
Malware Detection Based on Suspicious Behavior Identification*

Cheng Wang Jianmin Pang Rongcai Zhao Wen Fu Xiaoxian Liu
China National Digital Switching System Engineering & Technology Research Center

Postbox 1001 No. 718, Zhengzhou, Henan 450002, China
Cheng28624113@yahoo.com.cn

Abstract

Along with the popularization of computers,
especially the wide use of Internet, malicious code in
recent years has presented a serious threat to our
world. In this paper, through the analysis against the
suspicious behaviors of vicious program by function
calls, we present an approach of malware detection
which is based on analysis and distilling of
representative characteristic and systemic description
of the suspicious behaviors indicated by the sequences
of APIs called under Windows. Based on function calls
and control flow analysis, according to the
identification of suspicious behavior, the technique
implements a strategy of detection from malicious
binary executables.

1. Introduction

Malware is code designed for a malicious purpose,
antivirus(AV) tools primarily use signatures to detect
known malware. This signature is typically created by
disassembling the existing samples of malware, and
selecting some pieces of unique code. However,the
technique of malware is updating constantly, so that the
conventional AV technique based on signature
detection could not be able to detect mutation from
already known or unknown malicious codes effectively
yet. In order to settle this problem, some AV
researchers apply with the techniques such as data
mining and machine learning to detect unknown
malware[1]. In paper[2],the information of character
string in PE file head, the number of DLL, the number
of API calls and so on are distilled, and normal
program and virus are classified by naive bayes
algorithm, and the detection result is quite good.
However, the information in PE file head could be
modified easily, and it has some difference from the
true calls of program.

Under these conditions this paper makes two
amendments. Firstly, the true calls of object program of
malware are obtained by static analysis of its
procedure; secondly, the sequence of function calls[3] in
program is built and matching identification from
suspicious behavior-base is implemented based on the
control flow. Hereunder suspicious behavior are
throughly analysed, and the malware detection
technique under Windows environment is presented
and implemented.

The technique mentioned in this paper has been
implemented in a prototype system, named with
RADUX(Reverse Analysis for Detecting Unsafe
eXecutables),which is composed by Decompilation(as
figure 1-① shows), Analysis of program behavior,
Database of suspicious behavior models, Detection,
annotation, removal and so on. Based on decompilation
model of our prototype Radux, this technique mainly
fulfills the design of two following modules:

1) Expand the module②--Behavior Identification:
distill API function calls sequence known as malware
and add it to suspicious behavior-database based on
API function calls for expansion, so rules for
identifying models is obtained. Then build API
function calls sequence of object program by control
flow analysis to suspicious behavior identification.

2) Build the module③--Program Detection: use
bayes algorithm determined by abundant sample space
statistics to find malicious degree of unknown object
program, and classify unknown program by changing
threshold, so the detecting of malicious executables is
completed. The framework of our prototype system is
shown in figure 1.

2. Related works

There are two main approaches for the detection of
malware: static analysis and dynamic analysis. Static
analysis examines the binary code to determine
properties of this program without running it. This
technique was first used by compiler developers to

*This work is supported by the National High-Tech Research and
Development Plan of China under Grant No.2006AA01Z408.

2009 First International Workshop on Education Technology and Computer Science

978-0-7695-3557-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ETCS.2009.306

198

2009 First International Workshop on Education Technology and Computer Science

978-0-7695-3557-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ETCS.2009.306

198

2009 First International Workshop on Education Technology and Computer Science

978-0-7695-3557-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ETCS.2009.306

198

2009 First International Workshop on Education Technology and Computer Science

978-0-7695-3557-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ETCS.2009.306

198

Authorized licensed use limited to: National Chung Hsing University. Downloaded on October 14, 2009 at 07:40 from IEEE Xplore. Restrictions apply.

optimize the code[4]. It is also used in reverse
engineering and for program understanding[5]. It is not
long since it was used for the malware detection.
Dynamic analysis mainly consists in monitoring the
execution of a program to detect malicious behaviour.
Compared with static analysis, dynamic analysis has
some disadvantages in the detection of malware[6].

This paper [6] approaches the problem of detection
of malicious code in executable programs using static

analysis. It involves three steps: generation of
intermediate representation, analyzing the control and
data flows, and then doing static verification. Static
verification consists of comparing a security policy to
the output of the analysis phase. A brief description of
a prototype tool is presented as well.

Figure 1: The project for framework of prototype system
3. Testing methodology

Bayes algorithm is a sort of method to compute
probability, which calculate the posterior probability
according to prior probability. Evidently it is suitable
for approximate determinant of malicious code. The
task of system of malware detection based on bayes
algorithm: determine whether the program is malicious
or not by suspicious behavior of program and so
whether it is a malicious program or not. Bayes
expressions—the foundation of bayes theory is：

() ()()
()

P F C P CP C F
P F

×=

1 ） Establish sample space and calculate the
appearance frequency of behavior in the training
sets

Sample space established by collecting a large
number of executable codes are divided into the

training sets trainingS and the test sets testS
（the training

sets and test sets in sample space are not intersectant,
test trainingS S = ∅∩

）. The training sets are divided into
malicious program sets maliciousS and benign program
sets benignS （ malicious benign trainingS S S=∪ ，

malicious benignS S = ∅∩ ） , then the tool for distilling
behavior is constructed according to malware type(as
virus,trojan,etc) to calculate the frequency of every
suspicious behavior in the training sets.

2）Set up a hash table for the training sets and
compute suspicious-degree of behavior

199199199199

Authorized licensed use limited to: National Chung Hsing University. Downloaded on October 14, 2009 at 07:40 from IEEE Xplore. Restrictions apply.

The detection of computer malware is a problem of
classification, which are malicious program and benign
program. Define C to be classify sets in form of
{malicious, benign}, and C denotes malicious
program while C denotes benign program as it is a
variable. Set up hash tables for malicious program and
benign program sets with the name
hashtable_malicious and hashtable_benign to store the
mapping from suspicious behavior to behavior
probability. The appearance probability of a certain

behavior characteristic iω
（ iω ω∈

）in hashtable is:
(/)iP Cω ＝ the frequency of iω in

hashtable_malicious / the length of the corresponding
hashtable;

(/)iP Cω ＝ the frequency of iω in
hashtable_benign / the length of the corresponding
hashtable, what showed in table 1 is an example.

Table 1. Suspicious probability of one behavior

P("Search files to infect"/ C)＝19/289
P("Search files to infect"/ C)＝127/282

P("Distribute virtual memory "/C)＝55/289
P("Distribute virtual memory "/C)＝72/282

3) Compute the program malicious degree using

bayes algorithm
Distill a set of behavior vector sets ω from each

program in sample space, which contains 1ω
， 2ω

…

nω (in this paper n=9). iω is independent from each
other in malicious or benign program sets ，but it is
not in the whole test sets. We define malicious degree
of behavior (/)P C ω to express the probability of
being malware when ω is suspicious behavior sets of
program to represent, so bayes expressions can be
rewritten using probability expressions mentioned
above:

1

1 1

() ()
()

() () () ()

n
ii

n n
i ii i

P C P C
P C

P C P C P C P C

ω
ω

ω ω
=

= =

×
=

× + ×
∏

∏ ∏

By the analysis of the formula above we know:
when there is a greater probability of suspicious
behavior we choose in malicious program than in
benign program, the value of (/)P C ω is between 0.5
and 1. In order to represent more precisely the
probability in which a program is malicious, we use

() xf x e= to map from the function for adjusting

result (/)P C ω∗ into 0~1, which felicitously reflects
the probability in which a program is a malware.

4) Load the testing sets and set threshold to
validate the veracity of the algorithm

Load the testing sets trainingS and compute the
malicious degree of program one by one using the
above formula and suspicious degree of every
behavior, then classify the computed malicious degree
by threshold. Compare the classification with the
former one to validate the veracity of the algorithm.
Finally,the result from program detection is exported
by prototype system.

4. Malware detection
4.1. Describing suspicious behavior

Every program which wants to achieve its goal
always takes action. No matter how crafty the
malicious code is in disguise, it always has some
different, relatively peculiar action which is called
suspicious behavior. Behavior identification is
becoming the direction of anti-virus. As Windows
operating system is widely used, it rapidly catches the
malware’ eye and becomes the mainly growing
environment and attacking object of computer vicious
code. Currently most of the malicious programs are
under Win32 environment. The popular vicious code
for the nonce always use API function provided by
Windows operating system to implement their
functions, aiming at the size of code predigestion and
the effect mightiness. The computer vicious program
always infect normal program, and carry out their
malicious purpose when the infected program is
running. Some examples of suspicious behavior based
on API-calling sequence are as follows:

1） Search files to infect
Describing suspicious behavior: find the types of

relative files going to be infected, which are for
operation of file infection.

API function calls sequence:
①FindFirstFile
②FindNextFile
③FindClose
2） Create mapping of file
Describing suspicious behavior: map files in disk to

virtual address space of process to improve the
accessing speed.

API function calls sequence:
①CreateFileMapping
②MapViewOfFile
③UnMapViewOfFile

200200200200

Authorized licensed use limited to: National Chung Hsing University. Downloaded on October 14, 2009 at 07:40 from IEEE Xplore. Restrictions apply.

As two suspicious behaviors above, the detailed
description of behavior known as malware based on

API function calls is shown table2.

Table 2. The description of suspicious behavior
Behavior number Suspicious behavior description API function calls

Behavior 1 Obtain the system directory GetWindowsDirectory,GetSystemDirectory
Behavior 2 Search files to infect FindFirstFile,FindNextFile,FindClose
Behavior 3 Create mapping of file CreateFileMapping,MapViewOfFile,UnMapViewOfFile
Behavior 4 File write CreateFile,OpenFile,WriteFile,CloseHandle
Behavior 5 Modify file attributes GetFileAttributes,SetFileAttributes
Behavior 6 Modify time of file GetFileTime,SetFileTime
Behavior 7 Distribute global memory GlobalAlloc,GlobalFree
Behavior 8 Distribute virtual memory VirtualAlloc,VirtualFree
Behavior 9 Load register RegOpenKey,RegCreateKey,RegSetValue,RegCloseKey

4.2. Implementation

The implementation of behavior identification is
described below: distill the relation of each function
calls from binary executables in training set and
suspicious behavior identification from function calls
sequence by finite automaton(figure 2). Nodes denote
state sets, the Bad state predicating identify the
suspicious behavior is representative the final state, λ is
any action except RegCreateKey, RegSetValue,
RegCloseKey. If API function calls distilled from
program will arrive at the Bad state of the suspicious
behavior, the program is considered to have the
suspicious behavior.

Figure 2: Automaton for Behavior Detection

5. Experimental results

Sample data for experiment is shown in table 3. The
total number of sample in space is 914, which are
divided into benign program and malware. Benign
program are selected from operating system. The
programs we choose are all 461 of the PE files under
Windows directory after the installation of Windows
XP for the first time. Besides, 453 malicious programs,
80% of which are training set and 20% are testing set，
are downloaded from the VX Heavens[7] website.

In order to obtain function calls of program in
sample space, we write an API call tracer to implement
all blocks of API function calls under Windows
environment.

Table 3.Sample data of experience
 Sample Data Training Testing

Benign 461 369 92
Malicious 453 362 91

Total 914 731 183

There are 4 results after the algorithm: (1)consider a
benign program to be a benign program, which is
called TN-True Negative; (2)consider a benign
program to be a malicious program, which is called
FN-False Negative; (3)consider a malicious program to
be a benign program, which is called FP-False Positive;
(4)consider a malicious program to be a malicious
program, which is called TP-True Positive. In order to
review the veracity of the classification of the
algorithm, the detection precision (DP) are showed
using detection rate and false positive rate.

TP TNDP
TP TN FP FN

=
+

+ + +

The relationship between setting threshold and the
detection precision is showed in table 4, using the
detection results of testing set. As we see in table 4, the
detection precision of unknown malware in testing set
using bayes algorithm achieves 93.98% when threshold
is 0.7, which are higher than 89.07% in paper[3]. It
indicates that the detection technique in this paper has a
better effect for detection of unknown malware.

Table 4.The compare of threshold setting
Threshold TP TN FP FN DP

0.75 87 83 9 4 92.89%
0.8 86 86 6 5 93.98%

201201201201

Authorized licensed use limited to: National Chung Hsing University. Downloaded on October 14, 2009 at 07:40 from IEEE Xplore. Restrictions apply.

0.85 83 88 4 8 93.44%

6. Conclusions and future work

The detection technique presented in this paper is
based on identifying API-calling sequences under
Windows environment. The technique involves a bayes
algorithm, which is used to detect flow of suspicious
behavior through the analysis of API functions invoked
by malware. The precision of detection of the
algorithm has been validated by the training and testing
of abundant sample space. The technique is a
promising method to detect the win32 virus.

References
[1] M. Christodorescu and S. Jha. Static Analysis of
Executables to Detect Malicious Patterns. In:
Proceedings of the 12th USENIX Security Symposium,
USENIX Association, BerKeley, CA, USA, 2003, 169-
186.
[2] M. G. Schultz, E. Eskin, E. Zadok. Data Mining
Methods for Detection of New Malicious Executables.

In: Proceedings of the 2001 IEEE Symposium on
Security and Privacy. Washington: IEEE Computer
Society, 2001, 38-49.
[3] B. Zhang, J. Yin, J. Hao, D. Zhang, and S.Wang.
Using support vector machine to detect unknown
computer viruses. International Journal of
Computational Intelligence Research, 2(1):100–104,
2006.
[4] Cristina Cifuentes and Antoine Fraboulet.
Intraprocedural static slicing of binary executables. In
Proceedings of the International Conference on
Software Maintenance, Bari, Italy, October 1997,
pages188–195, IEEE-CS Press.
[5] S. S. Muchnick. Advanced Compiler Design
Implementation. Morgan Kaufman Publishers, San
Francisco, CA, 1997.
[6] J. Bergeron, et al. Static Detection of Malicious
Code in Executable Programs, in Symposium on
Requirements Engineering for Information Security
(SREIS'01), 2001.
[7] VX.heavens. http://vx.netlux.org.

202202202202

Authorized licensed use limited to: National Chung Hsing University. Downloaded on October 14, 2009 at 07:40 from IEEE Xplore. Restrictions apply.

