
Malware Detection using Statistical Analysis
of Byte-Level File Content

S. Momina Tabish, M. Zubair Shafiq, Muddassar Farooq
Next Generation Intelligent Networks Research Center (nexGIN RC)

National University of Computer & Emerging Sciences (FAST-NUCES)
Islamabad, 44000, Pakistan

{momina.tabish,zubair.shafiq,muddassar.farooq}@nexginrc.org

ABSTRACT
Commercial anti-virus software are unable to provide pro-
tection against newly launched (a.k.a “zero-day”) malware.
In this paper, we propose a novel malware detection tech-
nique which is based on the analysis of byte-level file con-
tent. The novelty of our approach, compared with existing
content based mining schemes, is that it does not memo-
rize specific byte-sequences or strings appearing in the ac-
tual file content. Our technique is non-signature based and
therefore has the potential to detect previously unknown and
zero-day malware. We compute a wide range of statistical
and information-theoretic features in a block-wise manner
to quantify the byte-level file content. We leverage standard
data mining algorithms to classify the file content of every
block as normal or potentially malicious. Finally, we corre-
late the block-wise classification results of a given file to cat-
egorize it as benign or malware. Since the proposed scheme
operates at the byte-level file content; therefore, it does not
require any a priori information about the filetype. We have
tested our proposed technique using a benign dataset com-
prising of six different filetypes — DOC, EXE, JPG, MP3, PDF
and ZIP and a malware dataset comprising of six different
malware types — backdoor, trojan, virus, worm, construc-
tor and miscellaneous. We also perform a comparison with
existing data mining based malware detection techniques.
The results of our experiments show that the proposed non-
signature based technique surpasses the existing techniques
and achieves more than 90% detection accuracy.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive Software

General Terms
Experimentation, Security

Keywords
Computer Malware, Data Mining, Forensics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSI-KDD’09,June 28, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-669-4 ...$5.00.

1. INTRODUCTION
Sophisticated malware is becoming a major threat to the

usability, security and privacy of computer systems and net-
works worldwide [1], [2]. A wide range of host-based so-
lutions have been proposed by researchers and a number
of commercial anti-virus (AV) software are also available in
the market [5]–[21]. These techniques can broadly be clas-
sified into two types: (1) static, and (2) dynamic. Static
techniques mostly operate on machine-level code and dis-
assembled instructions. In comparison, dynamic techniques
mostly monitor the behavior of a program with the help of
an API call sequence generated at run-time. The applica-
tion of dynamic techniques in AV products is of limited use
because of the large processing overheads incurred during
run-time monitoring of API calls; as a result, the perfor-
mance of computer systems significantly degrades. In com-
parison, the processing overhead is not a serious concern for
static techniques because the scanning activity can be sched-
uled offline in an idle time. Moreover, static techniques can
also be deployed as an in-cloud network service that moves
complexity from an end-point to the network cloud [28].

Almost all static malware detection techniques including
commercial AV software — either signature-, or heuristic-,
or anomaly-based — use specific content signatures such as
byte sequences and strings. A major problem with the con-
tent signatures is that they can easily be defeated by packing
and basic code obfuscation techniques [3]. In fact, the ma-
jority of malware that appears today is a simple repacked
version of old malware [4]. As a result, it effectively evades
the content signatures of old malware stored in the database
of commercial AV products. To conclude, existing commer-
cial AV products cannot even detect a simple repacked ver-
sion of previously detected malware.

The security community has expanded significant effort in
application of data mining techniques to discover patterns
in the malware content, which are not easily evaded by code
obfuscation techniques. Two most well-known data mining
based malware detection techniques are ‘strings’ (proposed
by Schultz et al [7]) and ‘KM’ (proposed by Kolter et al [8]).
We take these techniques as a benchmark for comparative
study of our proposed scheme.

The novelty of our proposed technique — in contrast to
the existing data mining based technique — is its purely
non-signature paradigm: it does not remember exact file
content/contents for malware detection. It is a static mal-
ware detection technique which should be, intuitively speak-
ing, robust to the most commonly used evasion techniques.
The proposed technique computes a diverse set of statistical

and information-theoretic features in a block-wise manner
on the byte-level file content. The generated feature vec-
tor of every block is then given as an input to standard
data mining algorithms (J48 decision trees) which classify
the block as normal (n) or potentially malicious (pm). Fi-
nally, the classification results of all blocks are correlated
to categorize the given file as benign (B) or malware (M). If
a file is split into k equally-sized blocks (b1, b2, b3, · · · , bk)
and n statistical features are computed for every k-th block
(fk,1, fk,2, fk,3, · · · , fk,n), then mathematically our scheme
can be represented as:

0
BBB@

b1

b2

...
bk

1
CCCA

F
⇒

0
BBB@

f1,1, f1,2 · · · f1,n

f2,1, f2,2 · · · f2,n

...
fk,1, fk,2 · · · fk,n

1
CCCA

D
⇒

0
BBB@

n/pm
n/pm

...
n/pm

1
CCCA

C
⇒ B/M,

where (F) is a suitable feature set, (D) is a data mining
algorithm for classification of individual blocks. The file
is eventually categorized as benign (B) or malware (M) by
the correlation module (C). Once a suitable feature set (F)
and a data mining algorithm (D) are selected, we test the
accuracy of the solution using a benign dataset consisting of
six filetypes: DOC, EXE, JPG, MP3, PDF and ZIP; and a malware
dataset comprising of six different malware types: backdoor,
trojan, virus, worm, constructor and miscellaneous. The
results of our experiments show that our scheme is able to
provide more than 90% detection accuracy1 for detecting
malware, which is an encouraging outcome. To the best
of our knowledge, this is the first pure non-signature based
data mining malware detection technique using statistical
analysis of the static byte-level file contents.

The rest of the paper is organized as follows. In Section
2 we provide a brief overview of related work in the domain
of data mining malware detection techniques. We describe
the detailed architecture of our malware detection technique
in Section 3. We discuss the dataset in Section 4. We re-
port the results of pilot studies in Section 5. In Section 6,
we discuss the knowledge discovery process of the proposed
technique by visualizing the learning models of data mining
algorithms used for classification. Finally, we conclude the
paper with an outlook to our future work.

2. RELATED WORK
In this section we explain the details of most relevant mal-

ware detection techniques: (1) ‘strings’ by Schultz et al [7],
(2) ‘KM’ by Kolter et al [8] and (3) ‘NG’ by Stolfo et al [16],
[17]. In our comparative study, we use ‘strings’ and ‘KM’
as benchmarks for comparison, whereas ‘NG’ effectively uses
just one of the many statistical features used in our proposed
technique.

2.1 Schultzet al — Strings
In [7], Schultz et al use several data mining techniques to

distinguish between the benign and malicious executables in
Windows or MS-DOS format. They have done experiments

1Throughout this text, the terms detection accuracy and
Area Under ROC Curve (AUC) are used interchangeably.
The AUC (0 ≤ AUC ≤ 1) is used as a yardstick to determine
the detection accuracy. Higher values of AUC mean high
true positive (tp) rate and low false positive (fp) rate [30].
At AUC = 1, tp rate = 1 and fp rate = 0.

on a dataset that consists of 1, 001 benign and 3, 265 mali-
cious executables. These executables have 206 benign and
38 malicious samples in the portable executable (PE) file
format. They have collected most of the benign executa-
bles from Windows 98 systems. They use three different
approaches to statically extract features from executables.

The first approach extracts DLL information inside PE
executables. Further, the DLL information is extracted us-
ing three types of feature vectors: (1) the list of DLLs (30
boolean values), (2) the list of DLL function calls (2, 229
boolean values), and (3) the number of different function
calls within each DLL (30 integer values). RIPPER — an
inductive rule-learning algorithm — is used on top of every
feature vector for classification. These schemes based on
DLL information provides an overall detection accuracy of
83.62%, 88.36% and 89.07% respectively. Enough details
about the DLLs are not provided, so we could not imple-
ment this scheme in our study.

The second feature extraction approach extracts strings
from the executables using GNU strings program. Näıve
Bayes classifier is used on top of extracted strings for mal-
ware detection. This scheme provides an overall detection
accuracy of 97.11%. This scheme is reported to give the
best results amongst all, and we have implemented it for
our comparative study.

The third feature extraction approach uses byte sequences
(n-grams) using hexdump. The authors do not explicitly
specify the value of n used in their study. However, from
an example provided in the paper, we deduce it to be 2
(bi-grams). The Multi-Näıve Bayes algorithm is used for
classification. This algorithm uses voting by a collection of
individual Näıve Bayes instances. This scheme provides an
overall detection accuracy of 96.88%.

The results of their experiments reveal that Näıve Bayes
algorithm with strings is the most effective approach for de-
tecting the unseen malicious executables with reasonable
processing overheads. The authors acknowledge the fact
that the string features are not robust and can be easily
defeated. Multi-Näıve Bayes with byte sequences also pro-
vides a relatively high detection accuracy, however, it has
large processing and memory requirements. Byte sequence
technique was later improved by Kolter et al and is explained
below.

2.2 Kolter et al — KM
In [8], Kolter et al use n-gram analysis and data min-

ing approaches to detect malicious executables in the wild.
They use n-gram analysis to extract features from 1, 971 be-
nign and 1, 651 malicious PE files. The PE files have been
collected from machines running Windows 2000 and XP op-
erating systems. The malicious PE files are taken from an
older version of the VX Heavens Virus Collection [27].

The authors evaluate their approach for two classification
problems: (1) classification between the benign and mali-
cious executables, and (2) categorization of executables as
a function of their payload. The authors have categorized
only three types — mailer, backdoor and virus — due to the
limited number of malware samples.

Top n-grams with the highest information gain are taken
as binary features (T if present and F if absent) for every
PE file. The authors have done pilot studies to determine
the size of n-grams, the size of words and the number of
top n-grams to be selected as features. A smaller dataset

consisting of 561 benign and 476 malicious executables is
considered in this study. They have used 4-grams, one byte
word and top 500 n-grams as features.

Several inductive learning methods, namely instance-based
learner, Näıve Bayes, support vector machines, decision trees
and boosted versions of instance-based learner, Näıve Bayes,
support vector machines and decision trees are used for clas-
sification. The same features are provided as input to all
classifiers. They report the detecting accuracy as the area
under an ROC curve (AUC) which is a more complete mea-
sure compared with the detection accuracy [29]. AUCs show
that the boosted decision trees outperform rest of the clas-
sifiers for both classification problems.

2.3 Stolfoet al — NG
In a seminal work, Stolfo et al have used n-gram analysis

for filetype identification [15] and later for malware detection
[16], [17]. Their earlier work, called fileprint analysis, uses
1-gram byte distribution of a whole file and compares it with
different filetype models to determine the filetype. In their
later work, they detect malware embedded in DOC and PDF

files using three different models single centroid, multi cen-
troid, and exemplar of benign byte distribution of the whole
files. A distance measure, called Mahanalobis Distance, is
calculated between the n-gram distribution of these models
and a given test file. They also use 1-gram and 2-gram dis-
tributions to test their approach on a dataset comprising of
31 benign application executables, 331 benign executables
from the System32 folder and 571 viruses. The experimen-
tal results have shown that their proposed technique is able
to detect a considerable proportion of the malicious files.
However, their proposed technique is specific to embedded
malware and does not deal with detection of stand-alone
malware.

3. ARCHITECTURE OF PROPOSED TECH-
NIQUE

In this section, we explain our data mining based malware
detection. It is important to emphasize that our technique
does not require any a priori information about the filetype
of a given file; as a result, our scheme is robust to subtle file
header obfuscations crafted by an attacker. Moreover, our
technique is also able to classify the malware as a function
of their payload, i.e. it can detect the family of a given
malware.

The architecture of proposed technique is shown in Figure
1. It consists of four modules: (1) block generator (B), (2)
feature extractor (F), (3) data miner (D), and (4) correla-
tion (C). It can accept any type of file as an input. We now
discuss the details of every module.

3.1 Block Generator Module(B)

The block generator module divides the byte-level con-
tents of a given file into fixed-sized chunks — known as
blocks. We have used blocks for reducing the processing
overhead of the module. In future, we want to analyze the
benefit of using variable-sized blocks as well. Remember
that using a suitable block size plays a critical role in defin-
ing the accuracy of our framework because it puts a lower
limit on the minimum size of malware that our framework
can detect. We have to compromise a trade-off between the
amount of available information per block and the accuracy

of the system. In this study, we have set the block size to
1024 bytes (= 1K). For instance, if the file size is 100K
bytes then the file is split into 100 blocks. The frequency
histograms for 1-, 2-, 3-, and 4-gram of byte values are cal-
culated for each block. These histograms are given as input
to the feature extraction module.

3.2 Feature Extraction Module(F)

Feature extraction module computes a number of statis-
tical and information-theoretic features on the histograms
for each block generated by the previous module. Overall,
the features’ set consist of 13 diverse features, which are
separately computed on 1, 2, 3, and 4 gram frequency his-
tograms.2 This brings the total size of features’ set to 52
features per block. We now provide brief descriptions of
every feature.

3.2.1 Simpson’s Index
The Simpson’s index [31] is a measure defined in an ecosys-

tem, which quantifies the diversity of species in a habitat.
It is calculated using the following equation:

Si =

P
n(n− 1)

N(N − 1)
, (1)

where n is the frequency of byte-values of consecutive n-
grams and N is the total number of bytes in a block i.e, 1000
in our case. A value of zero shows no significant difference
between frequency of n-grams in a block. Similarly, as the
value of Si increases, the variance in frequency of n-grams
in a block also increases.

In all subsequent feature definitions, we represent with Xi

the frequency of jth n-gram in ith block, where j is varying
from 0−255 for 1-gram, 0−65535 for 2-grams, 0−16777215
for 3-grams, and 0− 4294967295 for 4-grams.

3.2.2 Canberra Distance
This distance measures the sum of series of fractional dif-

ferences between coordinates of a pair of objects [31]. Math-
ematically we represent it as:

CA(i) =

nX
j=0

| Xj −Xj+1 |
| Xj | + | Xj+1 |

(2)

3.2.3 Minkowski Distance of Order
This is a generalized metric to measure the differences

between absolute magnitude of differences between a pair of
objects:

mi = λ

vuut
nX

j=0

| Xj −Xj+1, |λ (3)

where we have used λ = 3 as suggested in [31].

3.2.4 Manhattan Distance
It is a special case of Minkowski distance [31] with λ = 1.

mhi =

nX
j=0

| Xj −Xj+1 | (4)

2In rest of the paper, we use the generic term n-grams once
we want to refer to all 4-grams separately.

Figure 1: Architecture of our proposed technique

3.2.5 Chebyshev Distance
Chebyshev distance measure is also called maximum value

distance. It measures the absolute magnitude of differences
between coordinates of a pair of objects:

chi = maxj | Xj −Xj+1 | (5)

It is a special case of Minkowski difference [31] with λ =
∞.

3.2.6 Bray Curtis Distance
It is a normalized distance measure which is defined as the

ratio of absolute difference of frequencies of n-grams and the
sum of their frequencies [31]:

bci =

Pn
j=0 | Xj −Xj+1 |Pn
j=0 (Xj + Xj+1)

(6)

3.2.7 Angular Separation
This feature models the similarity of two vectors by taking

cosine of the angle between them [31]. A higher value of
angular separation between two vectors shows that they are
similar.

ASi =

Pn
j=0 Xj ·Xj+1

(
Pn

j=0 X2
j ·
Pn

j=0 X2
j+1)

1/2
(7)

3.2.8 Correlation Coefficient
The standard angular separation between two vectors which

is centered around the mean of the its magnitude values is
called correlation coefficient [31]. This again measures the
similarity between two values:

CCi =

Pn
j=0(Xj −Xi) · (Xj+1 −Xi)

(
Pn

j=0 (Xj −Xi)
2 ·
Pn

j=0 (Xj+1 −Xi)
2
)
1/2

, (8)

where Xi is the mean of frequencies of n-grams in a given
block i.

3.2.9 Entropy
Entropy measures the degree of dispersal or concentration

of a distribution. In information-theoretic terms, entropy
of a probability distribution defines the minimum average
number of bits that a source requires to transmit symbols
according to that distribution [31]. Let R be a discrete ran-
dom variable such that R = {ri, i ∈ ∆n}, where ∆n is the
image of a random variable. Then entropy of R is defined
as:

E(R) = −
X

i∈∆n

t(ri) log2 t(ri), (9)

where t(ri) is the frequency of n-grams in a given block.

3.2.10 Kullback - Leibler Divergence
KL Divergence is a measure of the difference between two

probability distributions [31]. It is often referred to as a dis-
tance measure between two distributions. Mathematically,
it is represented as:

KLi(Xj || Xj+1) =

nX
j=0

Xj log
Xj

Xj+1
(10)

3.2.11 Jensen-Shannon Divergence
It is a popular measure in probability theory and statistics

and measures the similarity between two probability distri-
butions [31]. It is also known as Information Radius (IRad).
Mathematically, it is represented as:

JSDi(Xj || Xj+1) =
1

2
D(Xj || M) +

1

2
D(Xj+1 || M) (11)

where M = 1
2
(Xj + Xj+1).

3.2.12 Itakura-Saito Divergence
Itakura-Saito Divergence is a special form of Bregman dis-

tance [31].

BF (Xj , Xj+1) =

nX
j=0

(
Xj

Xj+1
− log

Xj

Xj+1
− 1) (12)

which is generated by the convex function Fi(Xj) = −
P

log Xj .

3.2.13 Total Variation
It measures the largest possible difference between two

probability distributions Xj and Xj+1 [31]. It is defined as:

δi(Xj , Xj+1) =
1

2

X
j

| Xj −Xj+1 | (13)

3.3 Data Mining based Classification Module
(D)

The classification module gets as an input the feature vec-
tor in the form of an arff file [26]. This feature file is then
further presented for classification to 6 sub-modules. The
six modules actually contain learnt models of six types of
malicious files: backdoor, virus, worm, trojan, constructor
and miscellaneous. The feature vector file is presented to all
sub-modules in parallel and they produce an output of n or
pm per block. In addition to this, the output of the classi-
fication sub-modules provide us insights into the payload of
the malicious file.

Boosted decision tree is used for classifying each block as
n or pm. We have used AdaBoostM1 algorithm for boost-
ing decision tree (J48) [24]. We have selected this classifier
after extensive pilot studies which are detailed in Section
5. We provide brief explanations of decision tree (J48) and
boosting algorithm (AdaBoostM1) below.

3.3.1 Decision Tree (J48)
We have used C4.5 decision tree (J48) implemented in

Waikato Environment for Knowledge Acquisition (WEKA)
[26]. It uses the concept of information entropy to build the
tree. Every feature is used to split the dataset into smaller
subsets and the normalized information gain is calculated.
The feature with highest information gain is selected for
decision making.

Table 1: Statistics of benign files used in this study
Filetype Qty. Avg. Size Min. Size Max. Size

(kilo-bytes) (kilo-bytes) (kilo-bytes)
DOC 300 1, 015.2 44 7, 706
EXE 300 4, 095.0 48 15, 005
JPG 300 1, 097.8 3 1, 629
MP3 300 3, 384.4 654 6, 210
PDF 300 1, 513.1 25 20, 188
ZIP 300 1, 489.6 8 9, 860

3.3.2 Boosting (AdaBoostM1)
We have used AdaBoostM1 algorithm implemented in WEKA

[24]. As the name suggests, it is a meta algorithm which is
designed to improve the performance of base learning algo-
rithms. AdaBoostM1 keeps calling the weak classifier until
a pre-defined number of times and tweaks those instances
that have resulted in misclassification. In this way, it keeps
on adapting itself with the ongoing classification process. It
is known to be sensitive to outliers and noisy data.

3.4 Correlation Module (C)

The correlation module gets the per block classification
results in the form of n or pm. It then calculates the corre-
lation among the blocks which are labeled as n or pm. De-
pending upon the fraction of n and pm blocks in a file, the
file is classified as malicious or benign. We can also set a
threshold for tweaking the final classification decision. For
instance if we set the threshold to 0.5, a file having 4 benign
and 6 malicious blocks will be classified as malicious, and
vice-versa.

4. DATASET
In this section, we present an overview of the dataset used

in our study. We first describe the benign and then the
malware dataset used in our experiments. It is important
to note that in this work we are not differentiating between
packed and non-packed files. Our scheme works regardless
of the packed/non-packed nature of the file.

4.1 Benign Dataset
The benign dataset for our experiments consists of six dif-

ferent filetypes: DOC, EXE, JPG, MP3, PDF and ZIP. These file-
types encompass a broad spectrum of commonly used files
ranging from compressed to redundant and from executa-
bles to document files. Each set of benign files contains 300
typical samples of the corresponding filetype, which provide
us with 1, 800 benign files in total. We have ensured the
generality of the benign dataset by randomizing the sam-
ple sources. More specifically, we queried well-known search
engines with random keywords to collect these files. In ad-
dition, typical samples are also collected from the local net-
work of our virology lab.

Some pertinent statistics of the benign dataset used in
this study are tabulated in Table 1. It can be observed
from Table 1 that the benign files have very diverse sizes
varying from 3 KB to 20 MB, with an average file size of
approximately 2 MB. The divergence in sizes of benign files
is important as malicious programs are inherently smaller in
size for ease of propagation.

Table 2: Statistics of malware used in this study

Maj. Category Qty. Avg. Size Min. Size Max. Size
(kilo-bytes) (bytes) (kilo-bytes)

Backdoor 3,444 285.6 56 9, 502
Constructor 172 398.5 371 5, 971

Trojan 3114 135.7 12 4, 014
Virus 1048 50.7 175 1, 332
Worm 1471 72.3 44 2, 733

Miscellaneous 1062 197.7 371 14, 692

4.2 Malware Dataset
We have used ‘VX Heavens Virus Collection’ [27] data-

base which is available for free download in the public do-
main. Malware samples, especially recent ones, are not eas-
ily available on the Internet. Computer security corpora-
tions do have an extensive malware collection, but unfortu-
nately they do not share their malware databases for re-
search purposes. This is a comprehensive database that
contains a total of 37, 420 malware samples. The samples
consist of backdoors, constructors, flooders, bots, nukers,
sniffers, droppers, spyware, viruses, worms and trojans etc.
We only consider Win32 based malware in PE file format.
The filtered dataset used in this study contains 10, 311 Win32

malware samples. To make our study more comprehensive,
we divide the malicious executables based on the function
of their payload. The malicious executables are divided into
six major categories such as backdoor, trojan, virus, worm,
constructor, and miscellaneous (malware like nuker, flooder,
virtool, hacktool etc). We now provide a brief explanation
of each of the six malware categories.

4.2.1 Backdoor
A backdoor is a program which allows bypassing of stan-

dard authentication methods of an operating system. As a
result, remote access to computer systems is possible with-
out explicit consent of the users. Information logging and
sniffing activities are possible using the gained remote ac-
cess.

4.2.2 Constructor
This category of malware mostly includes toolkits for au-

tomatically creating new malware by varying a given set of
input parameters.

4.2.3 Worm
The malware in this category spreads over the network by

replicating itself.

4.2.4 Trojan
A trojan is a broad term that refers to stand alone pro-

grams which appear to perform a legitimate function but
covertly do possibly harmful activities such as providing re-
mote access, data destruction and corruption.

4.2.5 Virus
A virus is a program that can replicate itself and attach

itself with other benign programs. It is probably the most
well-known type of malware and has different flavors.

4.2.6 Miscellaneous
The malware in this category include DoS (denial of ser-

vice), nuker, exploit, hacktool and flooders. The DoS and

Table 3: AUC’s for detecting malicious executables
vs benign files. Bold entries in every column repre-
sent the best results.

Classifier Back Cons Misc Troj Virus Worm

Strings
RIPPER 0.591 0.611 0.690 0.685 0.896 0.599

NB 0.615 0.610 0.714 0.751 0.944 0.557
M-NB 0.615 0.606 0.711 0.755 0.952 0.575
B-J48 0.625 0.652 0.765 0.762 0.946 0.642

KM
SMO 0.720 − 0.611 0.755 0.865 0.750

B-SMO 0.711 − 0.611 0.766 0.931 0.759
NB 0.715 − 0.610 0.847 0.947 0.750

B-NB 0.715 − 0.606 0.821 0.939 0.760
J48 0.712 − 0.560 0.805 0.850 0.817

B-J48 0.795 − 0.652 0.851 0.921 0.820
IBk 0.752 − 0.611 0.850 0.942 0.841

Proposed solution with 4 features
J48 0.835 0.812 0.863 0.837 0.909 0.880

B-J48 0.849 0.841 0.883 0.839 0.933 0.884
NB 0.709 0.716 0.796 0.748 0.831 0.715

B-NB 0.709 0.722 0.794 0.746 0.807 0.707
IBk 0.779 0.817 0.844 0.791 0.917 0.812

B-IBk 0.782 0.817 0.844 0.791 0.918 0.812

Proposed solution with 52 features
B-J48 0.979 0.965 0.950 0.985 0.970 0.932

nuker based malware allow an attacker to launch malicious
activities at a victim’s computer system that can possibly
result in a denial of service attack. These activities can
result in slow down, restart, crash or shutdown of a com-
puter system. Exploit and hacktool exploit vulnerabilities
in a system’s implementation which most commonly results
in buffer overflows. Flooder initiates unwanted information
floods such as email, instant messaging and SMS floods.

The detailed statistics of the malware used in our study
is provided in Table 2. The average malware size in this
dataset is 64.2 KB. The sizes of malware samples used in
our study vary from 4 bytes to more than 14 MB. Intuitively
speaking, small sized malware are harder to detect than the
larger ones.

5. PILOT STUDIES
In our initial set of experiments, we have conducted an ex-

tensive search in the design space to select the best features’
set and classifier for our scheme. The experiments are done
on 5% of total dataset to have small design cycle for our
approach. Recall that in Section 3, we have introduced 13
different statistical and information-theoretic features. The
pilot studies are aimed to convince ourselves that we need
all of them. Moreover, we have also evaluated well-known
data mining algorithms on our dataset in order to find the
best classification algorithm for our problem. We have used
Instance based (IBk) [22], Decision Trees (J48) [25], Näıve
Bayes [23] and the boosted versions of these classifiers in
our pilot study. For boosting we have used AdaBoostM1
algorithm [24]. We have utilized implementations of these
algorithms available in WEKA [26].

5.1 Discussion on Pilot Studies
The classification results of our experiments are tabulated

in Table 3 which show that the boosted Decision Tree (J48)
significantly outperforms other classifiers in terms of detec-

Table 4: Feature Analysis. AUC’s for detecting
virus executables vs benign files using boosted J48.
F1,F2, F3 and F4 correspond to 4 different features.

Feature No. of Gram/feature AUC
F1 1 0.823
F2 1 0.839
F3 1 0.866
F4 2 0.891

F1-F2 1, 1 0.940
F1-F3 1, 1 0.928
F1-F4 1, 2 0.932
F2-F4 1, 2 0.929

F1-F2-F4 1, 1, 2 0.962
F3-F2 1, 1 0.954
F3-F4 1, 2 0.913

F1-F2-F3-F4 1, 1, 1, 2 0.956

tion accuracy. Similarly we also evaluate the role of num-
ber of features and the number of n-grams on the accuracy
of proposed approach. In Table 3, we first use four fea-
tures namely: Simpson’s index (F1), Entropy Rate (F2),
Canberra distance (F3) on 1-gram and Simpson’s index on
2-grams (F4). Our scheme achieves a significantly higher de-
tection accuracy compared with strings and KM. We then
tried different combinations of features and n-grams and tab-
ulated the results in Table 4. It is obvious from Table 4 that
once we move from a single feature from (F1) on 1-gram to
(F4) on 2-grams the detection accuracy improves from 0.82
to 0.891. Once we use combination of features computed on
1-gram and 2-grams the accuracy approaches to 0.962 (see
F1-F2-F4). This provided us the motivation to use all 13
features on 1-, 2-, 3- and 4-grams resulting in a total of 52
features. The ROC curve for the virus-benign classification
using F1, F2, F3 and F4 features is shown in Figure 2.

It is clear in Table 3 that strings approach has a signifi-
cantly higher accuracy for virus types compared with other
malware types. We analyzed the reason behind this by look-
ing at the signatures used by this method. We observed that
typically viruses carry some common strings like “Chinese
Hacker”and for strings approach they become its signatures.
Since similar strings do not appear in other malware types;
therefore, strings accuracy degrades to as low as 0.62 in case
of backdoors.

Recall that KM uses 4-grams as binary features. KM
follows the same pattern of higher accuracy for detecting
viruses and relatively lower accuracy for other malware types.
However, its accuracy results are significantly higher com-
pared with the strings approach. Note that our proposed so-
lution with 52 features not only provides the best detection
accuracy for virus category but its accuracy remains consis-
tent across all malware types. This shows the strength of
using diverse features’ set with a boosted J48 classifier.

6. RESULTS & DISCUSSION
Remember that our approach is designed to achieve a chal-

lenging objective: to distinguish between malicious files of
type backdoor, virus, worm, trojan, constructor from be-
nign files of types DOC, EXE, JPG, MP3, PDF and ZIP just on
the basis of byte-level information.

We now explain our final experimental setup. The pro-
posed scheme, as explained in Section 3.2, computes features
on n-grams of each block of a given file. We create the train-
ing samples by randomly selecting 50 malicious and benign

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fp rate

tp
 r

at
e

Boosted IBK
IBK
Boosted NB
NB
Boosted J48
J48

Figure 2: ROC plot for virus-benign classification

files each from malware and benign datasets respectively.
We create six separate training samples for each malware
category. We use these samples to train boosted decision
tree and consequently get 6 classification models for each
malware type.

For an easier understanding of the classification process,
we take backdoor as an example. We have selected 50 back-
door files and 50 benign files to get a training sample for clas-
sifying backdoor and benign files. We train the data mining
algorithm with this sample and as a result get the training
model to classify a backdoor. Moreover, we further test,
using this model, all six benign filetypes and backdoor mal-
ware files. It is important to note that this model is specifi-
cally designed to distinguish backdoor files from six benign
filetypes (one-vs-all classification), where only 50 backdoor
samples are taken in training. This number is considerably
small keeping in view the problem at hand. Nonetheless, the
backdoor classification using a single classifier completes in
seven runs: six for benign filetypes and one for itself. In
a similar fashion, one can classify malware types i.e., virus,
worm, trojan, constructor and miscellaneous. Once our so-
lution is trained for each category of malware, we test it
on the benign dataset of 1800 files and the malware dataset
of 10, 311 files from VX Heavens. We ensure that the be-
nign and malware files used in the training phase are not
included in the testing phase to verify our claim of zero-day
malware detection. The classification results are shown in
Figure 3 in the form of AUCs. It is interesting to see that
viruses, as expected, are easily classified by our scheme. In
comparison trojans are programs that look and behave like
benign programs, but perform some illegitimate activities.
As expected, the classification accuracy for trojans is 0.88
— significantly smaller compared with viruses.

In order to get a better understanding, we have plotted the
ROC graphs of classification results for each malware type in
Figure 3. The classification results show that malware files
are quite distinct from benign files in terms of byte-level
file content. The ROC plot further confirms that virus are
easily classified compared with other malware types while
trojan and backdoors are relatively difficult to classify. Ta-
ble 5 shows portions of the developed decision trees for all
malware categories. As decision trees provide a simple and
robust method of classification for a large dataset, it is in-
teresting to note that malicious files are inherently different
from the benign ones even at the byte-level.

Table 5: Portions of developed decision trees
| | | | KL1 > 0.022975
| | | | | Entropy2 <= 6.822176
| | | | | | Manhattan1 <= 0.005411
| | | | | | | Manhattan4 <= 0.000062: Malicious (20.0)
| | | | | | | Manhattan4 > 0.000062: Benign (8.0/2.0)
| | | | | | Manhattan1 > 0.005411: Malicious (538.0/6.0)

(a) between Backdoor and Benign files

| | CorelationCoefficient1 > 0.619523
| | | Chebyshev4 <=1.405
| | | | Itakura2 <= 87.231983: Malicious (352.0/9.0)
| | | | Itakura2 > 87.231983
| | | | | TotalVariation1 <= 0.3415: Malicious (11.0)
| | | | | TotalVariation1 > 0.3415: Benign (8.0)

(b) between Trojan and Benign files

| | CorelationCoefficient4 > 0.187794
| | | Simpson_Index_1 <= 0.005703
| | | | CorelationCoefficient3 <= 0.17584: Malicious (32.0)
| | | | CorelationCoefficient3 > 0.17584
| | | | | Entropy1 <= 4.969689: Malicious (4.0/1.0)
| | | | | Entropy1 > 4.969689: Benign (5.0)
| | | Simpson_Index_1 > 0.005703: Benign (11.0)

(c) between Virus and Benign files

| | | Entropy2 > 3.00231
| | | | Canberra2 <= 49.348481
| | | | | Canberra1 <= 14.567909: Malicious (161.0)
| | | | | Canberra1 > 14.567909
| | | | | | Itakura3 <= 126.178699: Malicious (5.0)
| | | | | | Itakura3 > 126.178699: Benign (5.0)
| | | | Canberra2 > 49.348481: Benign (13.0/1.0)

(d) between Worm and Benign files

CorelationCoefficient3 <= -0.013832
| Itakura2 <= 5.905754
| | Itakura3 <= 5.208592
| | | CorelationCoefficient4 <= -0.155078: Malicious (7.0)
| | | CorelationCoefficient4 > -0.155078: Benign (43.0/6.0)
| | Itakura3 > 5.208592: Benign (303.0/5.0)

(e) between Constructor and Benign files

| Entropy4 > 6.754364
| | KL1 <= 0.698772
| | | Manhattan3 <= 0.001003
| | | | Entropy2 <= 6.411063: Malicious (29.0)
| | | | Entropy2 > 6.411063
| | | | | KL1 <= 0.333918: Malicious (2.0)
| | | | | KL1 > 0.333918: Benign (2.0)
| | | Manhattan3 > 0.001003: Benign (3.0)

(f) between Miscellaneous and Benign files

The novelty of our scheme lies in the way the selected
features have been computed — per block n-gram analysis,
and the correlation between the blocks classified as benign
or potentially malicious. The features used in our study are
taken from statistics and information theory. Many of these
features have already been used by researchers in other fields
for similar classification problems. The chosen set of features
is not, by any means, the optimal collection. The selection of
optimal number of features remains an interesting problem
which we plan to explore in our future work. Moreover, the
executable dataset used in our study contained both packed
and non-packed PE files. We plan to evaluate the robustness
of our proposed technique on manually crafted packed file
dataset.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fp rate

tp
 r

at
e

Virus (AUC = 0.945)
Worm (AUC = 0.919)
Trojan (AUC = 0.881)
Backdoor (AUC = 0.849)
Constructor (AUC = 0.925)
Miscellaneous (AUC = 0.903)

Figure 3: ROC plot for detecting malware from be-
nign files

7. CONCLUSION & FUTURE WORK
In this paper we have proposed a non-signature based

technique which analyzes the byte-level file content. We
argue that such a technique provides implicit robustness
against common obfuscation techniques — especially repacked
malware to obfuscate signatures. An outcome of our re-
search is that malicious and benign files are inherently dif-
ferent even at the byte-level.

The proposed scheme uses a rich features’ set of 13 differ-
ent statistical and information-theoretic features computed
on 1-, 2-, 3- and 4-grams of each block of a file. Once we
have calculated our features’ set, we give it as an input
to the boosted decision tree (J48) classifier. The choice of
features’ set and classifier is an outcome of extensive pilot
studies done to explore the design space. The pilot stud-
ies demonstrate the benefit of our approach compared with
other well-known data mining techniques: strings and KM
approach. We have tested our solution on an extensive ex-
ecutable dataset. The results of our experiments show that
our technique achieves 90% detection accuracy for different
malware types. Another important feature of our framework
is that it can also classify the family of a given malware file
i.e. virus, trojan etc.

In future, we would like to evaluate our scheme on a larger
dataset of benign and malicious executables and reverse en-
gineer the features’ set for further improving the detection
accuracy. Moreover, we plan to evaluate the robustness of
our proposed technique on a customized dataset containing
manually packed executable files.

Acknowledgments
This work is supported by the National ICT R&D Fund,
Ministry of Information Technology, Government of Pak-
istan. The information, data, comments, and views detailed
herein may not necessarily reflect the endorsements of views
of the National ICT R&D Fund.

We acknowledge M.A. Maloof and J.Z. Kolter for their
valuable feedback regarding the implementation of strings
and KM approaches. Their comments were of great help in
establishing the experimental testbed used in our study. We
also acknowledge the anonymous reviewers for their valuable
suggestions pertaining to possible extensions of our study.

8. REFERENCES
[1] Symantec Internet Security Threat Reports I-XI (Jan

2002—Jan 2008).

[2] F-Secure Corporation, “F-Secure Reports Amount of
Malware Grew by 100% during 2007”, Press release,
2007.

[3] A. Stepan, “Improving Proactive Detection of Packed
Malware”, Virus Buletin, March 2006, available at
http://www.virusbtn.com/virusbulletin/

archive/2006/03/vb200603-packed.dkb

[4] R. Perdisci, A. Lanzi, W. Lee, “Classification of Packed
Executables for Accurate Computer Virus Detection”,
Pattern Recognition Letters, 29(14), pp. 1941-1946,
Elsevier, 2008.

[5] AVG Free Antivirus, available at
http://free.avg.com/.

[6] Panda Antivirus, available at
http://www.pandasecurity.com/.

[7] M.G. Schultz, E. Eskin, E. Zadok, S.J. Stolfo, “Data
mining methods for detection of new malicious
executables”, IEEE Symposium on Security and
Privacy, pp. 38-49, USA, IEEe Press, 2001.

[8] J.Z. Kolter, M.A. Maloof, “Learning to detect malicious
executables in the wild”, ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 470-478, USA, 2004.

[9] J. Kephart, G. Sorkin, W. Arnold, D. Chess, G.
Tesauro, S. White, “Biologically inspired defenses
against computer viruses”, International Joint
Conference on Artificial Intelligence (IJCAI), pp.
985-996, USA, 1995.

[10] R.W. Lo, K.N. Levitt, R.A. Olsson, “MCF: A
malicious code filter”, Computers & Security,
14(6):541-566, Elseveir, 1995.

[11] O. Henchiri, N. Japkowicz, “A Feature Selection and
Evaluation Scheme for Computer Virus Detection”,
IEEE International Conference on Data Mining
(ICDM), pp. 891-895, USA, IEEE Press, 2006.

[12] P. Kierski, M. Okoniewski, P. Gawrysiak, “Automatic
Classification of Executable Code for Computer Virus
Detection”, International Conference on Intelligent
Information Systems, pp. 277-284, Springer, Poland,
2003.

[13] T. Abou-Assaleh, N. Cercone, V. Keselj, R. Sweidan.
“Detection of New Malicious Code Using N-grams
Signatures”, International Conference on Intelligent
Information Systems, pp. 193-196, Springer, Poland,
2003.

[14] J.H. Wang, P.S. Deng, “Virus Detection using Data
Mining Techniques”, IEEE International Carnahan
Conference on Security Technology, pp. 71-76, IEEE
Press, 2003.

[15] W.J. Li, K. Wang, S.J. Stolfo, B. Herzog, “Fileprints:
identifying filetypes by n-gram analysis”, IEEE
Information Assurance Workshop, USA, IEEE Press,
2005.

[16] S.J. Stolfo, K. Wang, W.J. Li, “Towards Stealthy
Malware Detection”, Advances in Information Security,
Vol. 27, pp. 231-249, Springer, USA, 2007.

[17] W.J. Li, S.J. Stolfo, A. Stavrou, E. Androulaki, A.D.
Keromytis, “A Study of Malcode-Bearing Documents”,
International Conference on Detection of Intrusions &
Malware, and Vulnerability Assessment (DIMVA), pp.
231-250, Springer, Switzerland, 2007.

[18] M.Z. Shafiq, S.A. Khayam, M. Farooq, “Embedded
Malware Detection using Markov n-Grams”,
International Conference on Detection of Intrusions &
Malware, and Vulnerability Assessment (DIMVA), pp.
88-107, Springer, France, 2008.

[19] M. Christodorescu, S. Jha, and C. Kruegal, “Mining
Specifications of Malicious Behavior”, European
Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE 2007), pp. 5-14, Croatia, 2007.

[20] Frans Veldman, “Heuristic Anti-Virus Technology”,
International Virus Bulletin Conference, pp. 67-76,
USA, 1993, available at http://mirror.sweon.net/
madchat/vxdevl/vdat/epheurs1.htm.

[21] Jay Munro, “Antivirus Research and Detection
Techniques”, Antivirus Research and Detection
Techniques, ExtremeTech, 2002, available at
http://www.extremetech.com/article2/0,2845,

367051,00.asp.

[22] D.W. Aha, D. Kibler, M.K. Albert, “Instance-based
learning algorithms”, Journal of Machine Learning, Vol.
6, pp. 37-66, 1991.

[23] M.E. Maron, J.L. Kuhns, “On relevance, probabilistic
indexing and information retrieval”, Journal of the
Association of Computing Machinery, 7(3), pp.216-244,
1960.

[24] Y. Freund, R. E. Schapire, “A decision-theoretic
generalization of on-line learning and an application to
boosting”, Journal of Computer and System Sciences,
No. 55, pp. 23-37, 1997

[25] J.R. Quinlan, “C4.5: Programs for machine learning”,
Morgan Kaufmann, USA, 1993.

[26] I.H. Witten, E. Frank, “Data mining: Practical
machine learning tools and techniques”, Morgan
Kaufmann, 2nd edition, USA, 2005.

[27] VX Heavens Virus Collection, VX Heavens website,
available at http://vx.netlux.org

[28] J. Oberheide, E. Cooke, F. Jahanian. “CloudAV:
N-Version Antivirus in the Network Cloud”, USENIX
Security Symposium, pp. 91-106, USA, 2008.

[29] T. Fawcett, “ROC Graphs: Notes and Practical
Considerations for Researchers”, TR HPL-2003-4, HP
Labs, USA, 2004.

[30] S.D. Walter, “The partial area under the summary
ROC curve”, Statistics in Medicine, 24(13), pp.
2025-2040, 2005.

[31] T.M. Cover, J.A. Thomas, “Elements of Information
Theory”, Wiley-Interscience, 1991.

