cial networks (Watts and Strogatz, 1998; Girvan and Newman, 2002). As the
structure of social networks, without a doubt, has to be reflected in contact
networks, there is a natural link between epidemiological modeling and the
science of complex networks.

The network approach to epidemiological modeling has proven to be fruitful in
the context of the spreading dynamics of human disease as well as electronic
viruses (Watts and Strogatz, 1998; Keeling, 1999; Boots and Sasaki, 1999;
Newman, 2002; Pastor-Satorras and Vespignani, 2001; May and Lloyd, 2001;
Read and Keeling, 2003; Meyers et al., 2003, 2005), yielding much insight on
the mechanisms of disease spreading. Overall, the types of network structures
used in these models can be divided into two categories: the so-called small-
world and scale-free networks. A well-known result of these studies is that bi-
ological and computer viruses spread rapidly on both types of networks, which
is mainly due to the very short average vertex-to-vertex distances along the
links of the networks. In addition, spreading is further accelerated in scale-free
networks due to a broad power-law distribution of connections per individual
- the few highly connected hubs then act as “super-spreaders.”

Generally, the term ’small-world network’ refers to networks where a small
number of shortcuts is introduced on a regular underlying lattice, either by
adding new links between randomly selected vertices or randomly rewiring
a fraction of the links (Watts and Strogatz, 1998). In terms of population
mixing, a small-world structure is analogous to a situation where there are
clusters of connected individuals (social groups), which have contacts with
“nearby” groups as well as “far-off” groups via the sparse long-range links.
In the context of epidemiology, a small-world contact network structure has
lately been found to emerge in large-scale simulations based on urban traffic,
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census, land-use and population-mobility data (Eubank et al., 2004).

Here, our aim is to model the spreading dynamics of a randomly contagious
disease, such as a common influenza. The basic idea is to capture the essential
elements of the dynamics by utilizing the SIR mechanism on a dynamically
changing small-world contact network. Related works on static and dynamic
small-world models (Watts and Strogatz, 1998; Newman and Watts, 1999;
Moore and Newman, 2000; Zekri and Clerc, 2001; Hastings, 2003; Masuda
et al., 2004; Zhu et al., 2004) have shown among others the existence of a
shortcut-density-dependent epidemic threshold as well as novel scaling prop-
erties. Our focus is explicitly on the spreading dynamics, i.e. the time-domain
development of an epidemic, formulated in terms of rate equations derived for
our particular model.

This article is organized such that first we shall describe the spreading model
in terms of a probabilistic discrete time-step process. Next, we will address
the issue of the epidemic threshold and derive necessary conditions for the
epidemic to take off. This is followed by derivation of analytical equations for
a special case of this model, where the probability of infection transmission
between neighbouring infective and susceptible individuals is set to one. We
will then discuss the dependence of the duration of an epidemic on the initial
conditions and the system size, and utilize the results in an attempt to con-
struct a method for predicting the development of an epidemic based on early
time data. Finally, we will compare time series generated with the model to
real-world data.

2 Discrete time-step SIR model on a dynamic small-world network

First, let us discuss our model for the contact network, through which the
spreading occurs. As mentioned above, social networks as well as simulated
contact networks display the small-world property, which means that “long-
range” contacts between individuals result in short average distances along
the edges of the network. These long-range contacts may be viewed either as
infrequent contacts, or random encounters. In addition, these networks have
a regular underlying structure, which may be interpreted as groups of people
with regular contacts – e.g. friends or colleagues. To capture the essentials of
such a network, we define the network as comprising a regular one-dimensional
lattice with N vertices having a coordination number 2z, with additional ran-
domly occurring long-range links, whose configuration is constantly changing.
Periodic boundary conditions are used. This network acts as the substrate for
spreading (see Fig. 1) in our model. We may also view the spreading process
as composed of two different processes: the short-range (SR) spreading process
corresponds to passing the disease on to the nearest circle of persons, and the
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Fig. 1. Schematic of epidemic spreading on a dynamic small-world contact network
with coordination number 2z = 2. At time t = 0, a single vertex is infected (solid
black circle). Then the infection spreads to neighbouring vertices (t = 1) as well as
randomly chosen vertices (t = 2, t = 3). Recovered vertices are shown as solid grey
circles.

long-range (LR) process to infecting any randomly encountered person.

The spreading itself is modeled using the SIR mechanism. All individuals in
the network are at all times labeled as either susceptible (S), infected (I)
or recovered (R). Initially, the status of N − N0 individuals is set susceptible
with N0 individuals infected. The dynamics of the model are such that at every
discrete time step of duration ∆t, every infected individual in the network

(1) Infects its nearest neighbours, if susceptible, with probability ps per neigh-
bour,

(2) With probability pj tries to infect one randomly chosen individual, suc-
ceeding if the individual is susceptible,

(3) With probability pr recovers and can no longer be infected or infect oth-
ers.

This process can be readily iterated in numerical simulations until changes no
longer happen. The process step (1) corresponds to transmission of infection
along the regular underlying lattice (the short-range process) and step (2)
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amounts to the randomly changing long-range connections (the long-range
process).

3 Analytical description

3.1 The epidemic threshold

First, we will derive the necessary conditions for an epidemic to take off, i.e.
the epidemic threshold. For simplicity, we will only consider the case 2z = 2, so
that each network vertex has two nearest neighbours. As the spreading process
is stochastic in nature, we will describe it with average quantities, which should
be interpreted as averages over several epidemics. Let I(t) denote the average
number of infected individuals at time t and N ′(t) the average number of
individuals ever infected. Let us also define an auxiliary quantity F (t), which
denotes the average number of pairs of vertices where one vertex is infected
and its nearest neighbour susceptible, i.e. the number of fixed edges along
which a short-range transmission can happen. We will call F (t) the amount of
domain walls, as the short-range spreading process can be viewed as growth of
“domains” of infected people with the “walls” of these domains moving with
velocity ps. Now it is straightforward to write down equations for the changes
in N ′(t) and I(t):

dN ′(t)
dt

= psF (t), (1)

and

dI(t)

dt
= psF (t) − prI(t). (2)

Next, consider the dynamics of the domain walls. Domain walls are created
by the long-range spreading “jumps”, two walls per jump, and destroyed by
collisions when two spreading domains merge, as well as in events where an
infected individual recovers before transmitting the disease to one of its neigh-
bours. The jumps originate from the infected individuals with probability pj

per individual, and succeed if the randomly chosen target is susceptible, the
probability of which equals [N − N ′(t)] /N . Now consider a situation where at
t = 0 we have a small initial number I0 of infected vertices. For small times t
and large N , we can neglect the effect of domain wall collisions, and write

dF (t)

dt
= 2pj

N − N ′(t)
N

I(t) − pr [1 − ps]F (t), (3)
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where the first term on the r.h.s. corresponds to the creation of spreading
domains and the second term to the effect of vertices recovering before disease
transmission. At early times t, we may approximate N ′(t)/N(t) ≈ 0. Combin-
ing Eqs. (2) and (3) and moving to scaled variables so that i(t) = I(t)/N we
get

d2i(t)

dt2
+ pr (2 − ps)

di(t)

dt
−

[
2pspj − (1 − ps) p2

r

]
i(t) = 0. (4)

This equation has an exponential solution with two real eigenvalues λ1,2, where
the second eigenvalue is always negative. If the first is positive, the epidemic
will take off leading to exponential growth of the number of infected. This
condition is satisfied if

pj >
p2

r(1 − ps)

2ps

. (5)

The above equation illustrates that in our simplified picture a certain proba-
bility of long-range jumps is necessary for crossing the epidemic threshold. One
should also note the close relation to the corresponding percolation threshold
on fixed small-world networks (Newman and Watts, 1999), and the role of the
recovery probability in our model.

Figure 2 illustrates the threshold long-range infection probability pj,c = p2
r (1 − ps) /2ps

as function of ps. The average recovery time was fixed to 1/pr = 6, so that
pr = 0.167. The solid line indicates values given by Eq. (5), and the open circles
show results of numerical simulations. The numerical results were generated
by simulating the discrete-time-step model on networks with N = 150, 000 and
N0 = 15 and averaging the maximum obtained epidemic sizes nmax = N ′

max/N
over 50 runs. The N0 vertices whose status was initially set to infected were se-
lected randomly. Taking the finite system size into account and following New-
man and Watts (1999), we chose the numerical threshold values pj,c as the
points where nmax exceeds 0.2.

Finally, a note on the basic reproductive number R0, which is defined as the
average number of secondary infections produced by one infected individual
introduced into a susceptible population. Typically, the epidemic threshold is
expressed in terms of this quantity, so that an epidemic will take off only if
R0 ≥ 1. Likewise, the spreading dynamics are often seen to depend mainly
on R0. The shortcomings of this quantity outside the homogeneous mixing
assumption have long been known, and corrections have been suggested to take
into account the effects of more complex spreading models (see e.g. Anderson
and May, 1991). However, in our case, the spreading dynamics cannot be
solely determined by the number of secondary infections caused by an infected
individual. The reason for this is that the effect of a secondary infection caused
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Fig. 2. Numerical results for threshold long-range probabilities pj,c (circles) on net-
works of size N = 150, 000, with N0 = 15 and pr = 0.167. The solid line indicates
the analytic approximation to pj,c. Inset: an example simulated data series, display-
ing the average maximum epidemic size nmax as function of pj for ps = 0.4. The
dashed line indicates the analytic approximation for the threshold.

by nearest-neighbour transmission is different from the one caused by a long-
range jump. Especially at the beginning stages of the disease, long-range jumps
will (almost) always generate new spreading domains expanding at rate 2ps

(or ∼ 2psz, if we consider larger neighbourhoods), whereas nearest-neighbour
transmissions only expand existing domains. Hence, the spreading dynamics
depends on who will become infected in addition to how many such infections
take place. This is somewhat intuitive - passing the disease on to “virgin
territory” among susceptibles is likely to accelerate disease spreading more
than transmission within a community, where the amount of susceptibles is
already reduced.

3.2 Dynamics in the limit ps = 1

Now, let us discuss a special case of the above spreading process, where we
consider the nearest-neighbour spreading probability ps to be unity so that
before recovery happens, the nearest neighbours will always become infected.
This restriction makes an analytical treatment of the dynamics of the model
tractable. In this case, the epidemic will eventually cover the whole network
of individuals. Considering the network to represent the whole susceptible
population is clearly not a realistic assumption. However, we can conjecture

7



that a model where we a priori define the vertices of the network to represent
only those individuals who at some point will become infected still represents
the spreading dynamics adequately enough. In this case, N is to be viewed as
the total epidemic size instead of the susceptible population size.

We will now derive analytical equations for the spreading dynamics based
on the domain wall approach discussed in the previous section. Although the
derivation assumes that ps = 1, we will still retain the parameter in our formu-
las for reasons discussed below. Eqs. (1,2) still hold in the present framework,
and we only have to rewrite the equation describing the domain wall dy-
namics. The domain wall creation term remains the same, but now the walls
are destroyed by domain merging alone, and we need a term describing the
rate of this annihilation process. At any time, the network contains F (t)/2
connected domains of susceptibles, containing altogether N − N ′(t) suscep-
tible individuals. These domains “shrink” at velocity 2ps due to the moving
walls. The average domain length is 2 [N − N ′(t)] /F (t), and the average life-
time [N − N ′(t)] / [F (t)ps]. Two walls are destroyed per collision, and since
there are F (t)/2 domains, on the average psF (t)2/ [N − N ′(t)] walls will be
destroyed per unit time. Thus, we may write

dF (t)

dt
= 2pj

N − N ′(t)
N

I(t) − ps
F (t)2

N − N ′(t)
. (6)

Now, we can again move to scaled variables i(t) = I(t)/N and n(t) = N ′(t)/N
and combine the above equations, arriving at

d2n(t)

dt2
+

[dn(t)/dt]2

1 − n(t)
= 2pspj [1 − n(t)] i(t), (7)

di(t)

dt
=

dn(t)

dt
− pri(t). (8)

The system defined by Eqs. (7) and (8) can be solved by numerical iteration
for both n(t) and i(t) using standard methods.

Figure 3 depicts the results of this numerical iteration and also the results of
discrete time-step simulations, averaged over 100 runs. In these simulations,
the network size was set to N = 250, 000, the recovery probability per unit
time to pr = 0.17, and the spreading velocity to ps = 1. The long-range
jump probability was varied. The initial fraction of infected individuals was
set to n0 = 25/250, 000 = 1 × 10−4. The fraction of individuals ever infected
n(t) is seen to follow an s-shaped curve such that in the beginning the fraction
increases exponentially but then slows down to almost linear increase, as there
is less and less susceptible population to be infected, and finally saturates as
the epidemic covers the entire susceptible population. The theoretical curves
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Fig. 3. The fraction of ever infected vertices n as function of time t calculated by
simulated spreading on N = 250, 000 networks (circles) and numerical integration of
Eqs. (7) and (8) (solid lines), with nearest-neighbour spreading rate ps=1, recovery
rate pr=0.17, and long-range jump probability pj as illustrated. The results are
averages over 100 runs.

calculated by numerical iteration of the above equations match the simulated
results well.

Note that when ps < 1, Eqs. (7) and (8) are still a good approximation to the
system dynamics, as long as ps is high enough to justify neglecting the effect
of recovery-induced stopping of domain walls. Furthermore, should we wish
to use larger neighbourhoods, we can simply absorb the coordination number
into the definition on ps so that ps → psz.

4 Scaling of the epidemic saturation time

Eqs. (7) and (8) indicate that the system size N enters the dynamics of the
model only indirectly, in the form of the initial conditions n0 = N ′(0)/N .
Hence, it is of interest to investigate the duration of the epidemic in networks
of different sizes as a function of the initial density of infected n0. Recently,
it was shown that in a model where spreading takes place on small-world
networks with dynamic rewiring of links and initial density of infected fixed
to n0 = 1/N , the epidemic saturation time depends on the network size as
log N (Zhu et al., 2004).
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Considering the practical use of such spreading models in e.g. predicting the
development of an epidemic, a topic we will address shortly, setting the initial
condition is somewhat problematic, as it is typically impossible to trace the
beginning of an epidemic down to a single “patient zero”. Hence, we have
chosen to define the starting time of the epidemic in terms of an initial density
of infected, such that at t = 0, n(0) = n0, n0 � 1. Furthermore, we define the
saturation time tf so that t = tf when n(t) = nf , where we set nf to a value
somewhat less than unity. This “renormalization procedure” takes care of the
asymptotic nature of the process both at its beginning and end.

Fig. 4 displays a log-linear plot of the saturation time tf as function of n0 for
several network sizes N , ranging from 100,000 up to 800,000. The N0 initially
infected vertices were chosen randomly. Here, tf was defined as the time when
95 % of the susceptible population has become infected, i.e. the first time step
when n(t) ≥ 0.95. The results of the simulations are taken as averages over
100 runs each, with pj = 0.008, pr = 0.17 and ps = 1. The solid line depicts
a fitted log-linear function, tf = −35.8 × log n0 − 19.0, showing a very good
fit with the numerical results. It is evident that tf ∝ − log n0. This is in line
with the log N -scaling observed earlier with n0 = 1/N (Zhu et al., 2004), since
− log n0 = − log N0/N becomes log N when N0 = 1.

The independence of the saturation time on the system size is further illus-
trated in the inset, which displays the fraction of individuals ever infected n(t)
averaged over 100 simulation runs of epidemics in networks of different size,
with the initial condition n0 = 1×10−4 and other parameters being pj = 0.005,
pr = 0.17 and ps = 1.

5 Method for predicting the development of an epidemic

Based on the above, we now outline a method for utilizing our model in pre-
dicting the future development of an epidemic from its early stages, where
only a few data points of disease spreading exist. The accuracy of such pre-
dictions is naturally restricted by the simplifying assumptions we have used
in constructing our model, as well as the apparent real-world limitations on
data quality.

We start by approximating the system dynamics at early times t. Again, we
set ps = 1. Now, n ≈ 0 and (∂n/∂t)2 ≈ 0 in Eq. (7), and we can write for i(t)

d2i(t)

dt2
+ pr

di(t)

dt
− 2pji(t) = 0. (9)
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Fig. 4. Saturation time tf as a function of the initial density of infected n0 for
varying network sizes. The solid line displays a log-linear fit, indicating that clearly
tf ∝ − log n0. The inset displays average n(t) for several epidemics in networks of
different sizes, each started with n0 = 1×10−4, illustrating the independence of the
spreading dynamics on the network size when initial conditions are fixed. For other
parameters, see text.

This has an exponential solution,

i(t) = A0e
λ1t + B0e

λ2t, (10)

with the eigenvalues

λ1,2 =
1

2

(
−pr ±

√
pr

2 + 8pj

)
. (11)

As λ2 < 0, the second term in Eq. (10) quickly approaches zero, and we may
approximate i(t) ≈ A0e

λ1t for t > 0. We obtain A0 by setting the initial

conditions i(0) = i0 and ∂i(t)
∂t

|t=0 = (2 − pr)i0, resulting in

A0 =
(2 − pr − λ2)

(λ1 − λ2)
i0. (12)

Now, let us consider a situation where we have observations on the real number
of infected I(t′) during some time span at the early stages of an epidemic. We
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do not know N , i.e. the number of susceptibles, nor do we exactly know the
time when the epidemic started. However, as shown in the previous section,
once a fixed fraction of the population has become infected the system size N
no longer plays a role. Thus we may assume that there is (i) a constant scaling
factor C and (ii) a constant t0 indicating the time offset from the start of the
epidemic. Then

I(t′) ≈ CA0e
λ1t = CA0e

λ1(t′+t0). (13)

Now we can take a logarithm on the observed I(t′), plot it against t′ and fit
a straight line. The slope of the line equals λ1, and we take note of the line’s
constant term K for later use. Using the thus obtained estimate for λ1 we can
calculate the estimates for pj, λ2 and A0 as well. This requires setting a value
for pr – in the case of influenza A, we utilize pr = 0.17. When these constants
are known, theoretical values for the fraction of infected, i(t), can readily be
calculated by numerically iterating Eqs. (7) and (8). At this stage, the only
unknown parameters are C and t0. Using the constant term K of the fitted
line, we can establish the relation

C =
1

A0
eK−λ1t0 (14)

between them. We may now take the theoretically calculated curve i(t) and
the real-world data, vary t0 and scale i(t) with the corresponding values of C.
Then we obtain estimates for t0 and C by selecting the pair of values which
results in least mean-squared error between the shifted real curve and the
scaled theoretical curve.

6 Comparison of model results with real data

In order to verify the validity of our modelling assumptions, we first com-
pared the fraction of currently infected individuals i(t) obtained by numerical
iteration of Eqs. (7) and (8) with publicly available data on Influenza A in
Finland (Finnish National Public Health Institute, 2004). The data depicts
monthly reported influenza A findings by hospital laboratories during 1997-
2002, and can be assumed to linearly correspond to epidemic levels during
respective months. As only few data points were available, we chose to di-
rectly fit the model parameters instead of attempting to use the prediction
method discussed in the previous section. Fig. 5 illustrates data on epidemics
during these influenza seasons together with theoretical curves of i(t) calcu-
lated using Eqs. (7) and (8). For the fits, we set pr = 0.17 / day, corresponding
to an infective period of about 6 days. The SR spreading probability ps was set
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to 1, and pj was utilized as the fitting parameter. We first fitted pj for each
individual epidemic and then averaged the results, obtaining the consensus
value pj = 0.0075 / day. Finally, the theoretical epidemic curves were scaled
to account for the differing number of susceptibles N for each annual epi-
demic. The quality of fits using constant spreading parameters indicate that
the underlying dynamics can be viewed to remain more or less the same for
each annual epidemic. Note that fits of similar quality could in principle be
obtained by using the equations for the classical fully mixed SIR model (see
e.g. Murray, 2001); our example merely shows that Eqs. (7) and (8), which
were derived starting from more detailed considerations, result in time series
which are in accordance with real-world observations.

Next, we have utilized the prediction method outlined in the previous section.
Figure 6 illustrates predicted development of an epidemic, based on data on
reported cases of influenza A in the US during the season 2001-2002 (United
States Centers for Disease Control and Prevention, 2004) and in UK during
2003-2004 (United Kingdom Health Protection Agency, 2004). Again, we as-
sume that the real numbers of infected individuals are in linear relation to the
reported cases; as this scaling factor plays no role here we set it to be one.
For the predictions, we have utilized the method described in the previous
section by first setting pr = 0.17, ps = 1 and i0 = 1×10−4, and then obtaining
pj , λ1, λ2, A0 and K from log-linear fits to the first eight data points. The
obtained values for pj , which determines the curve shape, were pj = 0.0081
for the US data and pj = 0.0121 for UK. These values were used to compute
numerical curves with Eqs. (7) and (8). Finally, the time offset t0 and scaling
factor C were estimated by varying t0, shifting the numerical curves by this
amount and scaling by corresponding values of C, choosing the pairs of values
resulting in the least mean squared error. In the case of US, the prediction
shown as dashed line was calculated using the LMS error at the first eight
data points, and the solid line using the first twelve data points. The eight-
point-prediction overestimates the size of the epidemic somewhat, but is still
surprisingly accurate considering the small amount of data utilized. In com-
parison to this the twelve-point prediction, where the last utilized data points
are already close to the epidemic peak, appears to fall quite accurately on all
the data points. In the case of UK, the dashed line indicates prediction based
on the first eight data points, and shows even larger overshooting than in the
US case. The solid line displays a ten-data-point prediction with once again
better accuracy. It should be pointed out, however, that the statistics of the
UK data is considerably smaller. We have also calculated predicted curves for
the data sets discussed above using smaller values of i0 down to i0 = 10−6 and
found that although there is some variance in the accuracy of the predicted
curves (especially for the UK data set), the method appears relatively robust
to the initial condition i0, as long as i0 � 1.

The above results demonstrate that in principle it seems possible to predict
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Fig. 5. Monthly laboratory-confirmed cases of Influenza A in Finland (circles) during
seasons 1996-1997 to 2001-2002, together with theoretical curves of numbers of
infected i(t) calculated using Eqs. (7) and (8), shifting t = 0 to correspond for
individual epidemics. Spreading parameters for theoretical curves are recovery rate
pr=0.17 / day, spreading rate ps=1 / day, long-range jump rate pj=0.0075 / day.
The number of infected i(t) has been scaled individually by different N for each
annual epidemic.

the future development of an epidemic even before the peak is reached. How-
ever, some care has to be taken when making such predictions. We have also
done similar fits to other publicly available influenza A time-series, and note
that when the numbers of reported cases are small, the prediction accuracy is
poorer as expected due to the resulting inaccuracy in the log-linear fit. Natu-
rally, more accurate data on the early figures should increase the accuracy of
the predictions. Furthermore, not all available influenza A time series are as
smooth as the ones depicted. Nevertheless, one of the benefits of our method
is that estimates for the parameters required in making a prediction can be
obtained from the early data, with the exception of the length of the infec-
tiousness period of the disease. In a hypothetical case where, for example,
mankind would face a pandemic influenza threat, it would thus in principle
be possible to assess the severity of the epidemic, both in terms of numbers
of infected and velocity of spreading, with increasing accuracy as more data
becomes available.
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Fig. 6. Predicted development of influenza A epidemic a) in the US during winter
2001-2002, and b) in the UK during winter 2003-2004, based on weekly labora-
tory-confirmed cases. Solid circles indicate real confirmed weekly cases, and the
solid and dashed lines display predicted curves using the method described in the
text. In both cases, the parameters for the spreading dynamics were obtained from
the first eight data points. The time origin and scaling factors were obtained by
fitting the predicted curves to the first eight and twelve data points (dashed and
solid lines in panel a), and the first eight and ten data points (dashed and solid lines
in panel b).

7 Summary

To summarize, we have presented a model for the spreading of randomly con-
tagious diseases such as influenza. The model is based on a stochastic SIR
mechanism on dynamic small-world networks, where randomly occurring long-
range links are introduced in order to take into account the inherent random-
ness of spreading. We have derived equations for the epidemic threshold and
spreading dynamics, and shown that these match results of discrete time-step
simulations. In addition, we have shown how the epidemic saturation time
scales with the system size and initial conditions, and outlined a method for
predicting the development of an epidemic from its beginning stages. Finally,
we have compared numerical time series calculated with our model to real-
world data and found a good agreement.
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