

DETECTING METAMORPHIC VIRUSES USING

PROFILE HIDDEN MARKOV MODELS

A Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Computer Science

By

Srilatha Attaluri

December 2007

© 2007

Srilatha Attaluri

ALL RIGHTS RESERVED

Approved by: Department of Computer Science

College of Science
San José State University
San José, CA

Dr. Mark Stamp

Dr. Chris Pollett

Dr. Agustin Araya

ACKNOWLEGEMENTS

I would like to thank Dr. Mark Stamp, for his guidance, encouragement and patience

through out the project. My gratitude to Dr. Chris Pollett and Dr. Agustin Araya, for their

valuable suggestions and feedback. My special thanks to Dr. Sami Khuri for introducing

me to the amazing field of Bioinformatics and helping me understand Hidden Markov

Models.

This project would not have been possible without the support of my family

especially my loving husband, Satyadeva Prasad.

ABSTRACT

Detecting Metamorphic Viruses using Profile Hidden Markov Models

By Srilatha Attaluri

Metamorphic computer viruses “mutate” by changing their structure every time

they propagate. Unlike other viruses, they use code obfuscation techniques on the body of

the virus and do not exhibit a common signature. With the advent of construction kits, it

is easy to generate various metamorphic strains of a virus.

 Profile Hidden Markov Models (PHMM) are used in Bioinformatics for finding

family-related DNA sequences. In this project we analyze and determine whether PHMM

can be used to detect metamorphic virus family variants generated from three

construction kits.

 Each construction kit has a diverse behavior and hence different PHMM models

must be generated by grouping a few strains of each construction kit. Models thus created

hold opcodes probabilities calculated depending upon their occurrence in the virus

variants. We then proceed to classify virus and non-virus files by scoring them against

these models using Forward algorithm.

Table of Contents

1. INTRODUCTION ...1

2. METAMORPHIC VIRUSES..2

2.1 Origin of Viruses ..2

2.2 Metamorphic Viruses ...4

2.3 Construction Kits ...5

3. CODE OBFUSCATION TECHNIQUES ...8

3.1 Garbage Code Insertion ...8

3.2 Register Renaming ...8

3.3 Subroutine Permutation...9

3.4 Code Reordering through Jumps...10

3.5 Equivalent Code Substitution ..10

4. THEORY OF HIDDEN MARKOV MODELS11

4.1 Markov Chains ...11
4.1.1 High Order Markov Chains.. 12

4.2 Hidden Markov Models..13
4.2.1 Profile Hidden Markov Models .. 15

4.3 Algorithms for Scoring Unknown Sequences against a Known Model.................19
4.3.1 Forward Algorithm .. 19
4.3.2 Viterbi Algorithm .. 21
4.3.3 Baum-Welch Re-estimation ... 22

5. ANTIVIRUS TECHNOLOGIES ..24

5.1 Signature Scanners...24

5.2 Checksum ...25

5.3 Hardware-based security ...26

5.4 Heuristics Based Analysis...27

5.5 Virtual Machine Execution ..27

6. IMPLEMENTATION ...28

6.1 Test Data Generation and Filtration..29

6.2 Training the Model...30

6.3 Forward Scoring...33

7. RESULTS ..36

8. CONCLUSION..40

9. FUTURE WORK...41

REFERENCES..42

APPENDIX A - VCL32 Scores ...44

APPENDIX B - PS-MPC Scores...48

APPENDIX C - NGVCK Scores...54

List of Figures

Figure 1: Regswap Variants [11] ...9

Figure 2: Code Reordering [7] ...10

Figure 3: Code Substitutions in W32.Evol Metamorphic Virus [18]11

Figure 4: Markov Chain for DNA [1] ..12

Figure 5: Urns and Ball Model [4] ...13

Figure 6 Example of HMM ...14

Figure 7 Structure of Profile HMM [2] ..15

Figure 8 Multiple Sequence Alignment Example...17

Figure 9: Profile HMM model ..19

Figure 10: PHMM with 4 States Illustrating Emissions of a 2-element Sequence..........20

Figure 11: Forward Algorithm recursive approach...34

Figure 12 Final Score from previous states ..35

Figure 13 Scores for Virus and Non Virus files using vcl32_group5_1 model37

Figure 14 Scores for Virus and Non Virus files using psmpc_group10_1 model37

Figure 15 Scores for Virus and Non Virus files using ngvck_group20_01 model...........38

Figure 16 Scores for Virus and Non Virus files using ngvck_pp_group20_01 model39

Figure 17: False Positive Percentages for Non-virus Before and After Preprocessing at
Different Thresholds..40

List of Tables

Table 1: Code Obfuscation Example for NGVCK ...7

Table 2: Profile HMM Emission Probabilities for the MSA in Figure 817

Table 3: Profile HMM Transition Probabilities for the MSA in Figure 8.......................18

Table 4: Possible Paths for a Sequence with 2 elements Emitted by a 4-state PHMM
Model..20

Table 5: Construction kits information...29

Table 6: Gap percentages perceived in MSA’s of each Virus family..............................31

Table 7: Emission Match and Insert Probabilities for VCL32 Group1 in States 126, 127
and 128 ...33

Table 8: Transition probabilities between states 149,150 and 151 for group1 NGVCK..33

Table 9: Test Data Grouping and Model Names ..36

Table A-1 Scores of Virus and Non Virus files using vcl32_group5_1 model..........................44

Table A-2 Scores of Virus and Non Virus files using vcl32_group5_2 model................46

Table B-1 Scores of Virus and Non Virus files using psmpc_group10_1 model.......................48

Table B-2 Scores of Virus and Non Virus files using psmpc_group10_2 model.............50

Table B-3 Scores of Virus and Non Virus files using psmpc_group10_3 model.............52

Table C-1.1 Scores of preprocessed Virus and Non Virus files using ngvck_pp_group20_01
model...54

Table C-1.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_01 model...55

Table C-2.1 Scores of preprocessed Virus and Non Virus files using
ngvck_pp_group20_02 model ...57

Table C-2.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_02 model...58

Table C-3.1 Scores of preprocessed Virus and Non Virus files using
ngvck_pp_group20_03 model ...60

Table C-3.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_03 model...61

Table C-4.1 Scores of preprocessed Virus and Non Virus files using
ngvck_pp_group20_04 model ...63

Table C-4.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_04 model...64

Table C-5.1 Scores of preprocessed Virus and Non Virus files using
ngvck_pp_group20_05 model ...66

Table C-5.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_05 model...67

Table C-6.1 Scores of preprocessed Virus and Non Virus files using
ngvck_pp_group20_06 model ...69

Table C-6.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_06 model...70

Table C-7.1 Scores of preprocessed Virus and Non Virus files using
ngvck_pp_group20_07 model ...72

Table C-7.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_07 model...73

Table C-8.1 Scores of preprocessed Virus and Non Virus files using
ngvck_pp_group20_08 model ...75

Table C-8.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_08 model...76

Table C-9.1 Scores of preprocessed Virus and Non Virus files using
ngvck_pp_group20_09 model ...78

Table C-9.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_09 model...79

Table C-10.1 Scores of preprocessed Virus and Non Virus files using
ngvck_pp_group20_10 model ...81

Table C-10.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_10 model...82

1

1. INTRODUCTION

The evolution of computer viruses shows that they are getting wittier everyday.

Today’s viruses target Internet websites to spread faster and further across the world. In

earlier days, generating viruses required assembly language programming skills, but

lately due to the arrival of various virus construction kits and mutation engines, any user

with minimal or no knowledge of viruses can create lethal new strains of known viruses.

 The most popular virus detection technique used today is signature detection,

which looks for unique strings pertaining to known viruses. Once detected, a virus is no

longer a threat if the signatures on the system are kept up to date. To bypass detection,

virus writers started changing old viruses instead of creating new ones. This evolved into

encrypted viruses that use a different key each time they propagate, but these often have a

signature in their decryptors. Polymorphic viruses, on the other hand, started out using

random encryption schemes and developed into decryptors’ morphing. Although virus

writers change the virus code significantly, most of these viruses can still be detected

using signature detection when they are decrypted.

 Metamorphic viruses alter the virus’ entire code without changing its impact.

Code obfuscation techniques like garbage code insertion, code reordering and sub-routine

permutations are used to generate various variants that belong to a virus family. It is now

easier to generate new metamorphic virus variants using construction kits, but detecting

them is a challenge. Signature detection is not effective as each variant has a different

scan string. Other anti-virus techniques like code emulation and heuristics can be used to

detect them but are not time-efficient.

Hidden Markov Models are well-known for their use in speech recognition [4].

other applications include modeling protein sequences for protein families and patterns in

RNA splice junctions [3]. Using Hidden Markov Models for detecting metamorphic

viruses produced impressive results [9]. In this project we determine whether a special

case of Hidden Markov Models, called Profile Hidden Markov Models (PHMM), can be

used in detecting metamorphic strains of a virus.

 Profile Hidden Markov Models are used in Bioinformatics for finding

distantly-related sequences of a protein sequence family [1]. We focus on using PHMM

2

to model a metamorphic virus family and score virus and non-virus files using the model.

A PHMM model contains a group of probabilities and is created using an opcodes

alignment of various virus family variants. We then proceed to differentiate virus and

non-virus files depending upon their relativity to the model that is measured using

Forward algorithm.

The report is organized as follows:

• Section 2 contains information about the evolution of metamorphic viruses and

virus construction kits.

• Section 3 details a few code obfuscation techniques that are used for generating

metamorphic variants.

• Section 4 describes the algorithms and theory of Profile Hidden Markov Models.

• Section 5 discusses various anti-virus technologies currently used.

• Section 6 provides a detailed discussion of test data generation, implementation

details of training a PHMM model and scoring virus/non-virus files against the

model.

• Section 7 provides results including detection, false positive and false negative

rates.

• Section 8 draws conclusions based upon these findings.

• Section 9 discusses additional future enhancements.

2. METAMORPHIC VIRUSES

2.1 Origin of Viruses

Viruses started out as self-replicating programs at universities to spite other

students, but these were mostly harmless. Although viruses were known to exist in the

early 1980’s, during the time when personal computers arrived, they became popular for

their malicious activities in 1988 with the advent of the Morris worm. Worms propagate

by themselves, but viruses need help to spread. Robert T. Morris, jr., the author of the

Morris Worm, used the Internet to spread and infect as many systems as possible. It

brought the whole Internet to a halt with a denial of service attack that created

widespread panic and awareness of viruses. Other viruses that were around at this time

like Leigh, Brain and Jerusalem, targeted files, boot sectors or applications. Some of the

viruses that emerged in the late 1980’s and early 1990’s had a payload associated with

3

them. The destructive behavior of the virus is triggered when the payload conditions are

satisfied.

 One of the main objectives of a virus, apart from causing damage, is to remain

undetected from anti-virus programs. Signature detection is a popular anti-virus

technique that is used in detecting these viruses (more about it is discussed in Section

5.1). Writing new viruses from scratch is difficult and time consuming, hence most of the

virus writers try to enhance existing viruses by fixing their bugs and making them more

evasive. This may not change the signature of the parent virus, thus making them still

detectable.

To bypass the detection, virus writers started hiding and changing the virus code.

Encrypting the viruses changed them, but they had a signature in their decryption block.

But signatures taken from decryptors can lead to flagging non-viruses that contain similar

decryption blocks, increasing the false positives. Other complex cases include non-linear

decryption and exclusion of decryption code from the virus. Oligomorphic viruses go a

step further by dividing their decryptors into multiple parts or by instruction reordering.

The changes in oligomorphic virus copies are subtle but still contain a constant string to

search for.

So how to make the decryptors look very different from one another? The answer

lies in polymorphism. Polymorphic viruses mutate their decryptors using code

obfuscation techniques like garbage code insertion and equivalent code submission (code

obfuscation techniques are discussed in detail in Section 3). Obfuscation and multiplayer

encryption can generate millions of copies and hence each new generation creates a new

polymorphic virus strain. In 1990 Mark Washburn wrote the first known polymorphic

virus, “1260,” which uses garbage code insertion to vary its decryptor’s length [11].

Polymorphic viruses seem to interest the virus writers, as there are more of them than any

other viruses today.

The main disadvantage of polymorphic viruses is that the body of the virus is not

changed, so irrespective of their complexities, they can be detected by decrypting them

using an emulator. Although emulating and decrypting them may be tedious, it is not

impossible. Some of the viruses developed today employ anti-emulating techniques like

unnecessary calculations, but an experienced debugger could overcome this. Can we

mutate the virus itself instead of mutating its decryptors? This is exactly what a

4

“metamorphic” virus does. A metamorphic virus obfuscates the entire virus body, thus

forming millions of variations of the same virus.

2.2 Metamorphic Viruses

Metamorphic viruses usually use multiple obfuscation methods, giving them more

variations. The degree of the mutation depends upon the section of the code that deals

with morphing, called the metamorphic engine. A good metamorphic engine uses at least

two of the code-obfuscation methods. Obfuscation methods range from simple register

renaming to advanced code-substitution methods. More about obfuscation is discussed in

section 3. Some of the methods, apart from obfuscation, also use encryption to generate

completely different strands of viruses. Metamorphic engines are hard to write. One of

the virus writers, “Benny,” agrees to its complexity, and makes an incomplete

metamorphic engine free to download.

32-bit metamorphic viruses infected systems that use window’s 32-bit platforms

and caused more damage than their earlier DOS-based siblings like TMC. Regswap in

1998 swapped registers in its variants but the actual source code was not changed,

rendering it not very metamorphic. Win32.Apparition is known to be the first 32-bit

metamorphic virus that appeared in early 2000. It uses garbage code insertion to generate

variants. An affected system automatically emails the passwords to its creator, and

infected files are corrupted when an attempt is made to remove the virus. It is still marked

as critical even though it was launched seven years ago [20].

W32.Evol emerged in the middle of 2000, with a metamorphic engine that could

generate a fixed number of variants combining the concepts of garbage and equivalent

code substitutions. Unlike most of the viruses that infect all exe files, Evol targets only

application exe’s that are large enough to accommodate its code and do not use exports

[21]. A signature is perceived on the execution stack but not in the code, which makes it

hard to detect through heuristics and string scanning. Obfuscation rules are efficacious

and are selected at random while generating new strains of Evol viruses.

Other advanced metamorphic viruses like Zmist and Win32.Metaphor have

randomly selected many methods including on-the-fly encryption and attacks depending

upon the structure of the infected file. Vecna, a member of 29A virus writing group,

started creating viruses in the early 90’s and came up with “Lexotan32” in 2002.

Lexotan32 overcomes the problem of creating new variants by maintaining a table that

5

helps in de-permuting the code and regenerating the new obfuscated code combining

many techniques known in metamorphism [22].

Metamorphism is different from permutation, permutation deals with reordering

the code but metamorphism substitutes Permutation viruses like Zperm and Bistro

scramble their instructions to change their memory stamps. Permutation may not hide the

signatures, but when coupled with code morphing it produces unrelated variants.

Consider a program with two subroutines (X0 and Y0) and two variants per subroutine

(X1, X2, Y1 & Y2). Assuming that a signature exists at a point where the subroutines

merge (so the order in which they appear is important), there would be 17 variations that

would miss a signature based on one variant. Fortunately virus writers cannot predict the

signature and need to use complex methods for a true metamorphic copy.

Mutation engines, on the other hand, help to change the virus structure instead of

creating destructive code themselves. There are a wide variety of these engines for jobs

like decryptor permutation, code compression, anti-heuristics, code permutation and

metamorphism. Mutation engines work as black boxes, taking an existing virus as input

and outputting a totally new variant. Most of them work on expanding, shifting and

shrinking the existing code and are very effective in cheating signature detection.

Zombie’s Code Mutation Engine (ZCME) is an example of a metamorphic engine that

uses its own disassembler to get the source code and then changes the original code by

randomly shuffling the code like changing the jump instructions and adding “nop”

instructions. Other metamorphic engines, like Simile and MSIL metamorphic engines, as

discussed in [11] by Peter Szor, emphasize the capability of mutation engines.

The most recent metamorphic viruses were seen back in 2002, indicating that

virus writers seem to be concentrating more on spreading them rather than developing

new ones.

2.3 Construction Kits

Web sites like VXHeaven give the source code for viruses and obfuscation

engines, enabling novice writers to develop advanced viruses. But interested users need a

minimum of assembly language programming skills to combine them into a metamorphic

virus. Construction kits combine features like encryption and anti-debugging with

metamorphic/polymorphic engines, allowing even a normal computer user to generate

deadly viruses. Some of the kits are capable of generating thousands of new variants.

6

 Construction kits are available for viruses, trojans, logical bombs and even

worms. Since they create several variants with ease, it poses a considerable challenge to

the anti-virus vendors. We have used a few construction kits like virus-creation library,

phalcon-skism and next generation virus creation kit for our project. As different

programmers developed these kits, it gives us a chance to see the performance of Profile

Hidden Markov Models in detecting them.

Following is a brief description of each of the virus construction kits used in the project:

• Virus Creation Lab (VCL32) creates win32 virus variants depending upon user

preferences. The first version of VCL, as created by a group of virus writers called

NUKE, came around 1992, and a newer version developed by another group, “29A,”

surfaced in 2004. Unlike other construction kits that use the command prompt for

generating variants, it provides a GUI to choose from various preferences.

Preferences that can be changed include which section of the host to infect, network

or current directory infection, message box data, etc. VCL can also be set to use either

a polymorphic engine or the KME-32 mutation engine that mutates decryptors.

Once the options are chosen, VCL generates assembly language code files

of the virus strains. These files can later be compiled and linked to get the exe files. It

has been reported that the code generated by the earlier version had bugs and could

not be compiled, but the newer version seems to have overcome those problems. We

have used Borland Turbo Assembler and Tools (TASM) version 5.0 to compile and

link. Many virus creators recommend TASM over Microsoft Assembler (MASM) to

compile their assembly sources.

• Phalcon-SKISM group, a competitor to VCL’s NUKE GROUP, created

Phalcon/Skism Mass-Produced Code Generator (PS-MPC). Phalcon and SKISM

merged to form Phalcon-Skism group [19]. Unlike the first version of VCL, PS-MPC

performed well in creating serviceable viruses. A configuration file is used to change

the settings with around 25 alternatives that include optional parameters like payload.

A kit user has a choice between infecting COM and exe files, memory resident and

null encryption. Payload depends upon the month, day and time specified in the virus,

as well as minimum or maximum file sizes to infect. PS-MPC also implements

obfuscation of the decrypting section, but it does not implement other virus

techniques like anti-debugging and anti-emulation techniques.

7

• Next Generation Virus Creation Kit (NGVCK), created by SnakeByte, surfaced in

2001 and, as far as we know, is by far the most advanced virus constructor. Unlike

VCL and PS-MPC there is no need to set configuration settings as it automatically

generates a new variant every time it is used. This construction kit implements code

obfuscations like junk code insertion, subroutine reordering, random register

swapping and code-equivalent substitutions. NGVCK is developed as a non-virus

program with multiple revisions and beta versions. We have used version 30 as it is

said to be stable and more advanced than its siblings. The NGVCK kit is programmed

to satisfy the needs of both novices and advanced programmers. Advanced

programmers can select the kind of encryption, anti-tricks and directory traversal.

Following is a small example given in the introduction document distributed

along with the kit, explaining the kind of obfuscations it implements:

Basic Version Morphed Version 1 Morphed Version 2
call Delta

Delta: pop ebp

sub ebp, offset Delta

call Delta

Delta: sub dword ptr[esp], offset Delta

pop eax

mov ebp, eax

add ecx,0031751B ; junk

call Delta

Delta: sub dword ptr[esp], offset Delta

sub ebx,00000909 ; junk

mov edx,[esp]

xchg ecx,eax ; junk

add esp,00000004

and ecx,00005E44 ; junk

xchg edx,ebp

Hex equivalent:

E8000000005D81ED05104000
Hex equivalent:

E800000000812C2405104000588BE8
Hex equivalent:

*812C240B104000*8B1424*83C404*87EA

Table 1: Code Obfuscation Example for NGVCK

In Table 1, morphed versions show the obfuscated code of the basic version.

Morphed version 1 uses obfuscations like code reordering and equivalent code

substitution, whereas version 2 also uses junk code insertion. The hexadecimal

equivalents shown are very different and signature scanning is clearly not a solution.

 Apart from code obfuscation it also implements anti-debugging and anti-

emulation techniques to hide from the anti-virus researchers. Unlike metamorphic

engines that create variants from a given source code, NGVCK morphs the source

code itself to create variants. The programmer has tried to create a 100% variability

between different strains; the later versions were targeted to add more layers of

encryption and morph the decryptors.

8

Construction kits and mutation engines are here to stay for their ease of use and

personalization of new viruses, but are extremely deadly as they can resurrect different

strains of age-old viruses. Such morphing of old viruses would reopen the same problems

anti-virus once had, so it is very important to use machine-learning techniques and some

kind of automation to detect them.

3. CODE OBFUSCATION TECHNIQUES

Code obfuscation is transforming the code and making it obscure or difficult to

understand [6]. Software programmers use these techniques to make their product

resistant against reverse engineering. Metamorphic virus writers use one or more of these

techniques to create a unique copy of existing virus, which makes them indistinguishable

to virus scanners.

3.1 Garbage Code Insertion

Garbage or do-nothing codes are programming instructions that are a part of the

program physically but not logically. They are not related to the program’s outcome. Do-

nothing instructions such as register exchanging (XCHG) slow down code emulation.

Other instructions such as “NOP”,”MOV ax, ax”, ”SUB ax, 0”, etc make the virus look

different and thus possibly escape heuristic analysis. Garbage instructions may also be

branches of code that are never executed or which have some calculations done on the

variables declared in other garbage blocks. The main idea of this code obfuscation

technique is to confuse and exhaust the virtual machine or person traversing the virus

code.

 However, the virus scanners these days are powerful enough to get past these do-

nothing instructions. When there are too many of such instructions perceived in a file it

may be flagged as a virus because it is highly unlikely there would be such instructions in

non-virus programs.

3.2 Register Renaming

‘Register renaming’ is modifying the names of variables or registers used in a

virus. When registers are changed they result in different opcodes that trick the signature

search. Regswap is a metamorphic virus that swaps the registers for each variant.

9

Figure 1: Regswap Variants [11]

Two variants of regswap shown in Figure1 have the same set of instructions but

use different registers. If these instructions form the signature, the virus succeeds in

bypassing detection. For detecting such viruses a signature should not be over fitting and

be like a regular expression that can overcome register changes with wild characters [11].

 Memory traces are the key in analysis of unknown viruses. Among the other code

obfuscation techniques, register renaming benefits the creator by having different

memory traces for each of its variants.

3.3 Subroutine Permutation

Subroutine permutation is a simple obfuscation method where the subroutines are

reordered. It will not affect the impact of the virus, as the order in which subroutines

appear in the code is insignificant to a program’s execution. Thus a virus containing ‘n’

subroutines can have ‘n!’ permutations. Compared to the other obfuscation methods,

subroutine permutation can be easily detected by signature detection, as the signature still

exists in clear view. Metamorphic viruses like Win95.Ghost and Win95.Smash are

examples of this behavior [20].

But rearranging subroutines poses considerable challenges to some of the analysis

methods. This project models a given virus family from a multiple sequence alignment,

which is obtained by arranging multiple sequences depending upon a matched region of

10

opcodes. If a program is permutated, most of the regions do not match, giving a weak

alignment and hence a weaker model. A solution to this obfuscation is to de-permute

each sequence before aligning them.

3.4 Code Reordering through Jumps

Code reordering alters the order of the instructions but maintains the original

instruction’s logical flow using jumps. Reordering the code creates control flow

obfuscation as the control changes depending upon unconditional jumps. These

unconditional jumps are inserted randomly, challenging its detection by memory

mapping.

Figure 2: Code Reordering [7]

Figure 2 shows an example of code reordering. This fairly simple method overcomes

signature detection by altering the signature-bearing opcodes sequence.

3.5 Equivalent Code Substitution

Each task can be done in different ways. Similarly, virus codes, although looking

different, can accomplish the same task. Substitution of equivalent codes for virus codes

escapes few detection techniques. It can be caught through behavior checking since the

execution does not change in many cases.

This type of obfuscation can also be used to shrink or expand the original code by

substituting the code with smaller or larger equivalent codes. As a simple example “ADD

ax, 3” can be transformed to “SUB ax, -3”, as both the instructions add a 3 to the

contents of ax register. It can also be accomplished with a two-step process like “MOV

bx, -3” and “SUB ax, bx”. W32.Evol is a metamorphic virus that randomly substitutes

equivalent code, generating different strains in each generation, Figure 3 shows a few

substitutions perceived in this virus [18].

11

Figure 3: Code Substitutions in W32.Evol Metamorphic Virus [18]

Each code segment in the offspring works exactly as its parent with little tweaks

in the parent code. Often, mutated code is not simple enough to be detected by string

search. However, variants shown in the above example can be detected using a wild

string in the signature. One of the detection techniques used to tackle such advanced

obfuscation is to transform the code into a simple code [12].

4. THEORY OF HIDDEN MARKOV MODELS

4.1 Markov Chains

Markov chains are a series of states with probabilities associated with each

transition between states. Transition probabilities calculated from the current state are

independent of its previous states [3].

A Markov chain for a DNA sequence is shown in Figure 4 [1]. DNA’s chemical

code is an alphabet of four symbols called bases denoted by A (adenosine), C (cytosine),

G (guanine) and T (thymine).

12

Figure 4: Markov Chain for DNA [1]

Each arrow in Figure 4 represents the transition probability of a base followed by

another base. Transition probabilities are calculated after observing several DNA

sequences. A transition probability matrix can represent these transition probabilities.

The DNA Markov model is a first order Markov model since each event depends on its

previous event.

The transition probability ast (Transition Probability from a previous state with

symbol s to current state with symbol t) is calculated as [1]:

ast = P(xi = t| xi-1 = s) 1≤ s, t ≤N (N is the number of states)

The sum of the transition probabilities from each state is equal to 1. Since there is

a probability associated with each step, this model is called as a Probabilistic Markov

Model [10].

The Probability of a given sequence against a model is calculated as [1]:

P(x) = P(xL,xL-1,….x1)

= P(xL|xL-1,…x1) P(xL-1|xL-2,…..x1)….P(x1)

= P(xL| xL-1) P(xL-1| xL-2)….P(x2| x1)P(x1) (using Baye’s Theorem)

 = P(x1) ∏
=

−−

L

i
xx iia

2

)(1

P(x1) is the probability of starting at a state with symbol x1. This can be

calculated by adding a begin state, and an end state to accommodate first and last

symbols of the sequence.

4.1.1 High Order Markov Chains

High order Markov chains are those in which the current event depends on more

than one previous event. As defined in [1] “an nth order Markov process is a stochastic

13

process where each event depends on previous n events”. An nth order Markov process

with an alphabet of m symbols can be represented as a first order markov chain with an

alphabet of mn symbols. Consider a two-symbol alphabet {A,B}. This is similar to the

binary code, a sequence like ABAAB will be paired as AB-BA-AA-AB and can be

represented by a four-state first order Markov model with states AB, BB, BA and AA.

4.2 Hidden Markov Models

Given a sequence and a markov chain, one could determine which state generated

each symbol from the sequence, but in many cases this may not be apparent. Consider the

urn and ball model stated in [4] by Rabiner in 1989. Assume that there are N glass urns

with different colored balls in them as shown in Figure 2 (i.e. we know the probability of

each ball in each urn), depending upon a process (that takes into consideration a

previously-selected urn for selecting a current urn) some balls are picked. Now, given a

sequence of balls picked, like {Red, Blue, Orange, Red…}, we do not know which urn

was used to pick a particular ball in the sequence.

Figure 5: Urns and Ball Model [4]

So the unobserved or “hidden” process of urn selection is observed through the

sequence of balls picked. Hidden Markov Models (HMM) are used for such problems.

The main distinction between HMM and the Markov Chain is that in HMM given a

sequence {x1, x2 …..xi), it is not possible to tell which state generated a symbol xi [1].

General notation used for HMM is [5]:

O - Observation sequence

T – Total number of symbols in the observation sequence

N - Total number of states

14

α - Alphabet for the model

M - Total number of symbols in the alphabet π - Initial state distribution

A - State transition probability matrix

aij - Transition probability from state i to j

B - Symbol probability distribution matrix

bi(k)- Probability distribution of k in state i λ - HMM model

The HMM model is comprised of (A, B, π) along with N and M.

To help in understanding HMM better, consider an example where two coins--one

biased, and one normal--are tossed T times to generate a sequence O by occasionally

switching between the coins. The observed sequence is O = {HTHTHH} where H stands

for heads and T for tails, giving the number of symbols in the alphabet {H,T} as 2 (M).

The two states (N) in the model are Biased and Normal. Figure 6 depicts the model.

Figure 6 Example of HMM

The transition probability matrix taking Normal as 1 and Biased as 2, is as follows: =
8.02.0

05.095.0
A

i.e. a12 = 0.05 represents the transition probability to state 2 (Biased) from state 1

(Normal). The symbol distribution matrix (B) gives the probability distribution of H and

T in both the states. =
3.07.0

5.05.0
B

The first row gives the probability distribution of (H, T) in a Normal coin and second row

is that of a biased coin. The representation b1(H) represents the probability distribution of

15

H in case of a Normal coin. The initial distribution determines which coin to start with; in

this case it is taken at random.

[]5.05.0=Π

Hence the HMM model for the two-coin example is (A, B, π) with N, M also known.

Notice that the sum of each row in the transition and symbol distribution matrices is 1.

The two-coin example is a fully connected HMM, also called as an ergodic model [4].

There are other types of HMMs, like left-right models with or without parallel paths.

More detailed information on different types of HMM is given in [4].

4.2.1 Profile Hidden Markov Models

Multiple sequences of genes are combined to form an alignment that contains the

hidden relation between them. A model created from the resultant multiple sequence

alignment (MSA) is used to measure the relativity of an unknown sequence to a family.

This idea is extended in our case where the sequences are opcodes of known

metamorphic viruses.

These sequences can be represented by a large regular expression. However, such

a model will be over-fitting and could miss other unknown mutations. Profile Hidden

Markov Models (PHMM) are a type of HMM that profiles a given sequence alignment

[3]. Unlike the HMMs seen so far, they allow null transitions, so that the model can also

fit the divergent sequences. In the case of DNA, these divergences are caused during

evolution [1]. Metamorphic viruses are, however, programmed to have these differences.

 The basic advantage of profile HMM over HMM is that it is more useful in

detecting distantly-related members of the family. The structure of a Profile HMM with

the added null transitions and gaps in the sequence alignment looks like in Figure 7.

Figure 7 Structure of Profile HMM [2]

16

In Figure 7, circles that allow null transitions are called “Delete” states, diamonds

that allow gaps in a sequence alignment are called the “Insert” states, and the rectangles

are similar to the states in an HMM called “Match” states. Match and Insert states are the

emission states of PHMM (i.e. whenever passed through these states, a symbol is

emitted.) Emission probabilities are calculated depending upon frequency of symbols

emitted. Delete states allow passing through the gaps found in MSA and reach other

emission states.

The arrows in the figure represent the transitions possible from the current to the

next state. Probabilities associated with them, called “Transition Probabilities,” determine

the likelihood of the next state taken.

As in HMM, two states ‘begin’ and ‘end,’ are added to include the initial

probability distribution for the first symbol and similarly to the last symbol of the

sequence.

The general notation used in Profile HMM is similar to HMM:

X - Observation sequence

i – Total number of symbols in the Observation sequence x1...i

N - Total number of states α - Alphabet for the model

M – Match states M1…N

I – Insert states I0…N

D – Delete States D1…N π - Initial state distribution

A - State transition Probability Matrix

Akl - transition frequencies from state k to l

aM1M2 - Transition probability from state M1 to M2

E - Emission Probability Matrix for Match and Insert states

Em(k)- Emission frequency of symbol k at state m

eM1(k)- Emission probability of symbol k at M1 λ - HMM model

To understand profile HMM better, consider an example given the Multiple

Sequence Alignment (MSA) obtained by sequences using the four bases of DNA as in

Figure 4 (This sequence is merely an example and is not taken from any genuine

biological sequences).

17

Figure 8 Multiple Sequence Alignment Example

The first step in creating a Profile HMM model is to find which columns in the

MSA form the match and insert states. One of the rules used as illustrated in [1] is to use

the more conservative columns (i.e. at least more than half of the characters in the

column are symbols) as the Match states and the others with more gap characters as

Insert states. In the above MSA, the columns 1,2 and 6 become the Match states.

 Next we start by calculating the emission probability for column 1, which results

in:

eM1(A) = 4/4 eM1(C) = 0/4 eM1(G) = 0/4 eM1(T) = 0/4

It can be seen that most of these values are zero, but since the model is to be

flexible we have to add small probabilities to other cases in order to incorporate all the

cases that may arise. A simple rule to use is the “Add-one rule” [1] where we add 1 to the

numerator and the total number of symbols in the alphabet to denominator e.g. eM1(A) =

(4+1)/(4+4) = 5/8.

This results in the following emission probabilities at Match states and Insert

states:

eM1(A) = 5/8

eM1(C) = 1/8

eM1(G) = 1/8

eM1(T) = 1/8

eI1(A) = ¼

eI1(C) = 1/4

eI1(G) = 1/4

eI1(T) = ¼

eM2(A) = 1/9

eM2(C) = 4/9

eM2(G) = 3/9

eM2(T) = 1/9

eI2(A) = 3/9

eI2(C) = 1/9

eI2(G) = 2/9

eI2(T) = 3/9

eM3(A) = 1/8

eM3(C) = 1/8

eM3(G) = 5/8

eM3(T) = 1/8

eI3(A) = 1/4

 eI3(C) = 1/4

 eI3(G) = 1/4

 eI3(T) = ¼

Table 2: Profile HMM Emission Probabilities for the MSA in Figure 8

18

The general formula that can be used to calculate the emission probabilities is:

en(k) = (Number of Occurrences of k in state n)/(Total number of symbols in state n)

 The Emission Probabilities matrix (E) of PHMM is a little different from the

symbol transition probability matrix (B) in HMM , since we have more than one way a

symbol is emitted (match and insert).

 Transition probabilities calculation is the next step in profile HMM modeling, and

the general equation used in calculating it is [1]:

amn = (Number of transitions from m to n)/(Total number of transitions from m to any

state)

aBM1 = aBM1/(aBM1+ aBI0+ aBD1) = 4/(4+0+1) = 4/5

To avoid underflow while scoring a given sequence we use the add-one rule on transition

probabilities e.g. aBM1 = (4+1)/(5+3) = 5/8

aBM1 = 5/8

aBI0 = 1/8

aBD1 = 2/8

aI0M1 = 1/3

aI0I0 = 1/3

aI0D1 = 1/3

aM1M2 = 5/7

aM1I1 = 1/7

aM1D2 = 1/7

aI1M2 = 1/3

aI1I1 = 1/3

aI1D2 = 1/3

aD1M2 = 2/4

aD1I1 = 1/4

aD1D2 = 1/4

aM2M3 = 2/8

aM2I2 = 4/8

aM2D3 = 2/8

aI2M3 = 4/8

aI2I2 = 3/8

aI2D3 = 1/8

aD2M3 = 1/3

aD2I2 = 1/3

aD2D3 = 1/3

aM3E = 5/6

aM3I3 = 1/6

aI3E = ½

aI3I3 = ½

aD3E = 2/3

aD3I3 = 1/3

Table 3: Profile HMM Transition Probabilities for the MSA in Figure 8

The final model for the MSA in Figure 8 with beginning and ending states added looks as

shown in Figure 9.

19

Figure 9: Profile HMM model

The final PHMM model for the MSA consists of E (emission probability matrix)

with emission probabilities of Match and Insert states (Table 2) and A (Transition

probability matrix) containing transitions from each Match, Insert and Delete states

(Table 3) and the number of states including beginning and ending states (N) is 4.

4.3 Algorithms for Scoring Unknown Sequences against a Known Model

There are three basic problems in Hidden Markov Models as discussed in [4]:

Problem 1: Given a Model λ = (A,B, π) and an observation sequence (X where X =

x1….xT), how can we efficiently compute P(X| λ) (i.e. the probability for the model to

produce the observed sequence)?

Problem 2: Given a Model (A,B, π) and an observation sequence (X), how can we find

the “correct” or optimal sequence of states which produce the given observed sequence?

Problem 3: How can the model (A,B, π) be changed to best fit the observed sequence?

4.3.1 Forward Algorithm

Forward Algorithm solves the first problem but before going there, let us see how

P(X| λ) can be calculated (i.e. the “inefficient” way). P(X| λ) is interpreted as probability

of the sequence X emitted by model λ.

The brute-force approach to calculate P(X| λ) is taking the sum of probabilities of

all possible paths to emit sequence X. For example, a sequence X = (A, B) emitted by a

4-state PHMM model takes 13 possible paths as shown in Table 4. A symbol is emitted

each time they pass through an Insert or a Match state.

 I0 I1 I2 M1 M2

1 A,B - - - -

2 A B - - -

3 A - B - -

20

4 A - - B -

5 A - - - B

6 - A,B - - -

7 - A B - -

8 - A - - B

9 - - A,B - -

10 - B - A -

11 - - B A -

12 - - - A B

13 - - B - A

Table 4: Possible Paths for a Sequence with 2 elements Emitted by a 4-state PHMM Model

Figure 10 shows the possible path traversals listed in Table 4.

I0

D1

I2I1

D2

1,
2,3

,5

6,
7,

8,
9,

13

1,2,3,4,5

M1 M2 M3M0

10,11,12 12 5,8,12,13

1,3,9
2,

6,
7,

8

3,
7,

9,
11

4

10

1
6 9

8

5,13

2,6,
7,10 1,2,4,6,10

3,7,9,11

 Figure 10: PHMM with 4 States Illustrating Emissions of a 2-element Sequence

Calculating probabilities for each of these cases is definitely not efficient.

Forward algorithm computes the probability by reusing the already-calculated forward

score of a partial sequence (i.e. at each level we consider the next states since we have the

scores for the previous states already calculated). For a profile Hidden Markov Model the

forward algorithm recursive relation is [1]:  −+

−+−
+=

−−

−−−−

))1(exp(

))1(exp())1(exp(
log

)(
log)(

11

1111

iFa

iFaiFa

q

xe
iF

D
jMjjD

I
jMjjI

M
jMjjM

ix

ijMM
j

21

 −+

−+−
+=

))1(exp(

))1(exp())1(exp(
log

)(
log)(

iFa

iFaiFa

q

xe
iF

D
jIjjD

I
jIjjI

M
jIjjM

ix

ijII
j

[]))(exp())(exp())(exp(log)(111111
iFaiFaiFaiF D

jDjjD
I
jDjjI

M
jDjjM

D
j −−−−−− ++=

The base case for this recursion is FM
0(0) = 0.

In the above equation, FM
j(i) represents the Forward score of subsequence x1…xi up to

state j. The background distribution is qxi (distribution of symbol xi in a random model).

During recursion, some insert and delete terms are not defined like FI
0(0), FD

0(0)

… such items are to be ignored while calculating the scores. It can be seen that FM
j(i) is

calculated as a function of FM
j-1(i-1), FI

j-1(i-1) and FDj-1(i-1) and their respective

transition probabilities to reach the match state from its previous state to emit the symbol

xi and includes the emission probability of xi at Mj. Similarly, since insert and delete

states do not emit the emission probability, the term is removed for calculating FD
j(i).

States M0 and MN+1 represent “begin” and “end” states respectively, and like delete states

they also do not emit.

4.3.2 Viterbi Algorithm

The coin example from section 2.2 gives an observation sequence that looks like

(H,T,H,T…) but we do not know if the first H in the sequence is generated by the biased

or normal coin; this was the hidden part. In the second problem stated above, we need to

find this hidden part. The Viterbi algorithm does exactly this. This problem is called the

decoding problem in speech recognition. Viterbi based on dynamic programming

techniques finds the sequence that maximizes the P(X| λ). It does so by taking the

sequence of states that generates the maximum probability at each level.

For a profile Hidden Markov Model the Viterbi algorithm recursive relation is [1]:

22

The base case is VM
0(0) = 0.

The basic difference with the forward algorithm case is that it changes the summation to

maximization in the case of Viterbi.

4.3.3 Baum-Welch Re-estimation

Problem 3 concentrates on “changing” the model to fit the observed sequence.

This can be done in various ways, including gradient descent. Baum-Welch is a standard

method that is used for tuning a given model; it calculates the frequency counts of each

transition and emission probabilities of a given model using forward and backward

scores.

Backward algorithm is used to calculate the backward score of the observed

sequence. It is similar to the forward algorithm except that it traces the given sequence

from the back (i.e. considering the last symbol of the sequence emitted by the last match

or insert state.)

Backward Algorithm, in the case of a Profile Hidden Markov Model, is [1]:

 +

+

+

=

 +−

+−

+−

+=

 +−

+−

+−

+=

−−

−−

−−

−−

−−

−−

);log()(

),log()(

),log()(

max)(

);log()1(

),log()1(

),log()1(

max
)(

log)(

);log()1(

),log()1(

),log()1(

max
)(

log)(

11

11

11

11

11

11

jDjD
D
j

jDjI
I
j

jDjM
M
j

D
j

jIjD
D
j

jIjI
I
j

jIjM
M
j

ix

ijII
j

jMjD
D
j

jMjI
I
j

jMjM
M
j

ix

ijMM
j

aiV

aiV

aiV

iV

aiV

aiV

aiV

q

xe
iV

aiV

aiV

aiV

q

xe
iV

23

 +

++

+

=

 +

++

+

=

 +

++

+

=

++

+

++++

++

+

++++

++

+++

++++

))(exp(

))1(exp()(

))1(exp()(

log)(

))(exp(

))1(exp()(

))1(exp()(

log)(

))(exp(

))1(exp()(

))1(exp()(

log)(

11

1

1111

11

1

1111

11

111

1111

iBa

iBxea

iBxea

iB

iBa

iBxea

iBxea

iB

iBa

iBxea

iBxea

iB

D
kkDkD

I
kikIkIkD

M
kikMkMkD

D
k

D
kkDkI

I
kikIkIkI

M
kikMkMkI

M
k

D
kkDkM

I
kikMkMkM

M
kikMkMkM

M
k

The base case for Backward algorithm :

)log()(

)log()(

)log()(

0)1(

1

1

1

1

+

+

+

+

=

=

=

=+

MMMDMD

MMMIMI

MMMMMM

MM

aLB

aLB

aLB

LB

Baum-Welch is a special case of the Expectation Maximization algorithm that

tunes existing transition and emission probabilities depending upon how often each one

of them is used (a detailed discussion of it can be found in [1] and [4]). Baum-Welch re-

estimation equations in the case of Profile Hidden Markov Models are [1]:

Expected emission counts from sequence x: ∑∑
=

=

=

=

aixi
kIkIkI

aixi
kMkMkM

ibif
xP

aE

ibif
xP

aE

|

|

)()(
)(

1
)(

)()(
)(

1
)(

Expected transition counts from sequence x:

24

∑∑∑ +++

+

+++++

=

+=

+=

i
kDkDkXkXkDkX

i
kIikIkIkXkXkIkX

i
kMikMkMkXkXkMkX

ibaif
xP

A

ibxeaif
xP

A

ibxeaif
xP

A

)()(
)(

1

)1()()(
)(

1

)1()()(
)(

1

111

1

11111

In the above equations f and b represent the forward and backward scores

respectively. The emission and transition scores calculated from the above sequences are

iterated until a stop criterion is reached. The stop criterion is generally the maximum

number of iterations or the change in the scores is less than a predefined value [1].

5. ANTIVIRUS TECHNOLOGIES

The war between viruses and antivirus(AV) technologies has continued for more

than a decade now. VXHeaven alone has a collection of about 66,000 malicious code

constructs, but not all of these viruses are out in the wild. Organizations like “The

WildList Organization International” release a monthly list of viruses that are most likely

to attack. WildList [15] is a collection of viruses known to be spreading in the wild that

are confirmed by researchers all over the world. Some AV technologies test their product

against these viruses before they are released. AV suppliers constantly work in detection

and restoration processes, but are surreptitious about their new methods. The following

sections contain a brief description about the most popular methods used to detect viruses

today.

5.1 Signature Scanners

Signature Detection is the oldest and most popular virus detection technique used

today. Each virus is searched for a string of bytes that is unique to it, which becomes the

signature of the virus. Signatures, also called “Scan Strings,” sometimes depend upon the

placement in the virus code. Scanners use a signature collection to identify known viruses

and are almost certain to detect them. By constantly increasing virus’s collection,

signature scanning should be effective and efficient.

 A constant string is easy to find, but today’s viruses use obfuscation to escape

string scanning. Signatures need to be tweaked to catch these different stains. Reordering

of code is a simple method used to cheat scanners. To detect these differences, scanners

consider the code a match even if it has a different byte order than the signature.

25

Signatures can also contain wild cards that allow a few bytes to be anything. In the case

of register swapping, the signature differs by the few bytes that contain the registers, but

the other bytes remain same. In such cases wild cards are beneficial in identifying new

strains with an old signature. Signature extraction is a challenge in itself; a small

signature would match to other non-virus programs and a long signature would be over

fitting and may not identify new strains. To overcome this, multiple scanners are used on

the same system. These scanners use a different set of signatures and help in identifying

whatever signatures one scanner misses.

 Scanners can be proactive or reactive [16]; proactive scanners continuously scan

the access files, whereas reactive scanners are on-demand scanners and work as

scheduled. Proactive scanning affects the performance of the system but is very efficient

in handling the virus threats as soon as possible. On the other hand, reactive scanners will

not affect the performance but might not detect the virus until it is too late. Whichever

scanner is used, it has to be updated as there are new signatures made available by their

vendors. Vendors like AVG supply free downloads of antivirus toolkits for home users,

which update automatically every day. Although scanners are not slow these days,

emerging new viruses can add up and affect their performance. Different AV vendors

deal with them differently; some of them take into consideration the type of file being

scanned, and that gives them a hint of what part of the code they should look at.

As discussed in section 2, viruses are clever at changing their look with

alternating source code. A good mutation engine will generate very different strains and

each strain will not have the signature of the original virus. In the case of polymorphic

and metamorphic viruses, it is not possible to have a unique signature for the virus

family. This means that although signatures of various strains are known there is always a

good chance that another strain will succeed in bypassing the signature detection.

5.2 Checksum

Checksum is used to verify the integrity of any kind of files. It is normally used to

check the correctness of TCP/IP packets that are the main source of communication on

the Internet. Software manufacturers use checksum to detect unauthorized modifications

made to bypass their license check. The concept of checksum is also used in generating

message authentication code (MAC) to check the integrity of messages [6]. Today’s

viruses also use checksum to see if their code is tampered with before it starts infecting.

26

 There are many checksum programs that are readily available for download. Since

they are called only when a new program is accessed, they do not have a high

performance impact. Executable files are not changed often, so a checksum can be used

to verify their integrity. When an integrity check fails, there is a chance that a virus will

have modified it and this helps in detecting the malicious behavior. Checksum is an

example of “detection by change” methodology, where a malicious activity is detected

when files are changed.

Checksum is a traditional method of detecting the unwanted changes; however,

there are a few viruses like the latest Hidan [17] from the Chiton family of W32 viruses

that will calculate a new checksum after infection. It later replaces the existing checksum

with the new value, thus escaping the detection.

5.3 Hardware-based security

Next Generation Secure Computing Base (NGSCB) is a hardware-based security

system that allows only “trusted” agents to access secrets on the system. These secrets

can be memory, signatures and keys used by the user. Unlike other AV tools these

systems need not depend on a particular virus and have common detection mechanisms

for all malware. However, an operating system needs to be configured in order to use this

system.

Apart from using NGSCB to sign documents, digital rights management [6] can

be used to keep viruses at bay. Access control lists (ACL) are often used in an

authorization process, and are checked to see if a user is allowed to perform an action.

Viruses will never be given access to perform malicious activities if ACLs for each

application are maintained properly. In other words a proper authorization for

applications is needed in a system where privilege for each application is clearly defined.

The operating system has to be configured to use this system. As it can also be

programmed to identify if an application is behaving oddly, this can be taken as an anti-

virus technology. Efficiency of this system depends upon how frequently new

applications are used. A home user might need to rebuild the complete access matrix

every time new software is installed and this imposes considerable overhead [16]. On the

other hand, at an organizational level which does not change often, this would be a very

good solution. An experienced system administrator would know which applications are

allowed to do what.

27

 The toughest problem in this system is how to measure the trustworthiness of an

application. To set the allowed operations of an applications, definitions of what is not

malicious need to be defined, which again depends upon what existing malware has

caused or might cause. There is always a possibility that viruses will modify or delete

these access lists, but then again this is a common problem for all anti-virus products.

5.4 Heuristics Based Analysis

Heuristics is prominently used for discovering unknown viruses depending upon

known virus behavior. Every new file is monitored and scored against a predefined set of

indicators that are determined through analyzing known viruses. When the score of these

indicators is high it is flagged as a virus. Although there are known to be false positives

in this process, it is fairly effective in detecting unknown and new strains of viruses.

 Static heuristic analysis deals with inspecting code sequences for known virus-

like code. A flagged malicious behavior in the static case would trigger the dynamic

heuristics. Dynamic heuristics emulate the program under consideration to further

explore it. It looks for indicators like very big files, large debug sections, entry-point code

redirection, suspicious kernel operation and many more. If the program fails the

heuristics test, the user is warned about the same; otherwise the heuristics scanner

continues closely watching the program’s system calls and interrupts [23]. Indicators

used in the analysis sometimes number in the hundreds. Using too many indicators is

disadvantageous as it flags non-viruses, and tweaking the right score threshold poses

considerable challenges in using heuristics.

In the case of polymorphic viruses, the code is executed in an emulator until it is

decrypted and a known signature is seen; this process needs to be continued in case of

multi-layered encryptions. Metamorphic viruses do not have a signature and their

detection depends upon the indicators for any doubtful actions. But metamorphic viruses

often carry a payload that triggers the virus behavior under certain conditions; in such

cases heuristics analysis is cheated. Heuristic analysis is also known to be implemented

using neural networks that are as efficient as its training set [11].

5.5 Virtual Machine Execution

Mutation engines used in few viruses use the memory stack for generating

variants. Such viruses contain the signatures in the stack and not in the actual code. To

detect such viruses, anti-virus researchers should pay attention at the system’s internal

28

working. It is extremely important to execute these viruses in a safe environment so that

they do not escape into the wild.

 Viruses that are polymorphic contain encrypted code and a virtual machine can be

used to step through the instructions until a signature in its decrypted code is detected.

Since the virtual machine has all the memory traces and API calls used by the virus it is

easier to analyze for any suspicious activities like too many jumps, nop and XOR/NOR

instructions. It is helpful in detecting metamorphic strains that use encryption and

obfuscations like junk code insertion and code reordering.

 Few viruses are intelligent enough to detect a virtual machine and go in to a

recursive loop or execute unwanted instructions or exit without executions. Such

conditions can be fine-tuned within the machine to alert the user. Code emulation on a

virtual machine comes to the rescue when no other methods are helpful, and anti-virus

researches use these to debug and analyze new viruses. But in today’s world where

performance is key, virtual machines are slower and need more resources than any other

method.

6. IMPLEMENTATION

For a given multiple sequence alignment (MSA) of opcodes, the goal is to

generate a profile hidden markov model and score sequences of both viruses and non-

viruses using the model.

 A PHMM model is trained depending upon an MSA generated using opcodes

sequences from virus files. These virus opcodes used for our project are generated using

3 virus construction kits: Virus creation laboratory (VCL), Phalcon/Skism Mass-

Produced Code Generator (PS-MPC) and Next generation virus creation kit (NGVCK)

(more detailed description of how these virus kits work is given in section 2.3). Each of

these kits is used to generate various variants and grouped under a family. We wanted to

test the performance of PHMM over various construction kits that are from different time

periods as this will give us a better understanding of the improvements and trends

followed by the virus writers.

 A PHMM model is a combination of Emission and Transition probabilities per

state and per opcode basis. The number of entries of these probabilities depends upon the

gaps and symbols in a given MSA. Basically, the model is as strong as the given MSA. A

weak MSA with many gaps will result in a model containing few states.

29

 Forward Algorithm is used to score ASM files against a PHMM model. For this

purpose, we have used non-virus files from genuine programs normally seen on many

systems. These files are filtered to contain only opcodes before they are scored, as any

other information like subroutine markers and registers are changed often.

6.1 Test Data Generation and Filtration

Using 3 different construction kits we generated different variants by changing

the configuration settings provided by each kit.

Our test data contains:

• 10 variants from VCL (vcl32_01 to vcl32_10)

• 30 variants from PS-MPC (psmpc_01 to psmpc_30)

• 200 different variants from NGVCK (ngvck_001 to ngvcl_200)

• 40 disassembled cygwin dll’s of version 1.5.19 (cygwin_01 to cygwin_40)

• 30 disassembled dll’s from other non viruses like Msoffice, Adobe, IE… etc

(nonvirus_01 to non_virus_30)

These construction kits are downloaded from VXHeaven. There are several versions

of each of the kits available and we have used the latest and most stable version for our

test data generation.

Table 4 contains the release date and versions of each of the kits used:

Name of the Kit Version Used Release Date

PS-MPC PS-MPC 0.91 August 1992

NGVCK NGVCK0.30 June 2001

VCL32 VCL32 February 2004

Table 5: Construction kits information

VCL, PS-MPC and NGVCK all produce asm files depending upon their settings and

configurations. We have chosen to incorporate the most significant variants in our test

data. Although PS-MPC is capable of generating thousands of variants with different

payloads, we used the most important configurations like memory resident, encryption,

file type, etcetera, to generate the variants. Similarly, with VCL and NGVCK, test data is

generated to have at least one of the various settings possible; this will enable us to have

our model tuned to expect different variants.

30

 We used IDA Pro Disassembler to disassemble the dll’s and exe’s of cygwin and

other non-viruses. To maintain consistency in the opcodes we wanted to use IDA Pro for

disassembling the virus variants too. Since the output of the kits was already in the asm

format, we used Turbo Assembler (tasm 5.0) for compiling and linking the files to

generate exe’s, which are later disassembled using IDA pro.

 Virtual machine using VMWare Workstation was used for all virus files

processing to keep the viruses in a closed system and all the engines and exe’s were

deleted after we had the asm file source.

Since each group of viruses is from a different construction kit, they are very

different in terms of the opcodes used. All three construction kits used generate 32-bit PE

executable files and each of these files can contain any of the 250 x 86 opcodes. Using all

of these different opcodes would make the emission and transition probabilities too small;

besides there are only 14 opcodes that are most likely to be seen in malware as well as

genuine programs [24]. Depending upon opcode frequencies in virus variants, we

generated one alphabet for each virus family containing 37 different opcodes.

A wild character “*” is used for any opcodes that are not in the top 36 opcodes

and this is essential, as any opcode might show up during scoring. The alphabet thus

generated is fixed and used throughout the process for MSA, modeling and scoring of the

virus family.

 In the models we generated the probabilities perceived for “*” are much less than

the other opcodes; thus, a sequence not belonging to the virus family will have different

opcodes and a higher chance of using the lower probability opcodes.

Each asm source file of the viruses is filtered to contain only the opcodes, while

other information like the subroutine names, registers and comments are omitted. This

takes care of the early metamorphic viruses like Regswap that used only register

swapping. These filtered files are now used to generate the MSA and Scoring.

6.2 Training the Model

The multiple sequence alignment we used as an input to our modeling algorithm

is generated using the Feng-Doolittle progressive multiple alignment algorithm [25]. A

PHMM model created from observing the MSA of its variants carries data about opcodes

patterns for each virus family. We have followed a general method used for training the

model as explained in section 3.2.1.

31

A model can be generated for each virus family containing all the virus variants

generated, or a model can be generated for each of the subgroups of the variants. But we

opted to generate more than one model for each virus family, giving us the flexibility to

test our method against other virus variants of the same family.

After looking at various MSA’s generated by grouping a variable number of files

we decided to group them as follows:

VCL32 – 2 groups with 5 files in each group

PS-MPC – 3 groups with 10 files in each group

NGVCK – 10 groups with 20 files in each group

The percentage of gaps perceived in the virus families is shown in Table 6. These

gap percentages give us a raw estimation of the PHMM model performance. An MSA

with many gaps is more generic and might lose the virus-specific information, especially

in advanced metamorphic cases.

Virus Family Gap %

VCL32 7.453

PS-MPC 23.555

NGVCK 88.308

Table 6: Gap percentages perceived in MSA’s of each Virus family

As it can be seen NGVCK generates far more diverse variants than other construction

kits.

The following are the steps used for training the model:

• Calculate the begin probabilities. These are the transition probabilities from the begin

state to the first insert, match and delete states. In our case, we have measured the

begin state to be another match state and renamed it as M0, which will enable us to use

the recursive forward algorithm efficiently.

• Identify the match states. We used MSA columns with more than half filled as match

and the rest as insert. In the case of Bioinformatics, an experienced biologist would

determine this.

• Calculate the emission probabilities. Each MSA is considered as a group of columns

with symbols of opcodes in them; each of these columns is traversed and frequencies

of each opcode is noted. These frequencies are later used to calculate emission match

and emission insert probabilities.

32

• Calculate the transition probabilities. Each column is traversed to store the number of

transitions between each of the match, insert and delete states. These results are used

in calculating the final transition probabilities perceived in the alignment.

• Calculate the end probabilities. The last match state is the end state, if there are n

states we renamed our match state as M(n+1). Since begin and end match states are the

only match states that do not emit any symbols, there are no emission probabilities

pertaining to them.

The model generated for VCL32 group 1 using files numbered vcl32_01 to vcl32_05

contains a total of 1820 states with emission probabilities and transition probabilities.

Table 6 shows emission probabilities seen for states 126, 127 and 128 calculated from a

multiple sequence alignment of 5 files (vcl32_01 to vcl32_05):

Emission Match Probabilities Emission Insert Probabilities

opcodes State 126 State 127 State 128 State 126 State 127 State 128

and 0.0238 0.025 0.025 0.0612 0.0256 0.0256

inc 0.0238 0.025 0.025 0.0204 0.0256 0.0256

xor 0.0238 0.025 0.025 0.0204 0.0256 0.0513

stc 0.0238 0.025 0.025 0.0204 0.0256 0.0256

stosb 0.0238 0.025 0.025 0.0204 0.0256 0.0256

imul 0.0238 0.025 0.025 0.0204 0.0256 0.0256

jecxz 0.0238 0.025 0.025 0.0204 0.0256 0.0256

jmp 0.0238 0.025 0.025 0.0204 0.0256 0.0256

shl 0.0238 0.025 0.025 0.0204 0.0256 0.0256

not 0.0238 0.025 0.025 0.0204 0.0256 0.0256

add 0.0238 0.1 0.025 0.0612 0.0256 0.0256

stosd 0.0238 0.025 0.025 0.0204 0.0256 0.0256

call 0.0238 0.025 0.025 0.0612 0.0256 0.0256

jnz 0.0238 0.025 0.025 0.0204 0.0256 0.0256

push 0.0238 0.025 0.025 0.0204 0.0769 0.0513

cmp 0.0238 0.025 0.025 0.0204 0.0256 0.0256

dec 0.0238 0.025 0.025 0.0204 0.0256 0.0256

xchg 0.0238 0.025 0.025 0.0204 0.0256 0.0256

test 0.0238 0.025 0.025 0.0204 0.0256 0.0256

* 0.0238 0.025 0.025 0.0204 0.0256 0.0256

jb 0.0238 0.025 0.025 0.0204 0.0256 0.0256

sub 0.0238 0.025 0.025 0.0612 0.0256 0.0256

or 0.0238 0.025 0.025 0.0204 0.0256 0.0256

jz 0.0238 0.025 0.025 0.0204 0.0256 0.0256

neg 0.0238 0.025 0.025 0.0204 0.0256 0.0256

retn 0.0238 0.025 0.025 0.0204 0.0256 0.0256

33

lodsb 0.0238 0.025 0.025 0.0204 0.0256 0.0256

mov 0.1429 0.025 0.1 0.102 0.0256 0.0256

pop 0.0238 0.025 0.025 0.0204 0.0256 0.0256

jnb 0.0238 0.025 0.025 0.0204 0.0256 0.0256

shr 0.0238 0.025 0.025 0.0204 0.0256 0.0256

stosw 0.0238 0.025 0.025 0.0204 0.0256 0.0256

lodsd 0.0238 0.025 0.025 0.0204 0.0256 0.0256

cld 0.0238 0.025 0.025 0.0204 0.0256 0.0256

rep 0.0238 0.025 0.025 0.0204 0.0256 0.0256

lea 0.0238 0.025 0.025 0.0204 0.0256 0.0256

rol 0.0238 0.025 0.025 0.0204 0.0256 0.0256

Table 7: Emission Match and Insert Probabilities for VCL32 Group1 in States 126, 127 and 128

As can be seen, there are few opcodes that occur more often than other opcodes.

The add-one rule is used for opcodes that are not seen at all instead of using a zero

probability, which enables us to accommodate them in scoring instead of ignoring them.

 The transition probabilities between states 126, 127 and 128 for group1 VCL32

files are given below:

 M127 I127 D127 M128 I128 D128

M126 0.500 0.375 0.125 M127 0.667 0.167 0.167

I 126 0.067 0.733 0.200 I 127 0.200 0.200 0.600

D126 0.333 0.333 0.333 D127 0.200 0.600 0.200

Table 8: Transition probabilities between states 149,150 and 151 for group1 NGVCK

The probabilities shown in Table 8 can be interpreted as:

127126MMa = 0.5, probability that M127 is reached after M126 emits a symbol is greater

than I127 and D127 are reached. Notice that the sum of the probabilities of each row is

equal to 1 and so is the sum of each column in the emission probabilities.

 The time complexity of the method used to implement PHMM training is O(nL),

where n is the number of sequences in the MSA and L is the length of training sequence.

6.3 Forward Scoring

Forward algorithm scores a given sequence against a given HMM model using the

principles of dynamic programming. It is a recursive procedure that reuses the scores

generated in its previous steps. The theory and formulas used for our project are stated in

section 3.3.1.

The following are the steps involved in scoring:

34

• To score a given sequence X (x1, x2,….xL) against a PHMM with N+1 states(0,1…N)

with N >= 1, states 0 and N being the start and end states respectively, we proceed by

calculating)(1 LF M
N − ,)(1 LF I

N − and ,)(1 LF D
N − in that order.

• In the recursive process of calculating)(1 LF M
N − , many other intermediate values like

)1(2 −− LF M
N ,)1(1 −− LF I

N ….. are calculated and stored for later use. By the time

)(1 LF D
N − is calculated, very few intermediate scores have to be calculated from

scratch, thus making scoring efficient.

Figure 11 explains this recursion process:

Figure 11: Forward Algorithm recursive approach

• During the calculations there are a few terms like)0(0
IF ,)2(0

MF , … which are not

defined; when these are encountered, we simply exclude them from the calculations.

•)(1 LF M
N − ,)(1 LF I

N − and)(1 LF D
N − represent the scores for sequence X until it

reaches the N-1 states; multiplying these scores with their respective end transition

probabilities gives the final score.

35

)(LF M
N

)(1 LF M
N −

)(1 LF I
N −

)(1 LF D
N −

NMNMa
1−

NMNIa
1−

NMNDa
1−

Figure 12 Final Score from previous states

Total Score =  +

+

−

−−

−

−−

))(exp(

))(exp())(exp(
log

1

11

1

11

LFa

LFaLFa

D
NMD

I
NMI

M
NMM

NN

NNNN

• The scores thus generated are log-odds scores and hence we don’t have to subtract

any random or null model scores as normally done in HMM scoring.

The resultant scores are sequence-length dependant and cannot be used directly for

comparison. We divided the final score by sequence length, giving us per-opcode basis

scores. Since all the scores are per-opcode, these can now be used to directly compare

with other scores.

 Due to the logarithms used in the scoring process, we did not have any underflow

problems, but due to the exponentiation part of the calculation, there were overflow

problems. The intermediate score sometimes reached greater than 700 and exp(700) is a

very large number, which affects performance. To overcome these problems, we used the

following mathematical principle mentioned in [1]:

))log()exp(log(1log()log()log(pqpqp −++=+

Exponentiation of a big number is not necessary as they are changed as the difference

between logarithmic values. In special cases where there is only one term, log and exp

cancel each other out.

 Since there are a fixed number of possible transitions from each state, the time

complexity is O(nT) where n is the number of states and T is the length of the observed

sequence.

36

7. RESULTS

The score of a given sequence using a virus family model represents its similarity

to the virus. High scored sequences are more closely related to the virus whereas lower

scored sequences are more diverged and thus are less probable to be viruses.

We have scored non-viruses and virus variants of each construction kit against

various PHMM models representing the virus family. Test data grouping and model

names are shown in Table 9.

Virus Family Groups/Model Name Files in Group

vcl32_group5_1 vcl32_01 to vcl32_05 VCL32

vcl32_group5_2 vcl32_06 to vcl32_10

psmpc_group10_1 psmpc_01 to psmpc_10

psmpc_group10_2 psmpc_11 to psmpc_20

PS-MPC

psmpc_group10_3 psmpc_21 to psmpc_30

ngvck_group20_01 ngvck_01 to ngvck_020

ngvck_group20_02 ngvck_021 to ngvck_040

ngvck_group20_03 ngvck_041 to ngvck_060

ngvck_group20_04 ngvck_061 to ngvck_080

ngvck_group20_05 ngvck_081 to ngvck_100

ngvck_group20_06 ngvck_101 to ngvck_120

ngvck_group20_07 ngvck_121 to ngvck_140

ngvck_group20_08 ngvck_141 to ngvck_160

ngvck_group20_09 ngvck_161 to ngvck_180

NGVCK

ngvck_group20_10 ngvck_181 to ngvck_200

Table 9: Test Data Grouping and Model Names

The default threshold for log-odd scores is 0, that is, log-odd scores would be

positive for family variants and negative for non-family members. A positive threshold

greater than zero can also be used but carries a risk of detecting non-family files as

viruses, and vice versa.

 Since we have used diverse variants while modeling each virus family and have a

considerable dataset of known to be viruses, the threshold is taken as the minimum score

from the viruses of each family.

Figure 13 shows the scatter plot of scores against the vcl32_group5_1 model.

37

Scores using vcl32_group5_1 model

-3
-2.75

-2.5
-2.25

-2
-1.75

-1.5
-1.25

-1
-0.75

-0.5
-0.25

0
0.25

0.5
0.75

1
1.25

1.5

0 10 20 30 40 50

File Number

S
co

re

PS-MPC

Cygwin

Other-Nonvirus

Figure 13 Scores for Virus and Non Virus files using vcl32_group5_1 model

There are no scores from the cygwin or other non-viruses that are greater than the

minimum score of 1.0546 in vcl32 variants, thus clearly distinguishing non-viruses from

vcl family viruses. Scores against the models of vcl are included in Appendix (Table A-1

and Table A-2).

 Results for psmpc_group10_1 are shown in Figure 14. There are no false

positives or false negatives using all three models generated from PS-MPC. Thus the

detection rate perceived in VCL32 and PS-MPC is 100% with a false positive rate of 0%.

Scores using pcmpc_group10_1 model

-0.5

0

0.5

1

1.5

2

0 10 20 30 40 50

File Number

S
co

re

PS-MPC

Cygwin

Other-Nonvirus

Figure 14 Scores for Virus and Non Virus files using psmpc_group10_1 model

38

 NGVCK, as seen from the gap percentages (Table 6), is more advanced than PS-

MPC and VCL32. Figure 15 shows the results using the ngvcl_group20_01 model. Non-

virus files that score greater than 0.715 are considered false positives.

Figure 15 Scores for Virus and Non Virus files using ngvck_group20_01 model

The increased rate of false-positives in the NGVCK case is due to the subroutine

permutation used by the construction kit. As different variants had different subroutine

order, the opcodes in the MSA are not aligned as intended. For example, consider

assembly files file1.asm and file2.asm with 3 subroutines each, where the order of

subroutines in file 1 is (1,2,3) and (2,3,1) in case of file 2. The MSA generated from

these files has aligned subroutine 1 in file 1 with subroutine 2 in file2, giving

considerable gaps in the final MSA.

 To overcome this problem, we generated new models for NGVCK viruses using

finely-tuned MSA’s. New set of MSA’s created for this purpose used virus files that are

reordered to contain fewer gaps. (More details about the preprocessing can be found in

[25]). We will be referring to these files as preprocessed files from now on. The MSA

gap percentage of NGVCK variants decreased from 88.3% to 44.9% percent using the

preprocessed files. In a real-world scenario the source file we score can be a virus or a

39

non-virus, so a preprocessing step is essential for any file to be scored. The models

generated from preprocessed files are named as ngvck_pp_group20_01. The virus and

non-virus files used for scoring are from now on are all preprocessed.

Scores using ngvck_pp_group20_01 model

-0.1
-0.05

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1
1.05

1.1

0 50 100 150 200 250

File Number

S
co

re

Ngvck

Cygwin

Other-Nonvirus

Figure 16 Scores for Virus and Non Virus files using ngvck_pp_group20_01 model

 Figure 16 shows the scores for preprocessed files using the

ngvck_pp_group20_01 model. Although the false positives are not completely gone, the

average false-positive rate across all NGVCK models decreased from 92.57% to 48.43%

and the overall accuracy has considerably increased from 75.93% to 95.92% with the

preprocessing step.

 Since few virus variants scored much less than the other files, we increased the

threshold to second and third minimum scores perceived in the virus variants. Increasing

the threshold would allow actual virus files to bypass the detection, increasing false

negatives. The average false-negative rate over all groups of NGVCK pre-processed files

was 1% in the case of third minimum threshold and 0.5% in the case of second minimum

threshold.

 The improvement due to pre-processing the files can be seen clearly by

calculating the false-positive percentages before and after the pre-processing step at

various threshold levels.

40

0

10

20

30

40

50

60

70

80

90

100

ng
vc

k_
gr

ou
p2

0_
01

ng
vc

k_
gr

ou
p2

0_
02

ng
vc

k_
gr

ou
p2

0_
03

ng
vc

k_
gr

ou
p2

0_
04

ng
vc

k_
gr

ou
p2

0_
05

ng
vc

k_
gr

ou
p2

0_
06

ng
vc

k_
gr

ou
p2

0_
07

ng
vc

k_
gr

ou
p2

0_
08

ng
vc

k_
gr

ou
p2

0_
09

ng
vc

k_
gr

ou
p2

0_
10

%
 o

f
F

al
se

 P
o

si
ti

ve
s No Pre-Processing

Pre-Processing with
Minimum Score Threshold

Pre-Processing with 2nd
Minimum Score Threshold

Pre-Processing with 3rd
Minimum Score Threshold

Figure 17: False Positive Percentages for Non-virus Before and After Preprocessing at Different

Thresholds

As shown in Figure 17, the number of false positives decreased considerably by

increasing the threshold and preprocessing the files. Since increasing the threshold to

third minimum of the virus scores has improved the accuracy rate, with a good balance of

false positives and false negatives, we can use a third minimum threshold for the

NGVCK viruses. Due to space constraints, we have added scores calculated using all

NGVCK models in Appendix C. Although the accuracy is not 100% as in the case of

VCL32 and PS-MPC, NGVCK viruses can be detected with few false positives and false

negatives.

8. CONCLUSION

Virus detection is crucial in today’s world of computers. Metamorphic viruses are

far more advanced and harder to detect than any other kind of viruses in the wild. In this

report, we have described the challenges most anti-virus technologies face in detecting

metamorphic viruses.

Profile Hidden Markov Models (PHMM) are known for their success in

determining relations between DNA and protein sequences. We have experimented to see

whether PHMM can be used in detecting computer virus variants generated using

construction kits. Our results show that Profile Hidden Markov Models can be

successfully used to model viruses. Using a faster approach called Forward algorithm, we

41

calculated the scores for virus and non-virus files (like cygwin dll’s and application dll’s)

against each virus model. The time complexity to score using a PHMM is O(nT), where n

is the number of states and T is the length of the sequence.

We tested our method on three construction kits--namely VCL32, PS-MPC and

NGVCK, which use simple to advanced code-morphing techniques. The results showed a

100% detection with 0% false positive and false negative rates in VCL32 and PS-MPC.

After rearranging the subroutines and threshold tuning, we were able to detect NGVCK

viruses with a false positive rate of 19.43% and a false negative rate of 1%.

 The relationship between opcodes sequences in virus family variants and non-

viruses is different and PHMM can model that accurately. Detecting metamorphic viruses

using Profile Hidden Markov Models is highly feasible, based on performance and

results.

9. FUTURE WORK

The following ideas can be used to further extend the concept of PHMM in detecting

metamorphic viruses:

• Our test data contains variants of three construction kits. When other variants of the

same virus families are discovered, a new set of models that include the newly-

detected variants needs to be generated using our method. One alternative, would be

to tune the emission and transition probabilities in the PHMM model using the Baum-

Welch reestimation method.

• We have trained our models using assembly sources of virus files. This can be

extended to model each subroutine and calculate an aggregate score. Subroutine

modeling might detect metamorphic viruses that implement subroutine permutation

and code reordering. On the other hand, more advanced obfuscations that generate

different subroutines for their variants would be a greater challenge to detect.

• Training and scoring are faster than heuristics-based techniques, but the time taken to

filter the data, and the disassembling, can hinder the performance of different kinds of

files. It would be interesting to see how PHMM performs if binary code is used

directly.

42

REFERENCES

[1] R. Durbin, S. Eddy, A. Krogh and G. Mitchison, “Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids,” Cambridge University Press, 1988.

[2] A. Krogh, “An Introduction to Hidden Markov Models for Biological Sequences,”

Center for Biological Sequence Analysis, Technical University of Denmark, 1988.

[3] D.W. Mount, “Bioinformatics: Sequence and Genome Analysis,” Cold Spring Harbor

Laboratory, 2004.

[4] L.R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition,” Proceedings of the IEEE, Volume 77, Issue 2, Feb. 1989. Pages

257-286.

[5] M. Stamp, “A Revealing Introduction to Hidden Markov Models,” January 2004.

http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf.

[6] M. Stamp, “Information Security: Principles and Practice,” August 2005.

[7] P. Szor, P. Ferrie, “Hunting for Metamorphic,” Symantec Security Response.

http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf.

[8] S.R. Eddy, “Profile Hidden Markov Models,” Bioinformatics, Oxford Journals,

Volume 14, Number 9, July 1998. Pages 755-763.

[9] W. Wong, “Analysis and Detection of Metamorphic Computer Viruses,” Master’s

thesis, San Jose State University, 2006.

http://home.earthlink.net/~mstamp1/mss_v.html#masters.

[10] S.Khuri, “Hidden Markov Models,” lecture notes.

http://www.cs.sjsu.edu/faculty/khuri/Bio_CS123B/Markov.pdf.

[11] P.Szor, “The Art of Computer Virus Defense and Research,” Symantec Press, 2005.

[12] R.G. Fiñones and R. Fernandez, “Solving the Metamorphic Puzzle,” Virus Bulletin,

Mar. 2006. Pages 14-19.

[13] J. Mc afee and C. Haynes, “Computer Viruses, Worms, Data Diddlers, Killer

Programs and Other Threats to Your System,” St. Martin’s Press, 1989.

[14] http://en.wikipedia.org/wiki/Timeline_of_notable_computer_viruses_and_worms.

[15] http://www.wildlist.org/WildList/.

43

[16] W.T. Polk, L.E. Bassham, J.P. Wack and L.J. Carnahan, ”Anti-virus Tools and

Techniques for Computer Systems,” Noyes Data Corporation, 1995.

[17] P. Ferrie, “Hidan and Dangerous,” Virus Bulletin, Mar. 2007. Pages 14-19.

[18] A. Walenstein, R. Mathur, M.R. Chouchane and A. Lakhotia, "Normalizing

Metamorphic Malware Using Term Rewriting," Proc. Int'l Workshop on Source Code

Analysis and Manipulation (SCAM), IEEE CS Press, Sept. 2006. Pages 75–84.

[19] http://vx.netlux.org/vx.php?id=tp00.

[20] Myles Jordan, “Anti-Virus Research - Dealing with Metamorphism,” Virus Bulletin,

Oct. 2002.

[21] http://www.symantec.com/security_response/writeup.jsp?docid=2000-122010-0045-

99&tabid=2.

[22] “The Molecular Virology of Lexotan32: Metamorphism Illustrated,” OpenRCE.org,

Aug. 2007. http://www.openrce.org/articles/full_view/29.

[23] Jay Munro, "Antivirus Research and Detection Techniques.” ExtremeTech., July

2002. FindArticles.com. 02 Nov. 2007.

http://findarticles.com/p/articles/mi_zdext/is_200207/ai_ziff28916.

[24] D. Bilar, “Statistical Structures: Fingerprinting Malware for Classification and

Analysis,” http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Bilar.pdf.

[25] S.McGhee, “Pairwise Alignment of Metamorphic Computer Viruses,” Master’s

project, San Jose State University, 2007.

http://www.cs.sjsu.edu/faculty/stamp/students/mcghee_scott.pdf

44

APPENDIX A - VCL32 Scores

Table A-1 Scores of Virus and Non Virus files using vcl32_group5_1 model

Non Virus Files VCL32 Virus Variants

Cygwin Other Non Viruses

File Score File Score File Score
Vcl32_01 1.083767 Cygwin_01 -0.45906 nonvirus_01 0.209929

Vcl32_02 1.054556 Cygwin_02 -0.37755 nonvirus_02 0.606955

Vcl32_03 1.07452 Cygwin_03 0.044363 nonvirus_03 0.447682

Vcl32_04 1.077914 Cygwin_04 -0.00845 nonvirus_04 0.556673

Vcl32_05 1.094975 Cygwin_05 0.042635 nonvirus_05 0.531772

Vcl32_06 1.067547 Cygwin_06 0.098187 nonvirus_06 0.494801

Vcl32_07 1.069215 Cygwin_07 0.085779 nonvirus_07 0.510706

Vcl32_08 1.080612 Cygwin_08 0.036963 nonvirus_08 0.490268

Vcl32_09 1.060052 Cygwin_09 -0.42124 nonvirus_09 0.179993

Vcl32_10 1.05712 Cygwin_10 -0.89192 nonvirus_10 0.423765

 Cygwin_11 -0.23544 nonvirus_11 -0.98025

 Cygwin_12 -0.43307 nonvirus_12 0.412032

 Cygwin_13 -0.55189 nonvirus_13 0.412032

 Cygwin_14 -0.16056 nonvirus_14 0.357063

 Cygwin_15 -0.83461 nonvirus_15 0.391026

 Cygwin_16 -0.30853 nonvirus_16 0.291146

 Cygwin_17 -1.18801 nonvirus_17 0.461129

 Cygwin_18 -0.13747 nonvirus_18 -0.09653

 Cygwin_19 0.081736 nonvirus_19 0.308743

 Cygwin_20 -0.42498 nonvirus_20 0.454242

 Cygwin_21 -0.25938 nonvirus_21 0.259071

 Cygwin_22 -0.23532 nonvirus_22 -0.29306

 Cygwin_23 -0.54901 nonvirus_23 0.291158

 Cygwin_24 -0.50752 nonvirus_24 0.583751

 Cygwin_25 -0.02293 nonvirus_25 0.443853

 Cygwin_26 -0.75277 nonvirus_26 -0.93934

 Cygwin_27 -0.49897 nonvirus_27 0.300514

 Cygwin_28 -1.11758 nonvirus_28 -2.07051

 Cygwin_29 -6.38913 nonvirus_29 0.350297

 Cygwin_30 -0.83096 nonvirus_30 0.356699

 Cygwin_31 -0.98737

 Cygwin_32 -2.70584

 Cygwin_33 -0.45342

 Cygwin_34 -0.10282

 Cygwin_35 -0.09447

 Cygwin_36 -0.45365

 Cygwin_37 -0.53924

 Cygwin_38 -0.41534

 Cygwin_39 0.066167

 Cygwin_40 -0.52667

45

Figure A-1: Graphical representation of Virus and Non-Virus Scores using vcl32_group5_1 model

Scores using vcl32_group5_1 model

-3
-2.75

-2.5
-2.25

-2
-1.75

-1.5
-1.25

-1
-0.75

-0.5
-0.25

0
0.25

0.5
0.75

1
1.25

1.5

0 10 20 30 40 50

File Number

S
co

re

PS-MPC

Cygwin

Other-Nonvirus

46

Table A-2 Scores of Virus and Non Virus files using vcl32_group5_2 model

Non Virus Files VCL32 Virus Variants

Cygwin Other Non Viruses

File Score File Score File Score
vcl32_01

vcl32_02

vcl32_03

vcl32_04

vcl32_05

vcl32_06

vcl32_07

vcl32_08

vcl32_09

vcl32_10

1.054748

1.041679

1.038289

1.050418

1.051996

1.076125

1.071717

1.057444

1.067382

1.056705

cygwin_01

cygwin_02

cygwin_03

cygwin_04

cygwin_05

cygwin_06

cygwin_07

cygwin_08

cygwin_09

cygwin_10

cygwin_11

cygwin_12

cygwin_13

cygwin_14

cygwin_15

cygwin_16

cygwin_17

cygwin_18

cygwin_19

cygwin_20

cygwin_21

cygwin_22

cygwin_23

cygwin_24

cygwin_25

cygwin_26

cygwin_27

cygwin_28

cygwin_29

cygwin_30

cygwin_31

cygwin_32

cygwin_33

cygwin_34

cygwin_35

cygwin_36

cygwin_37

cygwin_38

cygwin_39

cygwin_40

-0.510939

-0.429031

0.018187

-0.041686

0.00586

0.068762

0.05598

-0.001187

-0.470955

-0.954708

-0.280892

-0.483825

-0.603847

-0.201867

-0.89825

-0.356652

-1.259348

-0.178455

0.043298

-0.473163

-0.307048

-0.280265

-0.600964

-0.56236

-0.049662

-0.810152

-0.550994

-1.187329

-6.570453

-0.892495

-1.053905

-2.814226

-0.511613

-0.136853

-0.13808

-0.506485

-0.593724

-0.464666

0.040891

-0.579538

nonvirus_01

nonvirus_02

nonvirus_03

nonvirus_04

nonvirus_05

nonvirus_06

nonvirus_07

nonvirus_08

nonvirus_09

nonvirus_10

nonvirus_11

nonvirus_12

nonvirus_13

nonvirus_14

nonvirus_15

nonvirus_16

nonvirus_17

nonvirus_18

nonvirus_19

nonvirus_20

nonvirus_21

nonvirus_22

nonvirus_23

nonvirus_24

nonvirus_25

nonvirus_26

nonvirus_27

nonvirus_28

nonvirus_29

nonvirus_30

0.175959

0.607093

0.500238

0.62645

0.482649

0.469946

0.481795

0.459852

0.115241

0.423541

-1.041574

0.447212

0.447212

0.236376

0.284199

0.359028

0.464545

-0.12838

0.308425

0.394181

0.222292

-0.334553

0.257425

0.494217

0.338486

-1.005699

0.340329

-2.154028

0.240242

0.261265

47

Figure A-2: Graphical representation of Virus and Non-Virus Scores using vcl32_group5_2 model

Scores using vcl32_group5_2 model

-3
-2.75

-2.5
-2.25

-2
-1.75

-1.5
-1.25

-1
-0.75

-0.5
-0.25

0
0.25

0.5
0.75

1
1.25

1.5

0 10 20 30 40 50

File Number

S
co

re

VCL32

Cygwin

Other-Nonvirus

48

APPENDIX B - PS-MPC Scores

Table B-1 Scores of Virus and Non Virus files using psmpc_group10_1 model

Non Virus Files PSPMC Virus Variants

Cygwin Other Non Viruses

File Score File Score File Score
psmpc_01

psmpc_02

psmpc_03

psmpc_04

psmpc_05

psmpc_06

psmpc_07

psmpc_08

psmpc_09

psmpc_10

psmpc_11

psmpc_12

psmpc_13

psmpc_14

psmpc_15

psmpc_16

psmpc_17

psmpc_18

psmpc_19

psmpc_20

psmpc_21

psmpc_22

psmpc_23

psmpc_24

psmpc_25

psmpc_26

psmpc_27

psmpc_28

psmpc_29

psmpc_30

1.323747

1.621965

1.54293

1.02367

1.587549

1.524759

0.922988

1.621965

1.385606

0.961724

0.873914

0.943829

0.962353

1.403483

1.379162

1.45283

1.009983

1.605451

1.40997

1.621965

1.607687

0.958344

1.614169

1.610268

1.030705

1.017315

1.340959

1.520831

0.949162

1.589719

cygwin_01

cygwin_02

cygwin_03

cygwin_04

cygwin_05

cygwin_06

cygwin_07

cygwin_08

cygwin_09

cygwin_10

cygwin_11

cygwin_12

cygwin_13

cygwin_14

cygwin_15

cygwin_16

cygwin_17

cygwin_18

cygwin_19

cygwin_20

cygwin_21

cygwin_22

cygwin_23

cygwin_24

cygwin_25

cygwin_26

cygwin_27

cygwin_28

cygwin_29

cygwin_30

cygwin_31

cygwin_32

cygwin_33

cygwin_34

cygwin_35

cygwin_36

cygwin_37

cygwin_38

cygwin_39

cygwin_40

0.217836

0.278389

0.137888

0.203186

0.113871

0.106767

0.099252

0.122255

0.107664

0.304064

0.207124

0.175749

0.118547

0.109732

0.263593

0.289688

0.194993

0.247258

0.167704

0.138071

0.234471

0.267159

0.01101

0.204981

0.158373

0.171962

0.192007

0.261288

0.311014

0.191735

0.310988

0.23574

0.151786

0.221324

0.135578

0.222211

0.223585

0.164705

0.24573

0.275728

nonvirus_01

nonvirus_02

nonvirus_03

nonvirus_04

nonvirus_05

nonvirus_06

nonvirus_07

nonvirus_08

nonvirus_09

nonvirus_10

nonvirus_11

nonvirus_12

nonvirus_13

nonvirus_14

nonvirus_15

nonvirus_16

nonvirus_17

nonvirus_18

nonvirus_19

nonvirus_20

nonvirus_21

nonvirus_22

nonvirus_23

nonvirus_24

nonvirus_25

nonvirus_26

nonvirus_27

nonvirus_28

nonvirus_29

nonvirus_30

-0.17126

-0.035853

-0.094112

0.187106

-0.168395

-0.113968

-0.130918

-0.119984

-0.05732

-0.118333

-0.056218

-0.088344

-0.141422

-0.218387

-0.203497

0.015157

-0.100559

-0.102171

-0.130722

-0.218612

-0.1514

-0.050515

-0.286356

-0.19157

-0.235362

0.233872

0.051087

0.041697

-0.220485

-0.210733

49

Figure B-1: Graphical representation of Virus and Non-Virus Scores using psmpc_group10_1 model

Scores using pcmpc_group10_1 model

-0.5

0

0.5

1

1.5

2

0 10 20 30 40 50

File Number

S
co

re

PS-MPC

Cygwin

Other-Nonvirus

50

Table B-2 Scores of Virus and Non Virus files using psmpc_group10_2 model

Non Virus Files PSPMC Virus Variants

Cygwin Other Non Viruses

File Score File Score File Score
psmpc_01

psmpc_02

psmpc_03

psmpc_04

psmpc_05

psmpc_06

psmpc_07

psmpc_08

psmpc_09

psmpc_10

psmpc_11

psmpc_12

psmpc_13

psmpc_14

psmpc_15

psmpc_16

psmpc_17

psmpc_18

psmpc_19

psmpc_20

psmpc_21

psmpc_22

psmpc_23

psmpc_24

psmpc_25

psmpc_26

psmpc_27

psmpc_28

psmpc_29

psmpc_30

1.299699

1.499945

1.426114

1.012006

1.464344

1.447789

0.875303

1.499945

1.364755

1.07822

1.006404

1.093912

1.074151

1.383742

1.367184

1.373806

1.023055

1.495992

1.381297

1.499945

1.489273

0.927391

1.492649

1.494176

1.033471

1.023167

1.325211

1.43689

1.077357

1.476733

cygwin_01

cygwin_02

cygwin_03

cygwin_04

cygwin_05

cygwin_06

cygwin_07

cygwin_08

cygwin_09

cygwin_10

cygwin_11

cygwin_12

cygwin_13

cygwin_14

cygwin_15

cygwin_16

cygwin_17

cygwin_18

cygwin_19

cygwin_20

cygwin_21

cygwin_22

cygwin_23

cygwin_24

cygwin_25

cygwin_26

cygwin_27

cygwin_28

cygwin_29

cygwin_30

cygwin_31

cygwin_32

cygwin_33

cygwin_34

cygwin_35

cygwin_36

cygwin_37

cygwin_38

cygwin_39

cygwin_40

0.60396

0.743039

0.453493

0.569435

0.407526

0.37784

0.389348

0.414411

0.379526

0.667799

0.569719

0.489344

0.369263

0.379498

0.665051

0.688913

0.508443

0.644309

0.507705

0.390515

0.546206

0.660234

0.205626

0.533397

0.506076

0.438186

0.468334

0.556737

0.377149

0.397222

0.687407

0.448065

0.447832

0.649103

0.458314

0.616491

0.564271

0.508992

0.673767

0.64151

nonvirus_01

nonvirus_02

nonvirus_03

nonvirus_04

nonvirus_05

nonvirus_06

nonvirus_07

nonvirus_08

nonvirus_09

nonvirus_10

nonvirus_11

nonvirus_12

nonvirus_13

nonvirus_14

nonvirus_15

nonvirus_16

nonvirus_17

nonvirus_18

nonvirus_19

nonvirus_20

nonvirus_21

nonvirus_22

nonvirus_23

nonvirus_24

nonvirus_25

nonvirus_26

nonvirus_27

nonvirus_28

nonvirus_29

nonvirus_30

-0.011451

0.222913

0.19182

0.581364

0.010183

0.106866

0.053376

0.088721

0.115241

0.122428

0.248631

0.186405

0.196976

0.039328

0.049431

0.285888

0.104013

0.134148

0.057854

-0.001147

-0.036187

0.168131

-0.181052

-0.029677

-0.083614

0.489644

0.43179

0.287961

0.067728

-0.090047

51

Figure B-2: Graphical representation of Virus and Non-Virus Scores using psmpc_group10_2 model

Scores using psmpc_group10_2 model

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

0 10 20 30 40 50

File Number

S
co

re

PS-MPC

Cygwin

Other-Nonvirus

52

Table B-3 Scores of Virus and Non Virus files using psmpc_group10_3 model

Non Virus Files PSPMC Virus Variants

Cygwin Other Non Viruses

File Score File Score File Score
psmpc_01

psmpc_02

psmpc_03

psmpc_04

psmpc_05

psmpc_06

psmpc_07

psmpc_08

psmpc_09

psmpc_10

psmpc_11

psmpc_12

psmpc_13

psmpc_14

psmpc_15

psmpc_16

psmpc_17

psmpc_18

psmpc_19

psmpc_20

psmpc_21

psmpc_22

psmpc_23

psmpc_24

psmpc_25

psmpc_26

psmpc_27

psmpc_28

psmpc_29

psmpc_30

1.227648

1.600759

1.505053

1.144719

1.554167

1.476359

0.910976

1.600759

1.294007

1.035318

0.923018

1.015707

1.028569

1.282105

1.278729

1.435184

1.147134

1.58493

1.297483

1.600759

1.582813

1.006626

1.600967

1.596352

1.232587

1.164333

1.242206

1.489333

1.042142

1.57858

cygwin_01

cygwin_02

cygwin_03

cygwin_04

cygwin_05

cygwin_06

cygwin_07

cygwin_08

cygwin_09

cygwin_10

cygwin_11

cygwin_12

cygwin_13

cygwin_14

cygwin_15

cygwin_16

cygwin_17

cygwin_18

cygwin_19

cygwin_20

cygwin_21

cygwin_22

cygwin_23

cygwin_24

cygwin_25

cygwin_26

cygwin_27

cygwin_28

cygwin_29

cygwin_30

cygwin_31

cygwin_32

cygwin_33

cygwin_34

cygwin_35

cygwin_36

cygwin_37

cygwin_38

cygwin_39

cygwin_40

0.08141

0.12026

0.013068

0.05019

0.024026

0.013583

0.004608

0.032545

0.035636

0.149571

0.080839

0.058602

0.032574

0.006599

0.148496

0.121077

0.098734

0.101414

0.057787

-0.005496

0.081491

0.122084

-0.052099

0.096249

0.07178

0.04778

0.08651

0.174561

0.316948

0.066092

0.155816

0.21262

0.054895

0.120884

0.028028

0.106603

0.112139

0.055971

0.110219

0.117183

nonvirus_01

nonvirus_02

nonvirus_03

nonvirus_04

nonvirus_05

nonvirus_06

nonvirus_07

nonvirus_08

nonvirus_09

nonvirus_10

nonvirus_11

nonvirus_12

nonvirus_13

nonvirus_14

nonvirus_15

nonvirus_16

nonvirus_17

nonvirus_18

nonvirus_19

nonvirus_20

nonvirus_21

nonvirus_22

nonvirus_23

nonvirus_24

nonvirus_25

nonvirus_26

nonvirus_27

nonvirus_28

nonvirus_29

nonvirus_30

-0.208046

-0.140612

-0.191327

0.031832

-0.266684

-0.211736

-0.224777

-0.221471

-0.111186

-0.199914

-0.118773

-0.159612

-0.220773

-0.279282

-0.279647

-0.046356

-0.183069

-0.167831

-0.201428

-0.260167

-0.193507

-0.109163

-0.331173

-0.271952

-0.313998

0.122739

-0.042634

0.024008

-0.31655

-0.275571

53

Figure B-3: Graphical representation of Virus and Non-Virus Scores using psmpc_group10_3 model

Scores using psmpc_group10_3 model

-0.5

0

0.5

1

1.5

2

0 10 20 30 40 50

File Number

S
co

re

PS-MPC

Cygwin

Other-Nonvirus

54

APPENDIX C - NGVCK Scores

Table C-1.1 Scores of preprocessed Virus and Non Virus files using ngvck_pp_group20_01
model

Non Virus files after Pre-Processing NGVCK Virus variants
after Pre-Processing Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001

ngvck_002

ngvck_003

ngvck_004

ngvck_005

ngvck_006

ngvck_007

ngvck_008

ngvck_009

ngvck_010

ngvck_011

ngvck_012

ngvck_013

ngvck_014

ngvck_015

ngvck_016

ngvck_017

ngvck_018

ngvck_019

ngvck_020

ngvck_021

ngvck_022

ngvck_023

ngvck_024

ngvck_025

ngvck_026

ngvck_027

ngvck_028

ngvck_029

ngvck_030

ngvck_031

ngvck_032

ngvck_033

ngvck_034

ngvck_035

ngvck_036

ngvck_037

ngvck_038

ngvck_039

ngvck_040

0.860894

0.868975

1.000545

0.870732

0.810336

0.867058

0.846234

0.794665

0.9029

0.964697

0.820068

0.946846

0.890484

0.819489

0.904151

0.946656

0.822826

0.793125

0.86738

0.573609

0.841805

0.789624

0.805843

0.772065

0.77012

0.821852

0.84134

0.807432

0.799459

0.755152

0.85008

0.757738

0.859768

0.792964

0.723463

0.81013

0.846603

0.727694

0.840671

0.843615

cygwin_01

cygwin_02

cygwin_03

cygwin_04

cygwin_05

cygwin_06

cygwin_07

cygwin_08

cygwin_09

cygwin_10

cygwin_11

cygwin_12

cygwin_13

cygwin_14

cygwin_15

cygwin_16

cygwin_17

cygwin_18

cygwin_19

cygwin_20

cygwin_21

cygwin_22

cygwin_23

cygwin_24

cygwin_25

cygwin_26

cygwin_27

cygwin_28

cygwin_29

cygwin_30

cygwin_31

cygwin_32

cygwin_33

cygwin_34

cygwin_35

cygwin_36

cygwin_37

cygwin_38

cygwin_39

cygwin_40

0.610366

0.755483

0.547281

0.594871

0.531224

0.521635

0.520335

0.581491

0.505439

0.627607

0.520347

0.519592

0.462797

0.416628

0.622661

0.685346

0.511617

0.65049

0.525175

0.446541

0.558141

0.617675

0.471552

0.493804

0.479633

0.506057

0.507927

0.591615

0.166759

0.463929

0.686945

0.460027

0.528198

0.675175

0.536658

0.628225

0.563168

0.599896

0.67509

0.595222

nonvirus_01

nonvirus_02

nonvirus_03

nonvirus_04

nonvirus_05

nonvirus_06

nonvirus_07

nonvirus_08

nonvirus_09

nonvirus_10

nonvirus_11

nonvirus_12

nonvirus_13

nonvirus_14

nonvirus_15

nonvirus_16

nonvirus_17

nonvirus_18

nonvirus_19

nonvirus_20

nonvirus_21

nonvirus_22

nonvirus_23

nonvirus_24

nonvirus_25

nonvirus_26

nonvirus_27

nonvirus_28

nonvirus_29

nonvirus_30

0.293974

0.510075

0.408427

0.747985

0.332839

0.415972

0.359667

0.402952

0.246162

0.419246

0.4466

0.470656

0.517136

0.313303

0.334759

0.43101

0.389576

0.502135

0.406563

0.274402

0.257406

0.436877

0.106282

0.327661

0.195072

-2.58214

0.566432

0.327207

0.346006

0.249738

55

Table C-1.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_01 model

NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Score File Score
ngvck_041

ngvck_042

ngvck_043

ngvck_044

ngvck_045

ngvck_046

ngvck_047

ngvck_048

ngvck_049

ngvck_050

ngvck_051

ngvck_052

ngvck_053

ngvck_054

ngvck_055

ngvck_056

ngvck_057

ngvck_058

ngvck_059

ngvck_060

ngvck_061

ngvck_062

ngvck_063

ngvck_064

ngvck_065

ngvck_066

ngvck_067

ngvck_068

ngvck_069

ngvck_070

ngvck_071

ngvck_072

ngvck_073

ngvck_074

ngvck_075

ngvck_076

ngvck_077

ngvck_078

ngvck_079

ngvck_080

0.753635

0.871583

0.842921

0.817743

0.797452

0.833126

0.921651

0.869399

0.882094

0.756481

0.761084

0.825251

0.892163

0.856581

0.907063

0.864343

0.655816

0.821135

0.884584

0.907645

0.833157

0.831591

0.84798

0.820833

0.87009

0.751655

0.805768

0.881451

0.812108

0.780337

0.786372

0.764434

0.681482

0.85031

0.794

0.78672

0.829067

0.904401

0.853988

0.792293

ngvck_081

ngvck_082

ngvck_083

ngvck_084

ngvck_085

ngvck_086

ngvck_087

ngvck_088

ngvck_089

ngvck_090

ngvck_091

ngvck_092

ngvck_093

ngvck_094

ngvck_095

ngvck_096

ngvck_097

ngvck_098

ngvck_099

ngvck_100

ngvck_101

ngvck_102

ngvck_103

ngvck_104

ngvck_105

ngvck_106

ngvck_107

ngvck_108

ngvck_109

ngvck_110

ngvck_111

ngvck_112

ngvck_113

ngvck_114

ngvck_115

ngvck_116

ngvck_117

ngvck_118

ngvck_119

ngvck_120

0.862261

0.804648

0.780752

0.840109

0.713844

0.892858

0.790193

0.815063

0.763562

0.792515

0.82744

0.748596

0.752862

0.756383

0.776757

0.834515

0.880577

0.839838

0.78702

0.783416

0.843918

0.770927

0.840213

0.849388

0.829788

0.746036

0.751918

0.848619

0.878091

0.907019

0.801105

0.831256

0.759036

0.817647

0.783875

0.761749

0.860347

0.797725

0.885495

0.759682

ngvck_121

ngvck_122

ngvck_123

ngvck_124

ngvck_125

ngvck_126

ngvck_127

ngvck_128

ngvck_129

ngvck_130

ngvck_131

ngvck_132

ngvck_133

ngvck_134

ngvck_135

ngvck_136

ngvck_137

ngvck_138

ngvck_139

ngvck_140

ngvck_141

ngvck_142

ngvck_143

ngvck_144

ngvck_145

ngvck_146

ngvck_147

ngvck_148

ngvck_149

ngvck_150

ngvck_151

ngvck_152

ngvck_153

ngvck_154

ngvck_155

ngvck_156

ngvck_157

ngvck_158

ngvck_159

ngvck_160

0.804187

0.8091

0.814295

0.825707

0.709777

0.898773

0.739335

0.72748

0.706566

0.864073

0.805538

0.916603

0.85658

0.866253

0.752514

0.861997

0.857547

0.816845

0.766686

0.838792

0.724386

0.838825

0.762811

0.770057

0.807744

0.821296

0.842212

0.872007

0.803412

0.749523

0.778977

0.867348

0.8419

0.844562

0.913228

0.75372

0.873416

0.775889

0.816867

0.848925

ngvck_161

ngvck_162

ngvck_163

ngvck_164

ngvck_165

ngvck_166

ngvck_167

ngvck_168

ngvck_169

ngvck_170

ngvck_171

ngvck_172

ngvck_173

ngvck_174

ngvck_175

ngvck_176

ngvck_177

ngvck_178

ngvck_179

ngvck_180

ngvck_181

ngvck_182

ngvck_183

ngvck_184

ngvck_185

ngvck_186

ngvck_187

ngvck_188

ngvck_189

ngvck_190

ngvck_191

ngvck_192

ngvck_193

ngvck_194

ngvck_195

ngvck_196

ngvck_197

ngvck_198

ngvck_199

ngvck_200

0.857069

0.817811

0.834065

0.858248

0.745027

0.875788

0.813439

0.79234

0.8794

0.768415

0.796446

0.852494

0.799862

0.660757

0.78357

0.890955

0.839373

0.750812

0.800548

0.925601

0.797583

0.829643

0.838471

0.813208

0.895381

0.827445

0.777924

0.870205

0.852584

0.814617

0.773475

0.81144

0.854805

0.848243

0.864787

0.762374

0.813457

0.74458

0.84178

1.030041

56

Figure C-1: Graphical representation of Virus and Non-Virus Scores using ngvck_ pp_group20_01
model

Scores using ngvck_pp_group20_01 model

-0.1
-0.05

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1
1.05

1.1

0 50 100 150 200 250

File Number

S
co

re

Ngvck

Cygwin

Other-Nonvirus

57

Table C-2.1 Scores of preprocessed Virus and Non Virus files using ngvck_pp_group20_02 model

Non Virus files after Pre-Processing NGVCK Virus variants
after Pre-Processing Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001

ngvck_002

ngvck_003

ngvck_004

ngvck_005

ngvck_006

ngvck_007

ngvck_008

ngvck_009

ngvck_010

ngvck_011

ngvck_012

ngvck_013

ngvck_014

ngvck_015

ngvck_016

ngvck_017

ngvck_018

ngvck_019

ngvck_020

ngvck_021

ngvck_022

ngvck_023

ngvck_024

ngvck_025

ngvck_026

ngvck_027

ngvck_028

ngvck_029

ngvck_030

ngvck_031

ngvck_032

ngvck_033

ngvck_034

ngvck_035

ngvck_036

ngvck_037

ngvck_038

ngvck_039

ngvck_040

0.828381

0.757786

0.847624

0.7368

0.743113

0.752671

0.798293

0.736816

0.796243

0.800729

0.747784

0.771351

0.801882

0.674445

0.771006

0.822784

0.761653

0.703043

0.802737

0.624427

0.866153

0.730291

0.870428

0.812

0.75809

0.85087

0.834567

0.917285

0.880627

0.786614

0.830041

0.77468

0.884885

0.807775

0.765953

0.818434

0.781235

0.858023

0.854824

0.771913

cygwin_01

cygwin_02

cygwin_03

cygwin_04

cygwin_05

cygwin_06

cygwin_07

cygwin_08

cygwin_09

cygwin_10

cygwin_11

cygwin_12

cygwin_13

cygwin_14

cygwin_15

cygwin_16

cygwin_17

cygwin_18

cygwin_19

cygwin_20

cygwin_21

cygwin_22

cygwin_23

cygwin_24

cygwin_25

cygwin_26

cygwin_27

cygwin_28

cygwin_29

cygwin_30

cygwin_31

cygwin_32

cygwin_33

cygwin_34

cygwin_35

cygwin_36

cygwin_37

cygwin_38

cygwin_39

cygwin_40

0.580517

0.76851

0.511929

0.613065

0.530385

0.515502

0.518819

0.540779

0.453575

0.656175

0.492416

0.561099

0.506445

0.408331

0.619902

0.712102

0.543472

0.683028

0.488043

0.487227

0.582314

0.526208

0.461065

0.463993

0.511801

0.499626

0.523655

0.572406

0.144156

0.488398

0.703662

0.487267

0.494805

0.598537

0.479335

0.534515

0.555427

0.51689

0.531798

0.609794

nonvirus_01

nonvirus_02

nonvirus_03

nonvirus_04

nonvirus_05

nonvirus_06

nonvirus_07

nonvirus_08

nonvirus_09

nonvirus_10

nonvirus_11

nonvirus_12

nonvirus_13

nonvirus_14

nonvirus_15

nonvirus_16

nonvirus_17

nonvirus_18

nonvirus_19

nonvirus_20

nonvirus_21

nonvirus_22

nonvirus_23

nonvirus_24

nonvirus_25

nonvirus_26

nonvirus_27

nonvirus_28

nonvirus_29

nonvirus_30

0.169417

0.558092

0.448329

0.724204

0.35404

0.428108

0.36013

0.411188

0.233132

0.413499

0.466024

0.392701

0.523534

0.351599

0.3197

0.288495

0.408147

0.4351

0.313088

0.2605

0.235216

0.452235

0.039321

0.319042

0.308221

-2.662959

0.515032

0.327243

0.395129

0.274813

58

Table C-2.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_02 model

NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Score File Score
ngvck_041

ngvck_042

ngvck_043

ngvck_044

ngvck_045

ngvck_046

ngvck_047

ngvck_048

ngvck_049

ngvck_050

ngvck_051

ngvck_052

ngvck_053

ngvck_054

ngvck_055

ngvck_056

ngvck_057

ngvck_058

ngvck_059

ngvck_060

ngvck_061

ngvck_062

ngvck_063

ngvck_064

ngvck_065

ngvck_066

ngvck_067

ngvck_068

ngvck_069

ngvck_070

ngvck_071

ngvck_072

ngvck_073

ngvck_074

ngvck_075

ngvck_076

ngvck_077

ngvck_078

ngvck_079

ngvck_080

0.738522

0.845601

0.796762

0.704713

0.815328

0.790095

0.838143

0.761381

0.815258

0.74238

0.675937

0.72168

0.863495

0.756973

0.802474

0.790627

0.672291

0.780045

0.821721

0.857707

0.800807

0.808945

0.786805

0.801636

0.766359

0.660153

0.7411

0.827916

0.762093

0.756316

0.758477

0.730391

0.667772

0.818807

0.774266

0.746308

0.791255

0.834478

0.791101

0.764665

ngvck_081

ngvck_082

ngvck_083

ngvck_084

ngvck_085

ngvck_086

ngvck_087

ngvck_088

ngvck_089

ngvck_090

ngvck_091

ngvck_092

ngvck_093

ngvck_094

ngvck_095

ngvck_096

ngvck_097

ngvck_098

ngvck_099

ngvck_100

ngvck_101

ngvck_102

ngvck_103

ngvck_104

ngvck_105

ngvck_106

ngvck_107

ngvck_108

ngvck_109

ngvck_110

ngvck_111

ngvck_112

ngvck_113

ngvck_114

ngvck_115

ngvck_116

ngvck_117

ngvck_118

ngvck_119

ngvck_120

0.824589

0.770465

0.757968

0.81003

0.686612

0.774511

0.740871

0.713647

0.737004

0.783163

0.822124

0.738471

0.775828

0.739925

0.727793

0.740935

0.834719

0.80435

0.760884

0.760663

0.716262

0.752558

0.752348

0.803709

0.765567

0.730209

0.732221

0.806108

0.805707

0.804795

0.782849

0.759181

0.73387

0.803494

0.762706

0.729938

0.74896

0.732935

0.781585

0.767033

ngvck_121

ngvck_122

ngvck_123

ngvck_124

ngvck_125

ngvck_126

ngvck_127

ngvck_128

ngvck_129

ngvck_130

ngvck_131

ngvck_132

ngvck_133

ngvck_134

ngvck_135

ngvck_136

ngvck_137

ngvck_138

ngvck_139

ngvck_140

ngvck_141

ngvck_142

ngvck_143

ngvck_144

ngvck_145

ngvck_146

ngvck_147

ngvck_148

ngvck_149

ngvck_150

ngvck_151

ngvck_152

ngvck_153

ngvck_154

ngvck_155

ngvck_156

ngvck_157

ngvck_158

ngvck_159

ngvck_160

0.738525

0.771785

0.73068

0.763845

0.695978

0.833132

0.697748

0.723479

0.685144

0.768987

0.806899

0.833974

0.742502

0.794522

0.696242

0.763223

0.827659

0.787525

0.732842

0.779013

0.739274

0.736926

0.754939

0.729938

0.759534

0.78559

0.803442

0.804933

0.784507

0.731564

0.737131

0.791855

0.775319

0.771986

0.826642

0.725358

0.825593

0.696075

0.809949

0.771337

ngvck_161

ngvck_162

ngvck_163

ngvck_164

ngvck_165

ngvck_166

ngvck_167

ngvck_168

ngvck_169

ngvck_170

ngvck_171

ngvck_172

ngvck_173

ngvck_174

ngvck_175

ngvck_176

ngvck_177

ngvck_178

ngvck_179

ngvck_180

ngvck_181

ngvck_182

ngvck_183

ngvck_184

ngvck_185

ngvck_186

ngvck_187

ngvck_188

ngvck_189

ngvck_190

ngvck_191

ngvck_192

ngvck_193

ngvck_194

ngvck_195

ngvck_196

ngvck_197

ngvck_198

ngvck_199

ngvck_200

0.799477

0.786537

0.754703

0.794176

0.672203

0.831769

0.783127

0.703943

0.763457

0.760824

0.769112

0.80619

0.698021

0.641684

0.720702

0.819771

0.787317

0.670883

0.766033

0.825609

0.804958

0.772727

0.798342

0.763681

0.845407

0.79659

0.730319

0.760496

0.755723

0.684666

0.76374

0.75298

0.794093

0.814975

0.750904

0.727907

0.767195

0.764788

0.740886

0.785756

59

Figure C-2: Graphical representation of Virus and Non-Virus Scores using ngvck_ pp_group20_02
model

Scores using ngvck_pp_group20_02 model

-0.2
-0.15

-0.1
-0.05

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

0 50 100 150 200 250

File Number

S
co

re

Ngvck

Cygwin

Other-Nonvirus

60

Table C-3.1 Scores of preprocessed Virus and Non Virus files using ngvck_pp_group20_03 model

Non Virus files after Pre-Processing NGVCK Virus variants
after Pre-Processing Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001

ngvck_002

ngvck_003

ngvck_004

ngvck_005

ngvck_006

ngvck_007

ngvck_008

ngvck_009

ngvck_010

ngvck_011

ngvck_012

ngvck_013

ngvck_014

ngvck_015

ngvck_016

ngvck_017

ngvck_018

ngvck_019

ngvck_020

ngvck_021

ngvck_022

ngvck_023

ngvck_024

ngvck_025

ngvck_026

ngvck_027

ngvck_028

ngvck_029

ngvck_030

ngvck_031

ngvck_032

ngvck_033

ngvck_034

ngvck_035

ngvck_036

ngvck_037

ngvck_038

ngvck_039

ngvck_040

0.841463

0.890275

0.908429

0.931931

0.816886

0.836098

0.829136

0.805622

0.873528

0.932081

0.851462

0.892772

0.819372

0.805064

0.93064

0.871456

0.787787

0.788396

0.86655

0.573397

0.849945

0.892437

0.841527

0.797918

0.738444

0.824084

0.845827

0.834182

0.813924

0.783003

0.888515

0.779469

0.84003

0.864777

0.745495

0.916553

0.924546

0.728479

0.872537

1.031087

cygwin_01

cygwin_02

cygwin_03

cygwin_04

cygwin_05

cygwin_06

cygwin_07

cygwin_08

cygwin_09

cygwin_10

cygwin_11

cygwin_12

cygwin_13

cygwin_14

cygwin_15

cygwin_16

cygwin_17

cygwin_18

cygwin_19

cygwin_20

cygwin_21

cygwin_22

cygwin_23

cygwin_24

cygwin_25

cygwin_26

cygwin_27

cygwin_28

cygwin_29

cygwin_30

cygwin_31

cygwin_32

cygwin_33

cygwin_34

cygwin_35

cygwin_36

cygwin_37

cygwin_38

cygwin_39

cygwin_40

0.734867

0.900736

0.750114

0.814867

0.748111

0.757009

0.753734

0.753501

0.562229

0.777756

0.684623

0.732611

0.638832

0.587021

0.737692

0.863374

0.619695

0.841042

0.765583

0.609147

0.760312

0.679325

0.656278

0.630473

0.473591

0.595079

0.647573

0.692067

0.139012

0.579673

0.81042

0.500726

0.67757

0.747324

0.636384

0.665231

0.668131

0.648995

0.785913

0.744111

nonvirus_01

nonvirus_02

nonvirus_03

nonvirus_04

nonvirus_05

nonvirus_06

nonvirus_07

nonvirus_08

nonvirus_09

nonvirus_10

nonvirus_11

nonvirus_12

nonvirus_13

nonvirus_14

nonvirus_15

nonvirus_16

nonvirus_17

nonvirus_18

nonvirus_19

nonvirus_20

nonvirus_21

nonvirus_22

nonvirus_23

nonvirus_24

nonvirus_25

nonvirus_26

nonvirus_27

nonvirus_28

nonvirus_29

nonvirus_30

0.364686

0.823921

0.772905

1.016538

0.659697

0.717304

0.672208

0.703686

0.576922

0.703593

0.615317

0.687278

0.810699

0.619772

0.619115

0.583951

0.668209

0.637316

0.574846

0.579644

0.490828

0.630619

0.346088

0.64141

0.511113

-2.575797

0.763262

0.375109

0.612437

0.540981

61

Table C-3.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_03 model

NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Score File Score
ngvck_041

ngvck_042

ngvck_043

ngvck_044

ngvck_045

ngvck_046

ngvck_047

ngvck_048

ngvck_049

ngvck_050

ngvck_051

ngvck_052

ngvck_053

ngvck_054

ngvck_055

ngvck_056

ngvck_057

ngvck_058

ngvck_059

ngvck_060

ngvck_061

ngvck_062

ngvck_063

ngvck_064

ngvck_065

ngvck_066

ngvck_067

ngvck_068

ngvck_069

ngvck_070

ngvck_071

ngvck_072

ngvck_073

ngvck_074

ngvck_075

ngvck_076

ngvck_077

ngvck_078

ngvck_079

ngvck_080

0.83925

0.91401

0.8625

0.922903

0.969751

0.845309

1.087423

1.014962

0.912537

0.818697

0.937296

0.946555

0.985901

0.97076

0.976043

1.019535

0.837554

0.896579

1.021797

0.906058

0.848395

0.851172

0.840138

0.873343

0.908832

0.798149

0.865831

0.86319

0.822837

0.79258

0.791387

0.753153

0.700216

0.856811

0.810692

0.759762

0.839966

0.913255

0.895487

0.819754

ngvck_081

ngvck_082

ngvck_083

ngvck_084

ngvck_085

ngvck_086

ngvck_087

ngvck_088

ngvck_089

ngvck_090

ngvck_091

ngvck_092

ngvck_093

ngvck_094

ngvck_095

ngvck_096

ngvck_097

ngvck_098

ngvck_099

ngvck_100

ngvck_101

ngvck_102

ngvck_103

ngvck_104

ngvck_105

ngvck_106

ngvck_107

ngvck_108

ngvck_109

ngvck_110

ngvck_111

ngvck_112

ngvck_113

ngvck_114

ngvck_115

ngvck_116

ngvck_117

ngvck_118

ngvck_119

ngvck_120

0.872857

0.808906

0.783196

0.86801

0.71809

0.881484

0.846087

0.882405

0.805833

0.904509

0.83877

0.779999

0.811859

0.764465

0.757465

0.874001

0.868151

0.843217

0.838819

0.833035

0.888284

0.807025

0.834233

0.859233

0.823624

0.748523

0.772242

0.857217

0.925482

0.927198

0.818228

0.876711

0.763812

0.851522

0.802874

0.783519

0.911759

0.752942

0.937536

0.765434

ngvck_121

ngvck_122

ngvck_123

ngvck_124

ngvck_125

ngvck_126

ngvck_127

ngvck_128

ngvck_129

ngvck_130

ngvck_131

ngvck_132

ngvck_133

ngvck_134

ngvck_135

ngvck_136

ngvck_137

ngvck_138

ngvck_139

ngvck_140

ngvck_141

ngvck_142

ngvck_143

ngvck_144

ngvck_145

ngvck_146

ngvck_147

ngvck_148

ngvck_149

ngvck_150

ngvck_151

ngvck_152

ngvck_153

ngvck_154

ngvck_155

ngvck_156

ngvck_157

ngvck_158

ngvck_159

ngvck_160

0.797442

0.805456

0.851486

0.895327

0.754162

0.85057

0.754502

0.734585

0.798054

0.909762

0.826622

0.95476

0.851179

0.903836

0.763869

0.901318

0.864851

0.848179

0.780537

0.817435

0.798006

0.876068

0.806389

0.859658

0.801252

0.832969

0.854851

0.84847

0.827902

0.763924

0.792034

0.851721

0.838518

0.842713

0.976208

0.7397

0.85456

0.761636

0.826476

0.904737

ngvck_161

ngvck_162

ngvck_163

ngvck_164

ngvck_165

ngvck_166

ngvck_167

ngvck_168

ngvck_169

ngvck_170

ngvck_171

ngvck_172

ngvck_173

ngvck_174

ngvck_175

ngvck_176

ngvck_177

ngvck_178

ngvck_179

ngvck_180

ngvck_181

ngvck_182

ngvck_183

ngvck_184

ngvck_185

ngvck_186

ngvck_187

ngvck_188

ngvck_189

ngvck_190

ngvck_191

ngvck_192

ngvck_193

ngvck_194

ngvck_195

ngvck_196

ngvck_197

ngvck_198

ngvck_199

ngvck_200

0.924546

0.849196

0.928015

0.934493

0.786579

0.884516

0.820076

0.863464

0.918203

0.801691

0.826074

0.853318

0.824691

0.647984

0.829205

0.942609

0.932823

0.811958

0.811343

0.972538

0.844325

0.911726

0.86521

0.809428

0.898132

0.849825

0.866119

0.929229

0.909698

0.875517

0.787677

0.819372

0.859047

0.911266

0.901283

0.778578

0.815285

0.807637

0.88342

0.931357

62

Figure C-3: Graphical representation of Virus and Non-Virus Scores using ngvck_ pp_group20_03
model

Scores using ngvck_pp_group20_03 model

-0.2
-0.15

-0.1
-0.05

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2

0 50 100 150 200 250

File Number

S
co

re

Ngvck

Cygwin

Other-Nonvirus

63

Table C-4.1 Scores of preprocessed Virus and Non Virus files using ngvck_pp_group20_04 model

Non Virus files after Pre-Processing NGVCK Virus variants
after Pre-Processing Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001

ngvck_002

ngvck_003

ngvck_004

ngvck_005

ngvck_006

ngvck_007

ngvck_008

ngvck_009

ngvck_010

ngvck_011

ngvck_012

ngvck_013

ngvck_014

ngvck_015

ngvck_016

ngvck_017

ngvck_018

ngvck_019

ngvck_020

ngvck_021

ngvck_022

ngvck_023

ngvck_024

ngvck_025

ngvck_026

ngvck_027

ngvck_028

ngvck_029

ngvck_030

ngvck_031

ngvck_032

ngvck_033

ngvck_034

ngvck_035

ngvck_036

ngvck_037

ngvck_038

ngvck_039

ngvck_040

0.850841

0.789578

0.929644

0.757559

0.811504

0.856675

0.821737

0.793246

0.840646

0.838195

0.807864

0.814475

0.85686

0.687016

0.839257

0.901444

0.841206

0.73845

0.863958

0.567517

0.873405

0.726899

0.806073

0.816556

0.818126

0.864861

0.869858

0.805993

0.830942

0.7618

0.832774

0.801001

0.87189

0.789558

0.767798

0.805831

0.824222

0.741865

0.867498

0.83168

cygwin_01

cygwin_02

cygwin_03

cygwin_04

cygwin_05

cygwin_06

cygwin_07

cygwin_08

cygwin_09

cygwin_10

cygwin_11

cygwin_12

cygwin_13

cygwin_14

cygwin_15

cygwin_16

cygwin_17

cygwin_18

cygwin_19

cygwin_20

cygwin_21

cygwin_22

cygwin_23

cygwin_24

cygwin_25

cygwin_26

cygwin_27

cygwin_28

cygwin_29

cygwin_30

cygwin_31

cygwin_32

cygwin_33

cygwin_34

cygwin_35

cygwin_36

cygwin_37

cygwin_38

cygwin_39

cygwin_40

0.550491

0.705151

0.493297

0.593455

0.522902

0.51482

0.508263

0.542356

0.408046

0.590317

0.481398

0.538339

0.455474

0.397333

0.599099

0.65914

0.489615

0.614919

0.499818

0.442372

0.593168

0.492374

0.489134

0.478008

0.340155

0.455283

0.486133

0.560022

0.113415

0.4258

0.675477

0.469703

0.447418

0.574049

0.462666

0.540654

0.549647

0.479169

0.550915

0.586272

nonvirus_01

nonvirus_02

nonvirus_03

nonvirus_04

nonvirus_05

nonvirus_06

nonvirus_07

nonvirus_08

nonvirus_09

nonvirus_10

nonvirus_11

nonvirus_12

nonvirus_13

nonvirus_14

nonvirus_15

nonvirus_16

nonvirus_17

nonvirus_18

nonvirus_19

nonvirus_20

nonvirus_21

nonvirus_22

nonvirus_23

nonvirus_24

nonvirus_25

nonvirus_26

nonvirus_27

nonvirus_28

nonvirus_29

nonvirus_30

0.182317

0.4411

0.368082

0.686137

0.335471

0.37703

0.358807

0.380057

0.294592

0.364261

0.539318

0.344576

0.401636

0.406111

0.426938

0.340582

0.351213

0.386637

0.284266

0.308129

0.267181

0.428343

0.12885

0.446545

0.289537

-2.922211

0.456843

0.298224

0.493696

0.391814

64

Table C-4.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_04 model

NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Score File Score
ngvck_041

ngvck_042

ngvck_043

ngvck_044

ngvck_045

ngvck_046

ngvck_047

ngvck_048

ngvck_049

ngvck_050

ngvck_051

ngvck_052

ngvck_053

ngvck_054

ngvck_055

ngvck_056

ngvck_057

ngvck_058

ngvck_059

ngvck_060

ngvck_061

ngvck_062

ngvck_063

ngvck_064

ngvck_065

ngvck_066

ngvck_067

ngvck_068

ngvck_069

ngvck_070

ngvck_071

ngvck_072

ngvck_073

ngvck_074

ngvck_075

ngvck_076

ngvck_077

ngvck_078

ngvck_079

ngvck_080

0.757298

0.868983

0.835482

0.772492

0.808767

0.852955

0.858213

0.840456

0.892527

0.756263

0.722567

0.757073

0.924156

0.824019

0.867228

0.844169

0.673355

0.82388

0.839189

1.012009

0.916303

0.866677

0.894036

0.991646

0.86211

0.739855

0.879567

0.883107

0.886513

0.85795

0.858721

0.844036

0.736049

0.978836

0.945607

0.853917

0.926047

1.048576

0.907694

0.7952

ngvck_081

ngvck_082

ngvck_083

ngvck_084

ngvck_085

ngvck_086

ngvck_087

ngvck_088

ngvck_089

ngvck_090

ngvck_091

ngvck_092

ngvck_093

ngvck_094

ngvck_095

ngvck_096

ngvck_097

ngvck_098

ngvck_099

ngvck_100

ngvck_101

ngvck_102

ngvck_103

ngvck_104

ngvck_105

ngvck_106

ngvck_107

ngvck_108

ngvck_109

ngvck_110

ngvck_111

ngvck_112

ngvck_113

ngvck_114

ngvck_115

ngvck_116

ngvck_117

ngvck_118

ngvck_119

ngvck_120

0.875376

0.789727

0.78406

0.848924

0.765512

0.847363

0.787948

0.799455

0.814521

0.80263

0.867838

0.787624

0.793503

0.810422

0.801993

0.819189

0.880471

0.885093

0.830922

0.771427

0.807563

0.796399

0.878371

0.87129

0.793809

0.770843

0.867642

0.843888

0.878378

0.848251

0.827482

0.831778

0.82623

0.817299

0.811942

0.849045

0.852727

0.834679

0.772825

0.811841

ngvck_121

ngvck_122

ngvck_123

ngvck_124

ngvck_125

ngvck_126

ngvck_127

ngvck_128

ngvck_129

ngvck_130

ngvck_131

ngvck_132

ngvck_133

ngvck_134

ngvck_135

ngvck_136

ngvck_137

ngvck_138

ngvck_139

ngvck_140

ngvck_141

ngvck_142

ngvck_143

ngvck_144

ngvck_145

ngvck_146

ngvck_147

ngvck_148

ngvck_149

ngvck_150

ngvck_151

ngvck_152

ngvck_153

ngvck_154

ngvck_155

ngvck_156

ngvck_157

ngvck_158

ngvck_159

ngvck_160

0.867213

0.879113

0.803316

0.804353

0.750825

0.929491

0.793311

0.757188

0.714807

0.858053

0.833891

0.865877

0.78726

0.827229

0.799894

0.826665

0.894569

0.815387

0.817584

0.882078

0.754774

0.806499

0.791995

0.776753

0.80383

0.83658

0.852187

0.876262

0.86039

0.790311

0.834198

0.863463

0.861613

0.875987

0.907116

0.790272

0.910911

0.797436

0.840191

0.834498

ngvck_161

ngvck_162

ngvck_163

ngvck_164

ngvck_165

ngvck_166

ngvck_167

ngvck_168

ngvck_169

ngvck_170

ngvck_171

ngvck_172

ngvck_173

ngvck_174

ngvck_175

ngvck_176

ngvck_177

ngvck_178

ngvck_179

ngvck_180

ngvck_181

ngvck_182

ngvck_183

ngvck_184

ngvck_185

ngvck_186

ngvck_187

ngvck_188

ngvck_189

ngvck_190

ngvck_191

ngvck_192

ngvck_193

ngvck_194

ngvck_195

ngvck_196

ngvck_197

ngvck_198

ngvck_199

ngvck_200

0.858928

0.874478

0.83829

0.852214

0.688109

0.902067

0.815573

0.762217

0.862011

0.777249

0.826157

0.892451

0.768491

0.666343

0.778774

0.877213

0.82546

0.691058

0.796368

0.853128

0.831712

0.815922

0.886166

0.796525

0.930065

0.860386

0.771396

0.809346

0.826969

0.738429

0.806646

0.826995

0.909475

0.833949

0.802299

0.79544

0.853541

0.821007

0.805343

0.852154

65

Figure C-4: Graphical representation of Virus and Non-Virus Scores using ngvck_ pp_group20_04
model

Scores using ngvck_pp_group20_04 model

-0.5
-0.45

-0.4
-0.35

-0.3
-0.25

-0.2
-0.15

-0.1
-0.05

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

0 50 100 150 200 250

File Number

S
co

re

Ngvck

Cygwin

Other-Nonvirus

66

Table C-5.1 Scores of preprocessed Virus and Non Virus files using ngvck_pp_group20_05 model

Non Virus files after Pre-Processing NGVCK Virus variants
after Pre-Processing Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001

ngvck_002

ngvck_003

ngvck_004

ngvck_005

ngvck_006

ngvck_007

ngvck_008

ngvck_009

ngvck_010

ngvck_011

ngvck_012

ngvck_013

ngvck_014

ngvck_015

ngvck_016

ngvck_017

ngvck_018

ngvck_019

ngvck_020

ngvck_021

ngvck_022

ngvck_023

ngvck_024

ngvck_025

ngvck_026

ngvck_027

ngvck_028

ngvck_029

ngvck_030

ngvck_031

ngvck_032

ngvck_033

ngvck_034

ngvck_035

ngvck_036

ngvck_037

ngvck_038

ngvck_039

ngvck_040

0.860312

0.795237

0.886658

0.802831

0.81137

0.839508

0.849245

0.795148

0.834733

0.84878

0.808141

0.835057

0.829593

0.713438

0.842663

0.873962

0.824749

0.738526

0.834267

0.583671

0.828935

0.758629

0.819315

0.793526

0.766219

0.847906

0.840946

0.833153

0.822582

0.752658

0.832907

0.760973

0.895305

0.799552

0.756854

0.841632

0.838682

0.758617

0.862616

0.820418

cygwin_01

cygwin_02

cygwin_03

cygwin_04

cygwin_05

cygwin_06

cygwin_07

cygwin_08

cygwin_09

cygwin_10

cygwin_11

cygwin_12

cygwin_13

cygwin_14

cygwin_15

cygwin_16

cygwin_17

cygwin_18

cygwin_19

cygwin_20

cygwin_21

cygwin_22

cygwin_23

cygwin_24

cygwin_25

cygwin_26

cygwin_27

cygwin_28

cygwin_29

cygwin_30

cygwin_31

cygwin_32

cygwin_33

cygwin_34

cygwin_35

cygwin_36

cygwin_37

cygwin_38

cygwin_39

cygwin_40

0.65142

0.837838

0.62421

0.712136

0.598098

0.602079

0.595102

0.619307

0.522162

0.766615

0.625508

0.633505

0.545201

0.511541

0.690079

0.795933

0.573789

0.747769

0.645287

0.545467

0.707892

0.673296

0.506957

0.565108

0.553429

0.569064

0.593251

0.642484

0.124127

0.573054

0.784436

0.502194

0.593266

0.732766

0.626555

0.681297

0.643173

0.619963

0.690918

0.704758

nonvirus_01

nonvirus_02

nonvirus_03

nonvirus_04

nonvirus_05

nonvirus_06

nonvirus_07

nonvirus_08

nonvirus_09

nonvirus_10

nonvirus_11

nonvirus_12

nonvirus_13

nonvirus_14

nonvirus_15

nonvirus_16

nonvirus_17

nonvirus_18

nonvirus_19

nonvirus_20

nonvirus_21

nonvirus_22

nonvirus_23

nonvirus_24

nonvirus_25

nonvirus_26

nonvirus_27

nonvirus_28

nonvirus_29

nonvirus_30

0.3098

0.548429

0.461659

0.792522

0.403953

0.454446

0.408925

0.451406

0.403035

0.43616

0.47951

0.422449

0.559038

0.38252

0.405813

0.454967

0.414138

0.491692

0.353092

0.348321

0.323091

0.456602

0.212399

0.39308

0.355802

-2.666368

0.598836

0.353773

0.434932

0.351344

67

Table C-5.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_05 model

NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Score File Score
ngvck_041

ngvck_042

ngvck_043

ngvck_044

ngvck_045

ngvck_046

ngvck_047

ngvck_048

ngvck_049

ngvck_050

ngvck_051

ngvck_052

ngvck_053

ngvck_054

ngvck_055

ngvck_056

ngvck_057

ngvck_058

ngvck_059

ngvck_060

ngvck_061

ngvck_062

ngvck_063

ngvck_064

ngvck_065

ngvck_066

ngvck_067

ngvck_068

ngvck_069

ngvck_070

ngvck_071

ngvck_072

ngvck_073

ngvck_074

ngvck_075

ngvck_076

ngvck_077

ngvck_078

ngvck_079

ngvck_080

0.789268

0.877905

0.871348

0.791164

0.847984

0.853752

0.882946

0.833787

0.914435

0.738183

0.730682

0.78623

0.85688

0.821237

0.875092

0.885147

0.740422

0.848453

0.868572

0.889875

0.847608

0.839004

0.86194

0.892939

0.849876

0.721508

0.797511

0.868227

0.818536

0.805478

0.78848

0.802295

0.708494

0.894591

0.820317

0.8137

0.860255

0.912617

0.850906

0.953381

ngvck_081

ngvck_082

ngvck_083

ngvck_084

ngvck_085

ngvck_086

ngvck_087

ngvck_088

ngvck_089

ngvck_090

ngvck_091

ngvck_092

ngvck_093

ngvck_094

ngvck_095

ngvck_096

ngvck_097

ngvck_098

ngvck_099

ngvck_100

ngvck_101

ngvck_102

ngvck_103

ngvck_104

ngvck_105

ngvck_106

ngvck_107

ngvck_108

ngvck_109

ngvck_110

ngvck_111

ngvck_112

ngvck_113

ngvck_114

ngvck_115

ngvck_116

ngvck_117

ngvck_118

ngvck_119

ngvck_120

0.949979

0.839963

0.829506

0.9695

0.788568

0.914138

0.843457

0.87577

0.903105

0.896721

0.885369

0.822293

0.848912

0.842295

0.854048

0.827899

1.012343

0.982843

0.898596

0.798248

0.828098

0.823811

0.823456

0.884113

0.835814

0.79369

0.812982

0.933249

0.886441

0.889064

0.862638

0.847809

0.787307

0.874534

0.82549

0.802846

0.848065

0.814558

0.853697

0.803989

ngvck_121

ngvck_122

ngvck_123

ngvck_124

ngvck_125

ngvck_126

ngvck_127

ngvck_128

ngvck_129

ngvck_130

ngvck_131

ngvck_132

ngvck_133

ngvck_134

ngvck_135

ngvck_136

ngvck_137

ngvck_138

ngvck_139

ngvck_140

ngvck_141

ngvck_142

ngvck_143

ngvck_144

ngvck_145

ngvck_146

ngvck_147

ngvck_148

ngvck_149

ngvck_150

ngvck_151

ngvck_152

ngvck_153

ngvck_154

ngvck_155

ngvck_156

ngvck_157

ngvck_158

ngvck_159

ngvck_160

0.786711

0.876532

0.775447

0.825083

0.741749

0.91602

0.773638

0.771198

0.75079

0.855277

0.846253

0.874133

0.776646

0.835827

0.781461

0.841166

0.868623

0.832373

0.793071

0.876543

0.780222

0.803766

0.790492

0.767038

0.82432

0.865609

0.891862

0.879315

0.828714

0.811242

0.774718

0.858661

0.870033

0.882416

0.918738

0.746016

0.872844

0.777988

0.877765

0.86788

ngvck_161

ngvck_162

ngvck_163

ngvck_164

ngvck_165

ngvck_166

ngvck_167

ngvck_168

ngvck_169

ngvck_170

ngvck_171

ngvck_172

ngvck_173

ngvck_174

ngvck_175

ngvck_176

ngvck_177

ngvck_178

ngvck_179

ngvck_180

ngvck_181

ngvck_182

ngvck_183

ngvck_184

ngvck_185

ngvck_186

ngvck_187

ngvck_188

ngvck_189

ngvck_190

ngvck_191

ngvck_192

ngvck_193

ngvck_194

ngvck_195

ngvck_196

ngvck_197

ngvck_198

ngvck_199

ngvck_200

0.848393

0.858623

0.82717

0.861848

0.731031

0.927098

0.820945

0.768382

0.847036

0.773147

0.857833

0.880044

0.78647

0.666196

0.785309

0.88969

0.837363

0.690419

0.789939

0.909156

0.858647

0.846342

0.89333

0.781806

0.91926

0.858923

0.800423

0.80888

0.792674

0.755954

0.769365

0.832916

0.904256

0.835516

0.812253

0.772325

0.838026

0.811225

0.833222

0.865753

68

Figure C-5: Graphical representation of Virus and Non-Virus Scores using ngvck_ pp_group20_05
model

Scores using ngvck_pp_group20_05 model

-0.2
-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

0 50 100 150 200 250

File Number

S
co

re

Ngvck
Cygwin
Other-Nonvirus

69

Table C-6.1 Scores of preprocessed Virus and Non Virus files using ngvck_pp_group20_06 model

Non Virus files after Pre-Processing NGVCK Virus variants
after Pre-Processing Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001

ngvck_002

ngvck_003

ngvck_004

ngvck_005

ngvck_006

ngvck_007

ngvck_008

ngvck_009

ngvck_010

ngvck_011

ngvck_012

ngvck_013

ngvck_014

ngvck_015

ngvck_016

ngvck_017

ngvck_018

ngvck_019

ngvck_020

ngvck_021

ngvck_022

ngvck_023

ngvck_024

ngvck_025

ngvck_026

ngvck_027

ngvck_028

ngvck_029

ngvck_030

ngvck_031

ngvck_032

ngvck_033

ngvck_034

ngvck_035

ngvck_036

ngvck_037

ngvck_038

ngvck_039

ngvck_040

0.857348

0.830591

0.886336

0.780231

0.835773

0.844064

0.82485

0.810281

0.856378

0.892242

0.776092

0.90029

0.834927

0.716053

0.900905

0.870551

0.781267

0.711871

0.87085

0.565175

0.815945

0.792282

0.824134

0.825402

0.780611

0.857428

0.841704

0.842293

0.812517

0.77842

0.840315

0.738386

0.878783

0.847432

0.755223

0.844135

0.875078

0.764438

0.848934

0.878674

cygwin_01

cygwin_02

cygwin_03

cygwin_04

cygwin_05

cygwin_06

cygwin_07

cygwin_08

cygwin_09

cygwin_10

cygwin_11

cygwin_12

cygwin_13

cygwin_14

cygwin_15

cygwin_16

cygwin_17

cygwin_18

cygwin_19

cygwin_20

cygwin_21

cygwin_22

cygwin_23

cygwin_24

cygwin_25

cygwin_26

cygwin_27

cygwin_28

cygwin_29

cygwin_30

cygwin_31

cygwin_32

cygwin_33

cygwin_34

cygwin_35

cygwin_36

cygwin_37

cygwin_38

cygwin_39

cygwin_40

0.665388

0.835151

0.645472

0.729581

0.704802

0.698572

0.686196

0.719053

0.53585

0.725013

0.637629

0.650058

0.550787

0.560818

0.713838

0.790463

0.589251

0.744832

0.662689

0.563861

0.711819

0.645836

0.523773

0.598631

0.454176

0.606585

0.618683

0.666782

0.101304

0.560581

0.793235

0.529049

0.576481

0.711174

0.633463

0.677069

0.6667

0.568887

0.729031

0.715616

nonvirus_01

nonvirus_02

nonvirus_03

nonvirus_04

nonvirus_05

nonvirus_06

nonvirus_07

nonvirus_08

nonvirus_09

nonvirus_10

nonvirus_11

nonvirus_12

nonvirus_13

nonvirus_14

nonvirus_15

nonvirus_16

nonvirus_17

nonvirus_18

nonvirus_19

nonvirus_20

nonvirus_21

nonvirus_22

nonvirus_23

nonvirus_24

nonvirus_25

nonvirus_26

nonvirus_27

nonvirus_28

nonvirus_29

nonvirus_30

0.344736

0.708166

0.669798

0.885802

0.571462

0.631871

0.596628

0.621427

0.481649

0.598287

0.510082

0.567451

0.69617

0.51911

0.530152

0.526742

0.591833

0.507001

0.477605

0.518567

0.450247

0.519793

0.284339

0.513377

0.450295

-2.84037

0.637178

0.360564

0.469775

0.504919

70

Table C-6.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_06 model

NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Score File Score
ngvck_041

ngvck_042

ngvck_043

ngvck_044

ngvck_045

ngvck_046

ngvck_047

ngvck_048

ngvck_049

ngvck_050

ngvck_051

ngvck_052

ngvck_053

ngvck_054

ngvck_055

ngvck_056

ngvck_057

ngvck_058

ngvck_059

ngvck_060

ngvck_061

ngvck_062

ngvck_063

ngvck_064

ngvck_065

ngvck_066

ngvck_067

ngvck_068

ngvck_069

ngvck_070

ngvck_071

ngvck_072

ngvck_073

ngvck_074

ngvck_075

ngvck_076

ngvck_077

ngvck_078

ngvck_079

ngvck_080

0.787965

0.874135

0.823588

0.86921

0.827033

0.824635

0.899466

0.864145

0.881111

0.744739

0.780073

0.797362

0.855975

0.869458

0.906181

0.906896

0.7225

0.833423

0.884655

0.858085

0.866041

0.851616

0.867943

0.869142

0.910372

0.741648

0.879336

0.867364

0.806277

0.820465

0.80174

0.783952

0.726149

0.880718

0.856148

0.779281

0.875151

0.908855

0.895629

0.845306

ngvck_081

ngvck_082

ngvck_083

ngvck_084

ngvck_085

ngvck_086

ngvck_087

ngvck_088

ngvck_089

ngvck_090

ngvck_091

ngvck_092

ngvck_093

ngvck_094

ngvck_095

ngvck_096

ngvck_097

ngvck_098

ngvck_099

ngvck_100

ngvck_101

ngvck_102

ngvck_103

ngvck_104

ngvck_105

ngvck_106

ngvck_107

ngvck_108

ngvck_109

ngvck_110

ngvck_111

ngvck_112

ngvck_113

ngvck_114

ngvck_115

ngvck_116

ngvck_117

ngvck_118

ngvck_119

ngvck_120

0.919251

0.842519

0.790639

0.891821

0.791448

0.899106

0.837336

0.861653

0.797263

0.837355

0.847147

0.790581

0.828515

0.798159

0.806778

0.855954

0.909905

0.883154

0.875773

0.877474

0.941228

0.863846

0.856345

0.897436

0.875443

0.864577

0.904318

1.005835

1.014893

1.026811

0.919397

0.913977

0.848819

0.905502

0.949807

0.844209

0.958554

0.869516

0.982696

0.790235

ngvck_121

ngvck_122

ngvck_123

ngvck_124

ngvck_125

ngvck_126

ngvck_127

ngvck_128

ngvck_129

ngvck_130

ngvck_131

ngvck_132

ngvck_133

ngvck_134

ngvck_135

ngvck_136

ngvck_137

ngvck_138

ngvck_139

ngvck_140

ngvck_141

ngvck_142

ngvck_143

ngvck_144

ngvck_145

ngvck_146

ngvck_147

ngvck_148

ngvck_149

ngvck_150

ngvck_151

ngvck_152

ngvck_153

ngvck_154

ngvck_155

ngvck_156

ngvck_157

ngvck_158

ngvck_159

ngvck_160

0.773551

0.850995

0.836089

0.875467

0.740726

0.919251

0.779074

0.822191

0.755359

0.916226

0.891337

0.904379

0.840713

0.901

0.780507

0.889069

0.874965

0.868311

0.788287

0.846438

0.795904

0.861356

0.811352

0.826857

0.812919

0.847005

0.889716

0.891082

0.835956

0.786074

0.776276

0.851057

0.829074

0.844509

0.974118

0.769981

0.899375

0.756111

0.848037

0.883175

ngvck_161

ngvck_162

ngvck_163

ngvck_164

ngvck_165

ngvck_166

ngvck_167

ngvck_168

ngvck_169

ngvck_170

ngvck_171

ngvck_172

ngvck_173

ngvck_174

ngvck_175

ngvck_176

ngvck_177

ngvck_178

ngvck_179

ngvck_180

ngvck_181

ngvck_182

ngvck_183

ngvck_184

ngvck_185

ngvck_186

ngvck_187

ngvck_188

ngvck_189

ngvck_190

ngvck_191

ngvck_192

ngvck_193

ngvck_194

ngvck_195

ngvck_196

ngvck_197

ngvck_198

ngvck_199

ngvck_200

0.886497

0.865237

0.903766

0.871218

0.693498

0.932124

0.835308

0.821496

0.896264

0.771048

0.860619

0.868688

0.828928

0.658104

0.800254

0.911872

0.864514

0.715396

0.789318

0.915722

0.846975

0.87459

0.864454

0.804237

0.909293

0.860541

0.821049

0.86864

0.888359

0.792541

0.804301

0.795243

0.87558

0.863965

0.842996

0.784674

0.86301

0.772871

0.817451

0.928114

71

Figure C-6: Graphical representation of Virus and Non-Virus Scores using ngvck_pp_group20_06
model

Scores using ngvck_pp_group20_06 model

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15

0 50 100 150 200 250

File Number

S
co

re

Ngvck

Cygwin

Other-Nonvirus

72

Table C-7.1 Scores of preprocessed Virus and Non Virus files using ngvck_pp_group20_07 model

Non Virus files after Pre-Processing NGVCK Virus variants
after Pre-Processing Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001

ngvck_002

ngvck_003

ngvck_004

ngvck_005

ngvck_006

ngvck_007

ngvck_008

ngvck_009

ngvck_010

ngvck_011

ngvck_012

ngvck_013

ngvck_014

ngvck_015

ngvck_016

ngvck_017

ngvck_018

ngvck_019

ngvck_020

ngvck_021

ngvck_022

ngvck_023

ngvck_024

ngvck_025

ngvck_026

ngvck_027

ngvck_028

ngvck_029

ngvck_030

ngvck_031

ngvck_032

ngvck_033

ngvck_034

ngvck_035

ngvck_036

ngvck_037

ngvck_038

ngvck_039

ngvck_040

0.865543

0.814869

0.866258

0.800929

0.793267

0.82085

0.792142

0.770744

0.813397

0.88659

0.777947

0.883008

0.800081

0.730695

0.858821

0.874824

0.804879

0.695072

0.853693

0.544857

0.805895

0.780706

0.777135

0.79111

0.748803

0.848425

0.81959

0.841042

0.773215

0.753541

0.880447

0.7555

0.875635

0.846532

0.750527

0.877516

0.837036

0.736628

0.840309

0.845677

cygwin_01

cygwin_02

cygwin_03

cygwin_04

cygwin_05

cygwin_06

cygwin_07

cygwin_08

cygwin_09

cygwin_10

cygwin_11

cygwin_12

cygwin_13

cygwin_14

cygwin_15

cygwin_16

cygwin_17

cygwin_18

cygwin_19

cygwin_20

cygwin_21

cygwin_22

cygwin_23

cygwin_24

cygwin_25

cygwin_26

cygwin_27

cygwin_28

cygwin_29

cygwin_30

cygwin_31

cygwin_32

cygwin_33

cygwin_34

cygwin_35

cygwin_36

cygwin_37

cygwin_38

cygwin_39

cygwin_40

0.630754

0.741246

0.585521

0.652538

0.637812

0.636536

0.632793

0.649109

0.503038

0.627092

0.582739

0.603015

0.518257

0.50358

0.647903

0.721082

0.534949

0.674909

0.607236

0.528619

0.644642

0.60521

0.526276

0.540287

0.514545

0.517585

0.540059

0.615562

0.082993

0.525204

0.713515

0.465451

0.544242

0.663104

0.580656

0.629654

0.600762

0.539433

0.68919

0.649597

nonvirus_01

nonvirus_02

nonvirus_03

nonvirus_04

nonvirus_05

nonvirus_06

nonvirus_07

nonvirus_08

nonvirus_09

nonvirus_10

nonvirus_11

nonvirus_12

nonvirus_13

nonvirus_14

nonvirus_15

nonvirus_16

nonvirus_17

nonvirus_18

nonvirus_19

nonvirus_20

nonvirus_21

nonvirus_22

nonvirus_23

nonvirus_24

nonvirus_25

nonvirus_26

nonvirus_27

nonvirus_28

nonvirus_29

nonvirus_30

0.362882

0.669439

0.551523

0.777995

0.536817

0.583833

0.548286

0.573075

0.489976

0.545885

0.494611

0.536247

0.627552

0.48205

0.500026

0.507018

0.560958

0.524389

0.48448

0.461801

0.421492

0.517388

0.301061

0.531684

0.482876

-2.901623

0.605216

0.32678

0.513358

0.484492

73

Table C-7.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_07 model

NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Score File Score
ngvck_041

ngvck_042

ngvck_043

ngvck_044

ngvck_045

ngvck_046

ngvck_047

ngvck_048

ngvck_049

ngvck_050

ngvck_051

ngvck_052

ngvck_053

ngvck_054

ngvck_055

ngvck_056

ngvck_057

ngvck_058

ngvck_059

ngvck_060

ngvck_061

ngvck_062

ngvck_063

ngvck_064

ngvck_065

ngvck_066

ngvck_067

ngvck_068

ngvck_069

ngvck_070

ngvck_071

ngvck_072

ngvck_073

ngvck_074

ngvck_075

ngvck_076

ngvck_077

ngvck_078

ngvck_079

ngvck_080

0.775355

0.847094

0.793334

0.819569

0.90113

0.785737

0.911622

0.859318

0.86345

0.728942

0.734492

0.801667

0.873191

0.843231

0.900406

0.847508

0.734386

0.818712

0.900183

0.843617

0.843202

0.802549

0.840131

0.85059

0.88008

0.740655

0.83688

0.838369

0.805139

0.801444

0.805832

0.781726

0.707756

0.839369

0.813256

0.762005

0.830247

0.92745

0.856045

0.786227

ngvck_081

ngvck_082

ngvck_083

ngvck_084

ngvck_085

ngvck_086

ngvck_087

ngvck_088

ngvck_089

ngvck_090

ngvck_091

ngvck_092

ngvck_093

ngvck_094

ngvck_095

ngvck_096

ngvck_097

ngvck_098

ngvck_099

ngvck_100

ngvck_101

ngvck_102

ngvck_103

ngvck_104

ngvck_105

ngvck_106

ngvck_107

ngvck_108

ngvck_109

ngvck_110

ngvck_111

ngvck_112

ngvck_113

ngvck_114

ngvck_115

ngvck_116

ngvck_117

ngvck_118

ngvck_119

ngvck_120

0.849711

0.793204

0.767332

0.848144

0.732159

0.868704

0.846198

0.83673

0.787165

0.879452

0.828947

0.784641

0.803368

0.748867

0.788409

0.828265

0.850101

0.861416

0.804601

0.805193

0.872581

0.787962

0.797834

0.849879

0.828476

0.761005

0.774156

0.867225

0.906238

0.932246

0.809172

0.851759

0.785005

0.836121

0.809142

0.769565

0.874432

0.791796

0.878888

0.792326

ngvck_121

ngvck_122

ngvck_123

ngvck_124

ngvck_125

ngvck_126

ngvck_127

ngvck_128

ngvck_129

ngvck_130

ngvck_131

ngvck_132

ngvck_133

ngvck_134

ngvck_135

ngvck_136

ngvck_137

ngvck_138

ngvck_139

ngvck_140

ngvck_141

ngvck_142

ngvck_143

ngvck_144

ngvck_145

ngvck_146

ngvck_147

ngvck_148

ngvck_149

ngvck_150

ngvck_151

ngvck_152

ngvck_153

ngvck_154

ngvck_155

ngvck_156

ngvck_157

ngvck_158

ngvck_159

ngvck_160

0.922586

0.901097

0.982504

0.954673

0.772622

0.908331

0.817109

0.789825

0.831343

0.92762

0.845319

0.952769

0.967479

0.972339

0.792553

0.926932

0.929807

0.885438

0.841805

0.820611

0.795471

0.835331

0.81389

0.812214

0.789994

0.825814

0.822584

0.847318

0.78061

0.769145

0.767872

0.875141

0.870604

0.839702

0.910136

0.77269

0.871158

0.741797

0.813947

0.85236

ngvck_161

ngvck_162

ngvck_163

ngvck_164

ngvck_165

ngvck_166

ngvck_167

ngvck_168

ngvck_169

ngvck_170

ngvck_171

ngvck_172

ngvck_173

ngvck_174

ngvck_175

ngvck_176

ngvck_177

ngvck_178

ngvck_179

ngvck_180

ngvck_181

ngvck_182

ngvck_183

ngvck_184

ngvck_185

ngvck_186

ngvck_187

ngvck_188

ngvck_189

ngvck_190

ngvck_191

ngvck_192

ngvck_193

ngvck_194

ngvck_195

ngvck_196

ngvck_197

ngvck_198

ngvck_199

ngvck_200

0.887096

0.843595

0.860205

0.892938

0.686417

0.875288

0.803674

0.786548

0.887587

0.771826

0.788454

0.8577

0.805117

0.654976

0.813911

0.87807

0.871574

0.729826

0.763426

0.914973

0.793061

0.87821

0.827427

0.773326

0.867622

0.843866

0.863482

0.845432

0.8818

0.772034

0.784859

0.802599

0.869056

0.864655

0.828821

0.756132

0.8267

0.750452

0.811506

0.898386

74

Figure C-7: Graphical representation of Virus and Non-Virus Scores using ngvck_pp_group20_07
model

Scores using ngvck_pp_group20_07 model

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05

0 50 100 150 200

File Number

S
co

re

Ngvck

Cygwin

Other-Nonvirus

75

Table C-8.1 Scores of preprocessed Virus and Non Virus files using ngvck_pp_group20_08 model

Non Virus files after Pre-Processing NGVCK Virus variants
after Pre-Processing Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001

ngvck_002

ngvck_003

ngvck_004

ngvck_005

ngvck_006

ngvck_007

ngvck_008

ngvck_009

ngvck_010

ngvck_011

ngvck_012

ngvck_013

ngvck_014

ngvck_015

ngvck_016

ngvck_017

ngvck_018

ngvck_019

ngvck_020

ngvck_021

ngvck_022

ngvck_023

ngvck_024

ngvck_025

ngvck_026

ngvck_027

ngvck_028

ngvck_029

ngvck_030

ngvck_031

ngvck_032

ngvck_033

ngvck_034

ngvck_035

ngvck_036

ngvck_037

ngvck_038

ngvck_039

ngvck_040

0.890141

0.777603

0.919734

0.745359

0.855405

0.879181

0.864211

0.811957

0.843758

0.835925

0.786572

0.834035

0.854765

0.68875

0.83759

0.948309

0.817287

0.755212

0.879627

0.582577

0.882238

0.711032

0.816493

0.862073

0.82815

0.884607

0.912054

0.867979

0.831158

0.782319

0.832386

0.808949

0.909359

0.792839

0.730825

0.841126

0.833045

0.768074

0.844888

0.826928

cygwin_01

cygwin_02

cygwin_03

cygwin_04

cygwin_05

cygwin_06

cygwin_07

cygwin_08

cygwin_09

cygwin_10

cygwin_11

cygwin_12

cygwin_13

cygwin_14

cygwin_15

cygwin_16

cygwin_17

cygwin_18

cygwin_19

cygwin_20

cygwin_21

cygwin_22

cygwin_23

cygwin_24

cygwin_25

cygwin_26

cygwin_27

cygwin_28

cygwin_29

cygwin_30

cygwin_31

cygwin_32

cygwin_33

cygwin_34

cygwin_35

cygwin_36

cygwin_37

cygwin_38

cygwin_39

cygwin_40

0.691074

0.862468

0.665714

0.767715

0.700638

0.705133

0.700183

0.712667

0.576687

0.735554

0.637736

0.677864

0.590888

0.548772

0.715496

0.818346

0.599846

0.794147

0.712323

0.571657

0.723099

0.695721

0.543123

0.602569

0.581748

0.59061

0.624209

0.660262

0.097214

0.546242

0.798378

0.488291

0.644436

0.756893

0.630445

0.690675

0.689045

0.637685

0.736579

0.726946

nonvirus_01

nonvirus_02

nonvirus_03

nonvirus_04

nonvirus_05

nonvirus_06

nonvirus_07

nonvirus_08

nonvirus_09

nonvirus_10

nonvirus_11

nonvirus_12

nonvirus_13

nonvirus_14

nonvirus_15

nonvirus_16

nonvirus_17

nonvirus_18

nonvirus_19

nonvirus_20

nonvirus_21

nonvirus_22

nonvirus_23

nonvirus_24

nonvirus_25

nonvirus_26

nonvirus_27

nonvirus_28

nonvirus_29

nonvirus_30

0.404595

0.801461

0.710558

0.973881

0.644307

0.699958

0.662902

0.691914

0.502399

0.680546

0.558661

0.651092

0.761642

0.561532

0.569489

0.586006

0.677293

0.609735

0.575809

0.553802

0.492475

0.58752

0.323355

0.602793

0.568189

-2.847293

0.727102

0.34403

0.594118

0.537

76

Table C-8.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_08 model

NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Score File Score
ngvck_041

ngvck_042

ngvck_043

ngvck_044

ngvck_045

ngvck_046

ngvck_047

ngvck_048

ngvck_049

ngvck_050

ngvck_051

ngvck_052

ngvck_053

ngvck_054

ngvck_055

ngvck_056

ngvck_057

ngvck_058

ngvck_059

ngvck_060

ngvck_061

ngvck_062

ngvck_063

ngvck_064

ngvck_065

ngvck_066

ngvck_067

ngvck_068

ngvck_069

ngvck_070

ngvck_071

ngvck_072

ngvck_073

ngvck_074

ngvck_075

ngvck_076

ngvck_077

ngvck_078

ngvck_079

ngvck_080

0.805377

0.896656

0.859624

0.79271

0.826229

0.836969

0.86469

0.840169

0.90374

0.805312

0.704289

0.750496

0.935332

0.812124

0.867598

0.868336

0.679785

0.855351

0.841996

0.905574

0.855445

0.843742

0.907973

0.888358

0.839282

0.691726

0.793397

0.87561

0.855727

0.836216

0.836522

0.834869

0.713289

0.920724

0.873066

0.863213

0.87679

0.946965

0.833724

0.821638

ngvck_081

ngvck_082

ngvck_083

ngvck_084

ngvck_085

ngvck_086

ngvck_087

ngvck_088

ngvck_089

ngvck_090

ngvck_091

ngvck_092

ngvck_093

ngvck_094

ngvck_095

ngvck_096

ngvck_097

ngvck_098

ngvck_099

ngvck_100

ngvck_101

ngvck_102

ngvck_103

ngvck_104

ngvck_105

ngvck_106

ngvck_107

ngvck_108

ngvck_109

ngvck_110

ngvck_111

ngvck_112

ngvck_113

ngvck_114

ngvck_115

ngvck_116

ngvck_117

ngvck_118

ngvck_119

ngvck_120

0.915683

0.831021

0.829168

0.872405

0.760503

0.85487

0.785574

0.802513

0.863611

0.827641

0.904243

0.803578

0.834778

0.820635

0.811333

0.818489

0.933964

0.897759

0.864706

0.772584

0.836188

0.824486

0.813456

0.898684

0.909746

0.819268

0.798243

0.889952

0.883636

0.890187

0.841355

0.822144

0.796133

0.882668

0.820483

0.80588

0.837689

0.853458

0.839827

0.794348

ngvck_121

ngvck_122

ngvck_123

ngvck_124

ngvck_125

ngvck_126

ngvck_127

ngvck_128

ngvck_129

ngvck_130

ngvck_131

ngvck_132

ngvck_133

ngvck_134

ngvck_135

ngvck_136

ngvck_137

ngvck_138

ngvck_139

ngvck_140

ngvck_141

ngvck_142

ngvck_143

ngvck_144

ngvck_145

ngvck_146

ngvck_147

ngvck_148

ngvck_149

ngvck_150

ngvck_151

ngvck_152

ngvck_153

ngvck_154

ngvck_155

ngvck_156

ngvck_157

ngvck_158

ngvck_159

ngvck_160

0.833005

0.880849

0.800707

0.82741

0.746659

0.942152

0.805325

0.790965

0.750409

0.857436

0.872555

0.896051

0.830718

0.838589

0.79889

0.836009

0.883729

0.883737

0.800752

0.974362

0.840758

0.871869

0.855663

0.826324

0.889468

0.898341

1.04783

0.937647

0.916563

0.862537

0.886537

1.04194

0.943327

0.966463

0.976824

0.865403

1.031274

0.845869

0.900087

0.849555

ngvck_161

ngvck_162

ngvck_163

ngvck_164

ngvck_165

ngvck_166

ngvck_167

ngvck_168

ngvck_169

ngvck_170

ngvck_171

ngvck_172

ngvck_173

ngvck_174

ngvck_175

ngvck_176

ngvck_177

ngvck_178

ngvck_179

ngvck_180

ngvck_181

ngvck_182

ngvck_183

ngvck_184

ngvck_185

ngvck_186

ngvck_187

ngvck_188

ngvck_189

ngvck_190

ngvck_191

ngvck_192

ngvck_193

ngvck_194

ngvck_195

ngvck_196

ngvck_197

ngvck_198

ngvck_199

ngvck_200

0.849962

0.87475

0.817234

0.821403

0.710488

0.950248

0.862672

0.741967

0.799065

0.799495

0.854514

0.933774

0.772713

0.687992

0.80426

0.891901

0.805876

0.66864

0.817758

0.853839

0.870896

0.789751

0.904679

0.815941

0.955751

0.875103

0.767535

0.832419

0.834388

0.736419

0.784291

0.876888

0.922199

0.829006

0.798529

0.804606

0.88721

0.782963

0.813735

0.882488

77

Figure C-8: Graphical representation of Virus and Non-Virus Scores using ngvck_pp_group20_08
model

Scores using ngvck_pp_group20_08 model

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

0 50 100 150 200

File Number

S
co

re

Ngvck

Cygwin

Other-Nonvirus

78

Table C-9.1 Scores of preprocessed Virus and Non Virus files using ngvck_pp_group20_09 model

Non Virus files after Pre-Processing NGVCK Virus variants
after Pre-Processing Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001

ngvck_002

ngvck_003

ngvck_004

ngvck_005

ngvck_006

ngvck_007

ngvck_008

ngvck_009

ngvck_010

ngvck_011

ngvck_012

ngvck_013

ngvck_014

ngvck_015

ngvck_016

ngvck_017

ngvck_018

ngvck_019

ngvck_020

ngvck_021

ngvck_022

ngvck_023

ngvck_024

ngvck_025

ngvck_026

ngvck_027

ngvck_028

ngvck_029

ngvck_030

ngvck_031

ngvck_032

ngvck_033

ngvck_034

ngvck_035

ngvck_036

ngvck_037

ngvck_038

ngvck_039

ngvck_040

0.8467

0.862735

0.891343

0.8426

0.836165

0.804085

0.79117

0.767192

0.855232

0.920348

0.754918

0.873677

0.799154

0.760269

0.896827

0.883655

0.766549

0.735215

0.838088

0.581149

0.855421

0.797966

0.800017

0.771175

0.771735

0.824103

0.837449

0.833139

0.795813

0.752853

0.887688

0.720614

0.896997

0.847262

0.727158

0.867133

0.911228

0.752406

0.8374

0.877902

cygwin_01

cygwin_02

cygwin_03

cygwin_04

cygwin_05

cygwin_06

cygwin_07

cygwin_08

cygwin_09

cygwin_10

cygwin_11

cygwin_12

cygwin_13

cygwin_14

cygwin_15

cygwin_16

cygwin_17

cygwin_18

cygwin_19

cygwin_20

cygwin_21

cygwin_22

cygwin_23

cygwin_24

cygwin_25

cygwin_26

cygwin_27

cygwin_28

cygwin_29

cygwin_30

cygwin_31

cygwin_32

cygwin_33

cygwin_34

cygwin_35

cygwin_36

cygwin_37

cygwin_38

cygwin_39

cygwin_40

0.642955

0.761702

0.641485

0.703916

0.648203

0.650045

0.640925

0.665772

0.54619

0.670382

0.601528

0.64663

0.5737

0.531057

0.656245

0.741775

0.583765

0.715955

0.662721

0.545342

0.654253

0.592079

0.557306

0.561559

0.466957

0.545931

0.583207

0.626975

0.129535

0.523881

0.710977

0.465987

0.590736

0.665903

0.608972

0.610567

0.603839

0.57922

0.669615

0.649991

nonvirus_01

nonvirus_02

nonvirus_03

nonvirus_04

nonvirus_05

nonvirus_06

nonvirus_07

nonvirus_08

nonvirus_09

nonvirus_10

nonvirus_11

nonvirus_12

nonvirus_13

nonvirus_14

nonvirus_15

nonvirus_16

nonvirus_17

nonvirus_18

nonvirus_19

nonvirus_20

nonvirus_21

nonvirus_22

nonvirus_23

nonvirus_24

nonvirus_25

nonvirus_26

nonvirus_27

nonvirus_28

nonvirus_29

nonvirus_30

0.395202

0.713194

0.707139

0.816648

0.608953

0.64707

0.605903

0.638037

0.51479

0.625015

0.520071

0.601335

0.712667

0.559963

0.564387

0.555113

0.61697

0.579912

0.552176

0.555523

0.494318

0.578756

0.420753

0.566911

0.53763

-2.766437

0.665153

0.366792

0.544359

0.494246

79

Table C-9.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_09 model

NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Score File Score
ngvck_041

ngvck_042

ngvck_043

ngvck_044

ngvck_045

ngvck_046

ngvck_047

ngvck_048

ngvck_049

ngvck_050

ngvck_051

ngvck_052

ngvck_053

ngvck_054

ngvck_055

ngvck_056

ngvck_057

ngvck_058

ngvck_059

ngvck_060

ngvck_061

ngvck_062

ngvck_063

ngvck_064

ngvck_065

ngvck_066

ngvck_067

ngvck_068

ngvck_069

ngvck_070

ngvck_071

ngvck_072

ngvck_073

ngvck_074

ngvck_075

ngvck_076

ngvck_077

ngvck_078

ngvck_079

ngvck_080

0.753302

0.865901

0.810561

0.844247

0.889764

0.805807

0.963534

0.88873

0.873463

0.759452

0.776751

0.844896

0.903033

0.897038

0.907983

0.915907

0.755941

0.846208

0.915899

0.876291

0.830285

0.823961

0.85802

0.849756

0.872632

0.768171

0.871324

0.864064

0.810433

0.796965

0.792842

0.74882

0.699248

0.835851

0.807648

0.77548

0.82793

0.891998

0.907019

0.814825

ngvck_081

ngvck_082

ngvck_083

ngvck_084

ngvck_085

ngvck_086

ngvck_087

ngvck_088

ngvck_089

ngvck_090

ngvck_091

ngvck_092

ngvck_093

ngvck_094

ngvck_095

ngvck_096

ngvck_097

ngvck_098

ngvck_099

ngvck_100

ngvck_101

ngvck_102

ngvck_103

ngvck_104

ngvck_105

ngvck_106

ngvck_107

ngvck_108

ngvck_109

ngvck_110

ngvck_111

ngvck_112

ngvck_113

ngvck_114

ngvck_115

ngvck_116

ngvck_117

ngvck_118

ngvck_119

ngvck_120

0.867793

0.818889

0.774827

0.839646

0.705039

0.92345

0.839838

0.867872

0.763462

0.89777

0.855034

0.771678

0.801366

0.762874

0.776704

0.868156

0.876522

0.871824

0.813551

0.846303

0.874378

0.806742

0.812342

0.832634

0.840578

0.748349

0.80111

0.875219

0.916041

0.921398

0.806872

0.901229

0.767215

0.828212

0.799522

0.788343

0.880958

0.7795

0.891867

0.753408

ngvck_121

ngvck_122

ngvck_123

ngvck_124

ngvck_125

ngvck_126

ngvck_127

ngvck_128

ngvck_129

ngvck_130

ngvck_131

ngvck_132

ngvck_133

ngvck_134

ngvck_135

ngvck_136

ngvck_137

ngvck_138

ngvck_139

ngvck_140

ngvck_141

ngvck_142

ngvck_143

ngvck_144

ngvck_145

ngvck_146

ngvck_147

ngvck_148

ngvck_149

ngvck_150

ngvck_151

ngvck_152

ngvck_153

ngvck_154

ngvck_155

ngvck_156

ngvck_157

ngvck_158

ngvck_159

ngvck_160

0.783076

0.828114

0.862592

0.875405

0.737176

0.892286

0.731885

0.752611

0.759153

0.898989

0.858691

0.928073

0.841615

0.892001

0.754002

0.892931

0.848813

0.822338

0.783055

0.837417

0.796149

0.848936

0.793869

0.824358

0.806727

0.826007

0.854007

0.854706

0.828465

0.742959

0.789481

0.828123

0.845602

0.837855

0.967379

0.748469

0.882318

0.748594

0.827073

0.938722

ngvck_161

ngvck_162

ngvck_163

ngvck_164

ngvck_165

ngvck_166

ngvck_167

ngvck_168

ngvck_169

ngvck_170

ngvck_171

ngvck_172

ngvck_173

ngvck_174

ngvck_175

ngvck_176

ngvck_177

ngvck_178

ngvck_179

ngvck_180

ngvck_181

ngvck_182

ngvck_183

ngvck_184

ngvck_185

ngvck_186

ngvck_187

ngvck_188

ngvck_189

ngvck_190

ngvck_191

ngvck_192

ngvck_193

ngvck_194

ngvck_195

ngvck_196

ngvck_197

ngvck_198

ngvck_199

ngvck_200

1.019969

0.874079

0.989519

1.026387

0.769648

0.930501

0.868818

0.897586

0.966084

0.821347

0.875476

0.901643

0.907257

0.69839

0.937481

0.967634

0.971157

0.774363

0.834452

0.954403

0.826118

0.86639

0.878642

0.787076

0.883247

0.837598

0.859214

0.88798

0.879918

0.806717

0.787896

0.837309

0.865728

0.913318

0.8774

0.736768

0.819572

0.773445

0.876383

0.935838

80

Figure C-9: Graphical representation of Virus and Non-Virus Scores using ngvck_pp_group20_09
model

Scores using ngvck_pp_group20_09 model

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

0 50 100 150 200

File Number

S
co

re

Ngvck

Cygwin

Other-Nonvirus

81

Table C-10.1 Scores of preprocessed Virus and Non Virus files using ngvck_pp_group20_10 model

Non Virus files after Pre-Processing NGVCK Virus variants
after Pre-Processing Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001

ngvck_002

ngvck_003

ngvck_004

ngvck_005

ngvck_006

ngvck_007

ngvck_008

ngvck_009

ngvck_010

ngvck_011

ngvck_012

ngvck_013

ngvck_014

ngvck_015

ngvck_016

ngvck_017

ngvck_018

ngvck_019

ngvck_020

ngvck_021

ngvck_022

ngvck_023

ngvck_024

ngvck_025

ngvck_026

ngvck_027

ngvck_028

ngvck_029

ngvck_030

ngvck_031

ngvck_032

ngvck_033

ngvck_034

ngvck_035

ngvck_036

ngvck_037

ngvck_038

ngvck_039

ngvck_040

0.835274

0.839564

0.884455

0.836423

0.812151

0.854471

0.823538

0.7911

0.835688

0.900649

0.786403

0.883959

0.831828

0.750639

0.88218

0.887437

0.794006

0.728453

0.836684

0.580427

0.807855

0.839337

0.805779

0.821028

0.745632

0.830191

0.871291

0.82244

0.791279

0.763494

0.849665

0.762064

0.845671

0.841663

0.738297

0.895112

0.88164

0.757309

0.836564

0.864728

cygwin_01

cygwin_02

cygwin_03

cygwin_04

cygwin_05

cygwin_06

cygwin_07

cygwin_08

cygwin_09

cygwin_10

cygwin_11

cygwin_12

cygwin_13

cygwin_14

cygwin_15

cygwin_16

cygwin_17

cygwin_18

cygwin_19

cygwin_20

cygwin_21

cygwin_22

cygwin_23

cygwin_24

cygwin_25

cygwin_26

cygwin_27

cygwin_28

cygwin_29

cygwin_30

cygwin_31

cygwin_32

cygwin_33

cygwin_34

cygwin_35

cygwin_36

cygwin_37

cygwin_38

cygwin_39

cygwin_40

0.709146

0.851151

0.675595

0.778349

0.751269

0.745161

0.723689

0.762253

0.568476

0.740279

0.661184

0.707771

0.621298

0.611181

0.728782

0.82976

0.62471

0.816968

0.740482

0.554621

0.774337

0.65265

0.600755

0.585671

0.436518

0.576001

0.696381

0.70685

0.176976

0.586221

0.807715

0.530242

0.648863

0.767342

0.676187

0.678254

0.712501

0.593486

0.755802

0.708962

nonvirus_01

nonvirus_02

nonvirus_03

nonvirus_04

nonvirus_05

nonvirus_06

nonvirus_07

nonvirus_08

nonvirus_09

nonvirus_10

nonvirus_11

nonvirus_12

nonvirus_13

nonvirus_14

nonvirus_15

nonvirus_16

nonvirus_17

nonvirus_18

nonvirus_19

nonvirus_20

nonvirus_21

nonvirus_22

nonvirus_23

nonvirus_24

nonvirus_25

nonvirus_26

nonvirus_27

nonvirus_28

nonvirus_29

nonvirus_30

0.368329

0.799011

0.74036

0.98869

0.625614

0.690337

0.644455

0.676615

0.569572

0.646661

0.554642

0.628051

0.767003

0.574758

0.580729

0.610242

0.6516

0.589566

0.535808

0.56025

0.508226

0.587912

0.276487

0.575307

0.529595

-2.496257

0.718465

0.381314

0.54802

0.543744

82

Table C-10.2 Scores of preprocessed Virus files ngvck_041 to ngvck_200 using
ngvck_pp_group20_10 model

NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Score File Score
ngvck_041

ngvck_042

ngvck_043

ngvck_044

ngvck_045

ngvck_046

ngvck_047

ngvck_048

ngvck_049

ngvck_050

ngvck_051

ngvck_052

ngvck_053

ngvck_054

ngvck_055

ngvck_056

ngvck_057

ngvck_058

ngvck_059

ngvck_060

ngvck_061

ngvck_062

ngvck_063

ngvck_064

ngvck_065

ngvck_066

ngvck_067

ngvck_068

ngvck_069

ngvck_070

ngvck_071

ngvck_072

ngvck_073

ngvck_074

ngvck_075

ngvck_076

ngvck_077

ngvck_078

ngvck_079

ngvck_080

0.806136

0.847177

0.829665

0.841277

0.905322

0.837817

0.908585

0.856655

0.868916

0.760482

0.804519

0.839949

0.874903

0.880146

0.902571

0.902833

0.748321

0.829101

0.916347

0.862244

0.855147

0.825158

0.845969

0.854689

0.919003

0.762422

0.868012

0.851694

0.808513

0.786868

0.777821

0.775516

0.705139

0.864175

0.828592

0.770082

0.86613

0.931194

0.867157

0.793652

ngvck_081

ngvck_082

ngvck_083

ngvck_084

ngvck_085

ngvck_086

ngvck_087

ngvck_088

ngvck_089

ngvck_090

ngvck_091

ngvck_092

ngvck_093

ngvck_094

ngvck_095

ngvck_096

ngvck_097

ngvck_098

ngvck_099

ngvck_100

ngvck_101

ngvck_102

ngvck_103

ngvck_104

ngvck_105

ngvck_106

ngvck_107

ngvck_108

ngvck_109

ngvck_110

ngvck_111

ngvck_112

ngvck_113

ngvck_114

ngvck_115

ngvck_116

ngvck_117

ngvck_118

ngvck_119

ngvck_120

0.864506

0.830975

0.803309

0.82883

0.751691

0.894088

0.844116

0.865981

0.784684

0.942007

0.840213

0.783553

0.813714

0.776534

0.758418

0.854568

0.868806

0.87281

0.823875

0.820958

0.860169

0.815833

0.824356

0.85324

0.838511

0.769408

0.788327

0.872985

0.940077

0.921029

0.836868

0.860339

0.784173

0.846718

0.841961

0.796383

0.903696

0.810071

0.920812

0.781737

ngvck_121

ngvck_122

ngvck_123

ngvck_124

ngvck_125

ngvck_126

ngvck_127

ngvck_128

ngvck_129

ngvck_130

ngvck_131

ngvck_132

ngvck_133

ngvck_134

ngvck_135

ngvck_136

ngvck_137

ngvck_138

ngvck_139

ngvck_140

ngvck_141

ngvck_142

ngvck_143

ngvck_144

ngvck_145

ngvck_146

ngvck_147

ngvck_148

ngvck_149

ngvck_150

ngvck_151

ngvck_152

ngvck_153

ngvck_154

ngvck_155

ngvck_156

ngvck_157

ngvck_158

ngvck_159

ngvck_160

0.791963

0.829968

0.84861

0.867851

0.734984

0.883431

0.777839

0.766265

0.790593

0.906221

0.852502

0.923051

0.853154

0.881862

0.780832

0.871903

0.827791

0.84194

0.788465

0.812093

0.797802

0.824642

0.797001

0.813329

0.808395

0.821483

0.854361

0.869809

0.846805

0.772844

0.755694

0.845488

0.861015

0.830788

0.957069

0.758893

0.85778

0.760051

0.824571

0.889094

ngvck_161

ngvck_162

ngvck_163

ngvck_164

ngvck_165

ngvck_166

ngvck_167

ngvck_168

ngvck_169

ngvck_170

ngvck_171

ngvck_172

ngvck_173

ngvck_174

ngvck_175

ngvck_176

ngvck_177

ngvck_178

ngvck_179

ngvck_180

ngvck_181

ngvck_182

ngvck_183

ngvck_184

ngvck_185

ngvck_186

ngvck_187

ngvck_188

ngvck_189

ngvck_190

ngvck_191

ngvck_192

ngvck_193

ngvck_194

ngvck_195

ngvck_196

ngvck_197

ngvck_198

ngvck_199

ngvck_200

0.880509

0.865064

0.881594

0.897337

0.749164

0.876397

0.838498

0.823362

0.912443

0.810481

0.814819

0.840636

0.841052

0.64686

0.809198

0.931621

0.861389

0.753529

0.824825

0.974242

0.864314

0.933638

0.887501

0.851609

0.940524

0.92356

0.888566

0.95117

0.969765

0.895132

0.825318

0.860018

0.892635

0.929118

0.938228

0.833595

0.924956

0.799816

0.914229

0.934642

83

Figure C-10: Graphical representation of Virus and Non-Virus Scores using ngvck_pp_group20_10
model

Scores using ngvck_pp_group20_10 model

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

0 50 100 150 200

File Number

S
co

re

Ngvck

Cygwin

Other-Nonvirus

