
8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E

letters
S e n d l e t t e r s t o E d i t o r ■ s o f t w a r e @ c o m p u t e r . o r g ■ f a x + 1 7 1 4 8 2 1 4 0 1 0

Does anybody know when the first com-
puter virus was created? To get the discussion
going, I’ll draw a line in the sand: it was no later
than 1971. In 1971, as a graduate student at the
University of Illinois at Urbana Champaign, I
was working on a multiuser PDP-11. I created a
process that (a) checked to see if an identical copy
of itself was also running as an active process,
and if not, created a copy of itself and started it
running; (b) checked to see if any disk space
(which all users shared) was available, and if so,
created a file the size of that space; and (c) looped
back to step (a).

As a result, the process
stole all available disk space.
When users tried to save files,
the operating system advised
them that the disk was full
and that they needed to
delete some existing files. Of
course, if they did delete a
file, my process would imme-
diately snatch up the avail-
able space. When they called
in a system administrator to
fix the problem, he examined
the active processes, discov-
ered my “evil” process, and
deleted it. Of course, before he left the room, the
other evil process would create another copy of
itself, and the problem wouldn’t go away. The
only way to make the computer work again was
to reboot.

Of course, 1971 predates the use of the
term virus. But does anybody know of any ear-
lier instances of virus-like software?

Al Davis
Professor

University of Colorado
adavis@uccs.edu

Clarifying ambiguity
Bob McCloskey of the Department of Com-

puting Sciences at the University of Scranton in
Scranton, Pennsylvania, pointed out to my co-
author Erik Kamsties and me that we made a
mistake with one of the examples in our Quality
Time column, “The Syntactically Dangerous All
and Plural in Specifications” (Jan./Feb. 2005).

The problematic example is, “All of the lights
in any room have a single on-off switch.” We
identified two possible interpretations: (1) each
light in any room has its own single on-off

switch that isn’t shared with
any other light, and (2) all the
lights in any room share a sin-
gle common on-off switch.

In the column, we suggested
that the first interpretation
would be better stated as either
(1a) each light in any room
has a single on-off switch or
(1b) each light in any room
has its own on-off switch. Bob
pointed out that sentence (1a)
means only that each light has
a single on-off switch and says
nothing about how many
lights each switch controls.

Indeed, sentence (1a) allows another inter-
pretation: (2) all the lights in any room share a
single common on-off switch! To get sentence
(1a) to mean interpretation (1), Bob points out
that more words must be added to get sentence
(1a�): Each light in any room has a single on-
off switch in the room, and each on-off switch
in any room controls a single light in the room.
Bob points out also that sentence (1b) avoids
the problem of sentence (1a) by using the word
own, which implies that the switch isn’t shared
with any other light.

lFirst Virus?

We welcome
your letters.
Send them to
software@
computer.org.
Include your full
name, title,
affiliation, and
email address.
Letters are
edited for clarity
and space.

J u l y / A u g u s t 2 0 0 6 I E E E S O F T W A R E 9

LETTERS

Bob is absolutely correct here, and we
were somewhat red-faced to have writ-
ten an ambiguous or incorrect example
in an article trying to describe how to
avoid ambiguity. We can say only “some-
what,” because the interesting thing is
that Bob was the first and, so far, the only
person to notice the problem since a vari-
ant of the example came up in one of my
consulting jobs in 1991. I explained the
first alternative meaning with sentences
corresponding to sentences (1a) and (1b).
No one at the company noticed the
problem. Moreover, on every occasion
since then in which Erik or I has ex-
plained the example with the same alter-
native sentences (1a) and (1b), no one
has noticed the problem.

Ambiguity always is only in the eyes
of the beholder. Alan Davis’s opera-
tional, testable definition of ambiguity
(from Software Requirements: Objects,
Functions, and States, Prentice Hall,
1993) drives this point home: “Imagine
a sentence that is extracted from an SRS
[software requirements specification],
given to 10 people who are asked for an
interpretation. If there is more than one
interpretation, then that sentence is prob-
ably ambiguous.” Of course, the prob-
lem with this test is that, as in software
testing, there’s no guarantee that the
11th person won’t find another inter-
pretation. However, this test does cap-
ture the essence of a useful SRS that’s
unambiguous for most practical pur-
poses. In other words, if everyone in-
volved with a sentence agrees on a single
meaning for the sentence, the sentence
ain’t ambiguous!

In a sense, Bob is the proverbial
11th person who finally found the am-
biguity lurking in our example. Per-
haps the proximity in time and space of
the verbal offering of sentences (1a) and
(1b) in opposition to interpretation (2)
lulled everyone to accept that sentences
(1a) and (1b) were alternative, equally
valid expressions for interpretation (1).
Perhaps, had we formulated the inter-
pretations and sentences in first-order
predicate calculus as Bob did, we or
others might have seen the problem
earlier. However, the reality is that the
overwhelming majority of SRSs are
written in natural language. For all of

natural language’s weaknesses, and be-
cause of the weaknesses, we have to
work with the weaknesses.

The example we used in the column
is an example of both the ambiguity of
plural nouns and of the difficulty of es-
tablishing correspondences between
nouns. Here’s an example of the plural
ambiguity that avoids the correspon-
dence problem that Bob writes about:

■ (3) Each term, students at the Uni-
versity of X take 5 classes.

■ (4) Each term, students at the Uni-
versity of X take hundreds of classes.
Without domain knowledge about
students at universities, you’re left
wondering about the large differ-
ence in the direct objects of these
two structurally identical sentences.
A little bit of domain knowledge
tells us what the sentences mean and
suggests less ambiguous ways to ex-
press them:

■ (3�) Each term, each student at the
University of X takes 5 classes.

■ (4�) Each term, the students at the
University of X take hundreds of
classes.

We use this opportunity to alert read-
ers to other descriptions of the plural
problem. Attempto Controlled English
(www.ifi.unizh.ch/attempto), an unam-
biguous subset of English in which each
sentence has only one meaning, origi-
nally outlawed plural because of ambi-
guities like the ones we reported. The
ACE solution is actually workable, be-
cause you can express truly plural sen-
tences (such as 4�) in the singular with a
collective noun identifying the set of el-
ements the plural noun denotes. For ex-
ample, you would express 4� as, “Each
term, the set of all students at the Uni-
versity of X takes hundreds of classes.”
With such constructions (“each student”
or “the set of all students”), there’s no
doubt what is meant.

A glance at any ACE definition or de-
scription document is an eye opener, be-
cause the commentary explaining the
reasons for each restriction is a com-
pendium of ambiguities in English. For
her PhD dissertation (available at www.
ifi.unizh.ch/attempto/publications/index.

html), Uta Schwertel studied ways to al-
low plural into ACE under restricted and
controlled circumstances using each,
own, and other clues as to the intended
meaning. “Controlling Plural Ambigui-
ties in Attempto Controlled English”
(Proc. 3rd Int’l Workshop Controlled
Language Applications, 2000; www.ifi.
unizh.ch/attempto/publications/papers/
claw2000.pdf) describes the essence of
her work. We thought that one of her ex-
amples of the plural ambiguity—“Three
girls lift a table”—was more to the point
than any of ours.

Does each of the three girls lift one
table or do all three girls together lift
one table? We recommend looking at
Schwertel’s work for her view of the
problem and its solutions.

Daniel M. Berry
Professor

University of Waterloo, Canada
dberry@uwaterloo.ca

Erik Kamsties
Carmeq Software & Systems

erik.kamsties@imail.de

“Best practices”: Globally
accepted, voluntarily adopted
standards

One thing engineers do is solve prob-
lems, and software engineering is an area
that has plenty of problems. Naturally,
engineers propose solutions, and to
make them attractive, they’re tempted to
include qualifiers like best, critical, and
essential. However, unless the proposi-
tions are proven, professional bodies
don’t accept such terms. For example,
let’s consider software engineering’s
“best practices.”

Software engineering projects are car-
ried out in partial ignorance. Therefore,
each individual project must be viewed
as “social experimentation,” as Mike W.
Martin and Roland Schinzinger said in
their book Ethics in Engineering (Mc-
Graw-Hill, 1996). As long as engineer-
ing a software project remains an ex-
periment, there will be confusion. and
we must clarify and logically fix the
practices.

According to my understanding,
only two categories of “practices” exist:

1 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

LETTERS

those governed by mandatory or statu-
tory rules and regulations and those gov-
erned by other standards and reports.

The first group’s document titles of-
ten include the words code, act, and
statutory rules and regulations. The prac-
tices mentioned in these documents have
legal binding in the acquirer/purchaser’s
country. OSHA (Occupational Safety
and Health Act) and NEC (National
Electrical Code) are typical mandatory
practices. These documents contain the
“real best practices” accepted by indus-
try, customers, and the general public.

The second type of practices might
also be in the form of a code or stan-
dard but not be mandatory. I’m not
aware of any such code in software en-
gineering. Even international standard
ISO/IEC 12207:1995/Amd 2:2004 (In-
formation technology—Software life cy-
cle processes) hasn’t yet become a
code, and its acceptance varies from
project to project depending on the

contractual terms.
All other standards and reports ac-

quire legal support when those docu-
ments are referred by the purchaser and
accepted by the supplier in the contract.
Otherwise, they’re like any other article,
paper, or report. Examples include

■ nonmandatory standards,
■ recommended practices,
■ guides,
■ technical reports,
■ best practices,
■ core activities,
■ major activities,
■ commitments,
■ general conditions of contract, and
■ minutes of meetings.

All these nonmandatory documents
are invaluable sources of knowledge. It
hardly matters whether you call them
recommended practices, best practices,
guides, or, for that matter, simply activi-

ties. It’s most important that they deliver
consistent performance in industry and
can become codes in the future. Maybe
no single standard or technical report
will become a code or mandatory stan-
dard. A combination of them might
evolve gradually. ISO 9001 and SA-
CMM are the best examples of such
evolutionary standards. Numerous or-
ganizations in many countries have vol-
untarily adopted these standards.

Professionals have a duty to generate
as many ideas as possible and bring them
to the light. Let’s not block those ideas.
In her letter “What’s Best?” (May/June
2004), Ellen Walker said, “If we try to
adhere to a scientific approach, relying
on solid data to support our decisions,
we probably won’t publish anything.”

For example, let’s tolerate the clichés
in writing and look for any new ideas
therein, until the practices the authors
mention develop into accepted stan-
dards. Clichés in writing will have to fade
out on their own. We can also suggest
alternatives. Have we set a moratorium
on paradigm, model, meta, benchmark,
artifacts? Of course, we can always add
a disclaimer. For example, the SA-CMM
declares that

[t]here is not “one right way” to
implement an acquisition process.
The SA-CMM is not engraved in
stone. Also, except in a few care-
fully chosen instances, the SA-
CMM does not mandate how the
acquisition process should be im-
plemented or who should perform
an action; it describes what char-
acteristics the acquisition process
should possess. … The SA-CMM
should be interpreted in the con-
text of the needs of the organiza-
tion; just because something is in
the SA-CMM does not mean it
should be applied automatically.

Best practices are those standards that
are accepted worldwide, willingly im-
plemented, and certified by third par-
ties, and that satisfy all stakeholders.

R.T. Sakthidaran
Professor

KLN College of Engineering, India
sakthidaran@gmail.com

