DETECTING METAMORPHIC VIRUSES USING
PROFILE HIDDEN MARKOV MODELS

A Project Report
Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
Of the Requirements for the Degree

Master of Computer Science

By
Srilatha Attaluri

December 2007

© 2007
Srilatha Attaluri
ALL RIGHTS RESERVED

Approved by: Department of Computer Science
College of Science
San José State University
San José, CA

Dr. Mark Stamp

Dr. Chris Pollett

Dr. Agustin Araya

ACKNOWLEGEMENTS

| would like to thank Dr. Mark Stamp, for his guidance, emagement and patience
through out the project. My gratitude to Dr. Chris Poldettl Dr. Agustin Araya, for their
valuable suggestions and feedback. My special thanks to Bi.Kauri for introducing
me to the amazing field of Bioinformatics and helping me tstdad Hidden Markov
Models.

This project would not have been possible without the supgorhy family
especially my loving husband, Satyadeva Prasad.

ABSTRACT

Detecting Metamorphic Viruses using Profile Hidden Markov M®&de
By Srilatha Attaluri

Metamorphic computer viruses “mutate” by changing their siracevery time
they propagate. Unlike other viruses, they use code obiois¢athniques on the body of
the virus and do not exhibit a common signature. With twerst of construction kits, it

iS easy to generate various metamorphic strains of a. viru

Profile Hidden Markov Models (PHMM) are used in Bioinfatms for finding
family-related DNA sequences. In this project we anafm determine whether PHMM
can be used to detect metamorphic virus family variantsergeed from three
construction Kits.

Each construction kit has a diverse behavior and héifleeent PHMM models
must be generated by grouping a few strains of each comsirké. Models thus created
hold opcodes probabilities calculated depending upon theur@nce in the virus
variants. We then proceed to classify virus and namsviles by scoring them against
these models using Forward algorithm.

Table of Contents

1. INTRODUCTION .ottt e e e e e e et e e e e e e e e e e e an e e aneenns 1
2. METAMORPHIC VIRUSES ... e 2
2.1 OFIQIN OF VIFUSES ...ttt ettt e e e e e nna e e e e eennes 2
2.2 MELAMOIPINIC VIFUSES ...ttt e ettt e e e s e 4
2.3 L070] 015 11010410] o TN <1 P 5
3. CODE OBFUSCATION TECHNIQUES it 8
3.1 Garbage Code INSEITIONccoiiiiiiiiie e erena s 8
3.2 ReQIStEr RENAIMINGvviiiiieiiiieii e e e e ee e 8
3.3 SUDIrOUtINE PerMUIALION ... cciiii e e e e e ea e 9

3.4 Code Reordering through JUMPS.......cooiiiiiiiii e 10
3.5 Equivalent Code SUDSHITULIONuuuiiiiiiieeen e 10
4. THEORY OF HIDDEN MARKOV MODELScooiiiiiiis e 11
4.1 1P T8 (0 1Y A O o = V] 11

4.1.1 High Order MarkOV ChaiNS.........ooiiiiiiiiiiiieceeeee e 12
4.2 Hidden MarkoV MOEIS..........cuuuiiiiiii e e e e e 13
4.2.1 Profile Hidden MarkoV MOGEISiiiiiiiiiiieeeeen e 15
4.3 Algorithms for Scoring Unknown Sequences against a Known Mad................. 19
4.3.1 Forward AIGOMTNIM ...t e e 19
4.3.2 Viterbi AIQOIthimouiiii e 21
4.3.3 Baum-Welch Re-eStIMAtioNcooiiiiiiiiiiiei e 22
5. ANTIVIRUS TECHNOLOGIES ...ttt 24
51 SIGNALUIE SCANNETSiiiiiiiiiei ettt e e e e e eeeraaanas 24
5.2 L0 1T U PP 25
5.3 Hardware-based SECUNLYcooviiiiiiiii e 26
54 HeuristicS Based ANAIYSIS.........ccoiiiiiiiiii sttt e s 27
5.5 Virtual Maching EXECULIONcccuueiiiieii e st e e e e e e e e e e e e e 27
6. IMPLEMENTATION ...t eer e e e e e e e e eanas 28
6.1 Test Data Generation and Filtration...............cccoiioiiiiiiiiiii e 29
6.2 Training the MOGEI.......ccooiiiiii e ee e 30
6.3 FOIWAIT SCOMNG ... ettt e ettt e et e e eeenn s 33
A 4 =21 | R 15 T 36
8. CONCLUSION ...ttt e e e e e e e e et e e eens 40
9. FUTURE WORK ...t e e e e eeas 41
o o o N 42

APPENDIX A - VCL32 SCOIESuiiiiiiieiiiieeeemmm e eeeeiine e et e enin e ennn e eenn e B

APPENDIX B - PS-MPC SCOIES......ccivtiiiiiiiiiieeeceiiieeee et A8
APPENDIX C - NGVCK SCOIESuiiiiiiiiiiiiiieeieemeeeie et e et e e e eni e 54

List of Figures

Figure 1: Regswap VariantS [L1]ccouuuiiiiiiiceemmmm et 9
Figure 2: Code REOIdEING [7]...uuuiieiieiiiii ettt e e 10
Figure 3: Code Substitutions in W32.Evol Metamorphic Virus [18]...............ccceen. 11
Figure 4: Markov Chain for DNA [L]ccoouuui et eeaaas 12
Figure 5: Urns and Ball MOdel [4].........coooeiiiimm e 13
Figure 6 Example Of HMM ... e 14
Figure 7 Structure of Profile HMM [2]ccooiiiiim e 15
Figure 8 Multiple Sequence Alignment Example..........cooiiiiiiiiiiiiiiiii e 17
Figure 9: Profile HMM MOdElcoouuiiiiiiieee e 19
Figure 10: PHMM with 4 States lllustrating Emissions a2-element Sequence........... 20
Figure 11: Forward Algorithm recursive approach.......cccccecoveeveiinieeceeiiiiinneeeeeeiiinnnn 34
Figure 12 Final Score from previous States.........cccceeerrirriiiiiiinieeeeeeeeeeeeeeeeeennnnes 35
Figure 13 Scores for Virus and Non Virus files using vcl32_group5 demo............ 37
Figure 14 Scores for Virus and Non Virus files using psmpc_groupl0dgim.......... 37
Figure 15 Scores for Virus and Non Virus files using ngvck_group20 cateim......... 38

Figure 16 Scores for Virus and Non Virus files using ngvck _pp_group20o06&im..39

Figure 17: False Positive Percentages for Non-virus Befode After Preprocessing at
Different TAresholdS............oiiiiii e 40

List of Tables

Table 1: Code Obfuscation Example for NGVCK ... 7
Table 2: Profile HMM Emission Probabilities for the M$ Figure 8......................... 17
Table 3: Profile HMM Transition Probabilities for tMSA in Figure 8....................... 18
Table 4: Possible Paths for a Sequence with 2 elemente&ty a 4-state PHMM
17/ T L= P 20
Table 5: Construction Kits infOrmation.............ceceeeeveeeiieeiiiiieriir e 29
Table 6: Gap percentages perceived in MSA’s of each Vamgyf.............................. 31
Table 7: Emission Match and Insert Probabilities folLl82 Groupl in States 126, 127
=T 0 0 122 P 33
Table 8: Transition probabilities between states 149,150 &hdor groupl NGVCK..33
Table 9: Test Data Grouping and Model Namescccceeeeeeiiiiieiiiiieceiie e 36
Table A-1 Scores of Virus and Non Virus files using vcl32_groupbodel......................... 44
Table A-2 Scores of Virus and Non Virus files using vcl32_groupbogel................ 46
Table B-1 Scores of Virus and Non Virus files using psmpmu@l0_1 model..................... 48
Table B-2 Scores of Virus and Non Virus files using psmpc_groupdod2l............. 50
Table B-3 Scores of Virus and Non Virus files using psmpc_groupdodgl............. 52
Table C-1.1 Scores of preprocessed Virus and Non Virusuliies) ngvck_pp_group20_01
10707 [54
Table C-1.2 Scores gireprocesselirus files ngvck 041 to ngvck 200 using
NGVCK_PP_group20_0L1 MOGEL. . .. cunieieeeeeeee et ee e e e e e e e e e e e eneenes 55

Table C-2.1 Scores of preprocessed Virus and Non Virususies)
NGVCK_Pp_group20_02 MOAENccoiiiiiiiii et 57

Table C-2.2 Scores gfreprocessewirus files ngvck 041 to ngvck 200 using
NGVCK_PP_group20_02 MOGEL......cueeen e e e e e e e ees 58

Table C-3.1 Scores of preprocessed Virus and Non Virususies)
NGVCK_PpP_group20_03 MOAE|cooiiiiiiieieiee et 60

Table C-3.2 Scores gfreprocessewirus files ngvck 041 to ngvck 200 using
NGVCK_PP_group20_03 MOGEL......cuieee et e e e e e 61

Table C-4.1 Scores of preprocessed Virus and Non Virususiesg)
NGVCK_PP_group20_04 MOAElcooriiiiiii e 63

Table C-4.2 Scores gfreprocesselirus files ngvck 041 to ngvck 200 using
NGVCK_PP_group20_04 MOGEL......cuieen e et e e e e 64

Table C-5.1 Scores of preprocessed Virus and Non Virususies)
NGVCK_PP_group20_05 MOAENcooiiiiiiiiiei et 66

Table C-5.2 Scores @ireprocessewirus files ngvck 041 to ngvck 200 using
NGVCK_PP_group20_05 MOGEL......cuieen e e e e e

Table C-6.1 Scores of preprocessed Virus and Non Virususies)
NGVCK_PpP_group20_06 MOAENccooriiiiiiiiiiiii e

Table C-6.2 Scores gireprocesselirus files ngvck 041 to ngvck 200 using
NGVCK_PP_group20_06 MOGEL......cuein e e e e e e e e e e

Table C-7.1 Scores of preprocessed Virus and Non Virususies)
NGVCK_PpP_group20_07 MOAElcooiiiiiiii e

Table C-7.2 Scores gfreprocessewirus files ngvck 041 to ngvck 200 using
NGVCK_PP_group20_07 MOGEL......cueen e e e e e e

Table C-8.1 Scores of preprocessed Virus and Non Virususies)
NGVCK_Ppp_group20_08 MOAElccoeiiiiiiiiiiiiei e

Table C-8.2 Scores ofgprocessettirus files ngvck 041 to ngvck 200 using
NGVCK_PP_group20_08 MOGEL......cueen et e e e e ee e

Table C-9.1 Scores of preprocessed Virus and Non Virususies)
NGVCK_PpP_group20_09 MOAElccoviiiiiiiiiiiee e

Table C-9.2 Scores ofgprocessettirus files ngvck 041 to ngvck 200 using
NGVCK_PP_group20_09 MOGEL......cueen et e e e e e e e e

Table C-10.1 Scores of preprocessed Virus and Non Virssudang
NGVCK_PP_group20_10 MOAElcoeiiiiiiii e

Table C-10.2 Scores ofgprocesseltirus files ngvck 041 to ngvck 200 using
NGVCK_PP_group20_10 MOGEL cuieee et e e e e es

1. INTRODUCTION

The evolution of computer viruses shows that they aréngetvittier everyday.
Today's viruses target Internet websites to spreadrfastd further across the world. In
earlier days, generating viruses required assembly langoggamming skills, but
lately due to the arrival of various virus constructiots kind mutation engines, any user

with minimal or no knowledge of viruses can create letesv strains of known viruses.

The most popular virus detection technique used today istgigndetection,
which looks for unique strings pertaining to known viruses. Qietected, a virus is no
longer a threat if the signatures on the system goe lyeto date. To bypass detection,
virus writers started changing old viruses instead ofticigg@ew ones. This evolved into
encrypted viruses that use a different key each timepitapagate, but these often have a
signature in their decryptors. Polymorphic viruses, oncther hand, started out using
random encryption schemes and developed into decryptors’ mgrphithough virus
writers change the virus code significantly, most ok¢hgiruses can still be detected
using signature detection when they are decrypted.

Metamorphic viruses alter the virus’ entire code withchanging its impact.
Code obfuscation techniques like garbage code insertide, reordering and sub-routine
permutations are used to generate various variantselmigoto a virus family. It is now
easier to generate new metamorphic virus variants usingtreiction kits, but detecting
them is a challenge. Signature detection is not efleds’ each variant has a different
scan string. Other anti-virus techniques like code emula@nd heuristics can be used to
detect them but are not time-efficient.

Hidden Markov Models are well-known for their use in geescognition [4].
other applications include modeling protein sequences for pifateifies and patterns in
RNA splice junctions [3]. Using Hidden Markov Models fdetecting metamorphic
viruses produced impressive results [9]. In this project werihine whether a special
case of Hidden Markov Models, called Profile Hidden Marktndels (PHMM), can be

used in detecting metamorphic strains of a virus.

Profile Hidden Markov Models are used in Bioinformatios finding
distantly-related sequences of a protein sequence fahjilye focus on using PHMM

1

to model a metamorphic virus family and score virus anduirais-files using the model.
A PHMM model contains a group of probabilities and is m@ausing an opcodes
alignment of various virus family variants. We thengaed to differentiate virus and
non-virus files depending upon their relativity to the motlelt is measured using

Forward algorithm.

The report is organized as follows:

» Section 2 contains information about the evolution etamorphic viruses and
virus construction Kits.

» Section 3 details a few code obfuscation techniques thatised for generating
metamorphic variants.

» Section 4 describes the algorithms and theory of Prdfdeden Markov Models.

» Section 5 discusses various anti-virus technologie&wctlyrused.

» Section 6 provides a detailed discussion of test datargi@mn, implementation
details of training a PHMM model and scoring virus/non-vinlessfagainst the
model.

» Section 7 provides results including detection, false pesénd false negative
rates.

» Section 8 draws conclusions based upon these findings.

* Section 9 discusses additional future enhancements.

2. METAMORPHIC VIRUSES

2.1 Origin of Viruses

Viruses started out as self-replicating programs at wsities to spite other
students, but these were mostly harmless. Although @rasee known to exist in the
early 1980’s, during the time when personal computersearishey became popular for
their malicious activities in 1988 with the advent of Merris worm. Worms propagate
by themselves, but viruses need help to spread. Robert TisMor, the author of the
Morris Worm, used the Internet to spread and infect as msgsiegms as possible. It
brought the whole Internet to a halt with a denial ofvise attack that created
widespread panic and awareness of viruses. Other virusewehataround at this time
like Leigh, Brain and Jerusalem, targeted files, bootosse or applications. Some of the
viruses that emerged in the late 1980’s and early 1990’s had apadsociated with

them. The destructive behavior of the virus is triggerednatihe payload conditions are
satisfied.

One of the main objectives of a virus, apart from causiamage, is to remain
undetected from anti-virus programs. Signature detectiora ipopular anti-virus
technique that is used in detecting these viruses (mong @&bis discussed in Section
5.1). Writing new viruses from scratch is difficult amti¢ consuming, hence most of the
virus writers try to enhance existing viruses by fixing rtheeigs and making them more
evasive. This may not change the signature of the paners, thus making them still
detectable.

To bypass the detection, virus writers started hiding adadging the virus code.
Encrypting the viruses changed them, but they had a signataneir decryption block.
But signatures taken from decryptors can lead to flaggingvitases that contain similar
decryption blocks, increasing the false positives. Othaerpdex cases include non-linear
decryption and exclusion of decryption code from the vi@igjomorphic viruses go a
step further by dividing their decryptors into multiple pantsoy instruction reordering.
The changes in oligomorphic virus copies are subtle bucentain a constant string to
search for.

So how to make the decryptors look very different fame another? The answer
lies in polymorphism. Polymorphic viruses mutate their rggors using code
obfuscation techniques like garbage code insertion and equicaldatsubmission (code
obfuscation techniques are discussed in detail in Seg}id@bfuscation and multiplayer
encryption can generate millions of copies and hende e&w generation creates a new
polymorphic virus strain. In 1990 Mark Washburn wrote the fargtwn polymorphic
virus, “1260,” which uses garbage code insertion to vary itsygeor's length [11].
Polymorphic viruses seem to interest the virus writerther® are more of them than any

other viruses today.

The main disadvantage of polymorphic viruses is that ¢y of the virus is not
changed, so irrespective of their complexities, they lma detected by decrypting them
using an emulator. Although emulating and decrypting them Ipeatedious, it is not
impossible. Some of the viruses developed today employeantiating techniques like
unnecessary calculations, but an experienced debugger ceeidome this. Can we
mutate the virus itself instead of mutating its decryptore®s is exactly what a

“metamorphic” virus does. A metamorphic virus obfuscabesdntire virus body, thus

forming millions of variations of the same virus.

2.2 Metamorphic Viruses

Metamorphic viruses usually use multiple obfuscation methgidsig them more
variations. The degree of the mutation depends upon thersef the code that deals
with morphing, called the metamorphic engine. A good metamogptgme uses at least
two of the code-obfuscation methods. Obfuscation methaugertom simple register
renaming to advanced code-substitution methods. More abtugcation is discussed in
section 3. Some of the methods, apart from obfuscatisa, use encryption to generate
completely different strands of viruses. Metamorphigiees are hard to write. One of
the virus writers, “Benny,” agrees to its complexity, anédkes an incomplete

metamorphic engine free to download.

32-bit metamorphic viruses infected systems that use wind82visit platforms
and caused more damage than their earlier DOS-baseuwysilike TMC. Regswap in
1998 swapped registers in its variants but the actual smowe was not changed,
rendering it not very metamorphic. Win32.Apparition is knotwnbe the first 32-bit
metamorphic virus that appeared in early 2000. It uses garbdgansertion to generate
variants. An affected system automatically emails plasswords to its creator, and
infected files are corrupted when an attempt is madenove the virus. It is still marked
as critical even though it was launched seven years28jo [

W32.Evol emerged in the middle of 2000, with a metamorphimengpat could
generate a fixed number of variants combining the concéparbage and equivalent
code substitutions. Unlike most of the viruses that inddicéxe files, Evol targets only
application exe’s that are large enough to accommodatmde and do not use exports
[21]. A signature is perceived on the execution stack buinnihe code, which makes it
hard to detect through heuristics and string scanning. Obfuscatlies are efficacious
and are selected at random while generating new strialihwbviruses.

Other advanced metamorphic viruses like Zmist and Win32.Metaphve
randomly selected many methods including on-the-fly enaygpmnd attacks depending
upon the structure of the infected file. Vecna, a membet9d virus writing group,
started creating viruses in the early 90's and came up ‘iexotan32” in 2002.

Lexotan32 overcomes the problem of creating new variaytsaintaining a table that

helps in de-permuting the code and regenerating the newsaatbéd code combining

many techniques known in metamorphism [22].

Metamorphism is different from permutation, permutatioalsievith reordering
the code but metamorphism substitutes Permutation virlisesZperm and Bistro
scramble their instructions to change their memory gsafermutation may not hide the
signatures, but when coupled with code morphing it produces ateuelvariants.
Consider a program with two subroutines @hd Yp) and two variants per subroutine
(X1, X2, Y1 & Y). Assuming that a signature exists at a point wherestifreoutines
merge (so the order in which they appear is importamjetwould be 17 variations that
would miss a signature based on one variant. Fortunately writers cannot predict the
signature and need to use complex methods for a true owgiamcopy.

Mutation engines, on the other hand, help to change the siructure instead of
creating destructive code themselves. There are a widtktyaf these engines for jobs
like decryptor permutation, code compression, anti-hewsjstode permutation and
metamorphism. Mutation engines work as black boxes, takingxeting virus as input
and outputting a totally new variant. Most of them work expanding, shifting and
shrinking the existing code and are very effective in thgasignature detection.
Zombie’'s Code Mutation Engine (ZCME) is an exampleaahetamorphic engine that
uses its own disassembler to get the source code amctlihaeges the original code by
randomly shuffling the code like changing the jump instondi and adding “nop”
instructions. Other metamorphic engines, like Simile ai@lLMmetamorphic engines, as
discussed in [11] by Peter Szor, emphasize the capaifilityitation engines.

The most recent metamorphic viruses were seen back in 2@0@ating that
virus writers seem to be concentrating more on sprgaiti@m rather than developing

new ones.

2.3 Construction Kits

Web sites like VXHeaven give the source code for vsuaad obfuscation
engines, enabling novice writers to develop advanced virusésntBrested users need a
minimum of assembly language programming skills to comlfiemtinto a metamorphic
virus. Construction kits combine features like encryptiod anti-debugging with
metamorphic/polymorphic engines, allowing even a normaiptder user to generate
deadly viruses. Some of the kits are capable of gengithiiusands of new variants.

Construction kits are available for viruses, trojamgyidal bombs and even
worms. Since they create several variants with,aageses a considerable challenge to
the anti-virus vendors. We have used a few construgkitsrlike virus-creation library,
phalcon-skism and next generation virus creation kit dar project. As different
programmers developed these Kits, it gives us a chamneeetthe performance of Profile
Hidden Markov Models in detecting them.

Following is a brief description of each of the viramstruction kits used in the project:

* Virus Creation Lab (VCL32) creates win32 virus variants ddp® upon user
preferences. The first version of VCL, as created lgycap of virus writers called
NUKE, came around 1992, and a newer version developed byeargybup, “29A,”
surfaced in 2004. Unlike other construction kits that usectmamand prompt for
generating variants, it provides a GUI to choose fromioua preferences.
Preferences that can be changed include which sectidw difoist to infect, network
or current directory infection, message box data, eBi. ¥an also be set to use either
a polymorphic engine or the KME-32 mutation engine thattegtdecryptors.

Once the options are chosen, VCL generates asseamgydge code files
of the virus strains. These files can later be cozdpéind linked to get the exe files. It
has been reported that the code generated by the earson had bugs and could
not be compiled, but the newer version seems to bagecome those problems. We
have used Borland Turbo Assembler and Tools (TASM) verSi0 to compile and
link. Many virus creators recommend TASM over Micros&ssembler (MASM) to
compile their assembly sources.

* Phalcon-SKISM group, a competitor to VCL's NUKE GROUP,eated
Phalcon/Skism Mass-Produced Code Generator (PS-MP@)cdPhand SKISM
merged to form Phalcon-Skism group [19]. Unlike the firssiem of VCL, PS-MPC
performed well in creating serviceable viruses. A configoratile is used to change
the settings with around 25 alternatives that include oakiparameters like payload.
A kit user has a choice between infecting COM and ers,finemory resident and
null encryption. Payload depends upon the month, day aredspecified in the virus,
as well as minimum or maximum file sizes to infect-MBC also implements
obfuscation of the decrypting section, but it does not emgint other virus
techniques like anti-debugging and anti-emulation techniques.

* Next Generation Virus Creation Kit (NGVCK), created ByakeByte, surfaced in
2001 and, as far as we know, is by far the most advancedcanssructor. Unlike
VCL and PS-MPC there is no need to set configurateitings as it automatically
generates a new variant every time it is used. Thistaaction kit implements code
obfuscations like junk code insertion, subroutine reorderrandom register
swapping and code-equivalent substitutions. NGVCK is developed aon-virus
program with multiple revisions and beta versions. Wieehssed version 30 as it is
said to be stable and more advanced than its siblingdNGMCK kit is programmed
to satisfy the needs of both novices and advanced progrmeamm Advanced
programmers can select the kind of encryption, amtkgrand directory traversal.

Following is a small example given in the introductiorc@lment distributed
along with the kit, explaining the kind of obfuscationsnplements:

Basic Version Morphed Version 1 Morphed Version 2
call Delta call Delta add ecx,0031751B ; junk
Delta:pop ebp Delta:sub dword ptr[esp], offset Delta call Delta
sub ebp, offset Delta pop eax Delta:sub dword ptrlesp], offset Delta
mov ebp, eax sub ebx,00000909 ; junk

mov edx,[esp]

xchg ecx,eax ; junk
add esp,00000004

and ecx,00005E44 ;junk
xchg edx,ebp

Hex equivalent: Hex equivalent: Hex equivalent:
E8000000005D81ED0510400CE800000000812C2405104000588BE8312C240B104000*8B1424*83C404*87EA

Table 1: Code Obfuscation Example for NGVCK
In Table 1, morphed versions show the obfuscated codeeobdkic version.

Morphed version 1 uses obfuscations like code reordering angakmi code
substitution, whereas version 2 also uses junk code ioserfhe hexadecimal
equivalents shown are very different and signaturersng is clearly not a solution.

Apart from code obfuscation it also implements antidging and anti-
emulation techniques to hide from the anti-virus reseaschénlike metamorphic
engines that create variants from a given source dé@&,CK morphs the source
code itself to create variants. The programmer had toiecreate a 100% variability
between different strains; the later versions wergdted to add more layers of

encryption and morph the decryptors.

Construction kits and mutation engines are here to fstayheir ease of use and
personalization of new viruses, but are extremely deasllthey can resurrect different
strains of age-old viruses. Such morphing of old viruses wealden the same problems
anti-virus once had, so it is very important to use nmeehearning techniques and some

kind of automation to detect them.

3. CODE OBFUSCATION TECHNIQUES

Code obfuscation is transforming the code and makingsture or difficult to
understand [6]. Software programmers use these techniquesake their product
resistant against reverse engineering. Metamorphic wirtesrs use one or more of these
techniques to create a unique copy of existing virus, which srideen indistinguishable

to virus scanners.

3.1 Garbage Code Insertion

Garbage or do-nothing codes are programming instructionsutbad part of the
program physically but not logically. They are noatetl to the program’s outcome. Do-
nothing instructions such as register exchanging (XCEIG) down code emulation.
Other instructions such as “NOP”,"MOV ax, ax”, "SUR, &", etc make the virus look
different and thus possibly escape heuristic analysis.a@arimstructions may also be
branches of code that are never executed or which hawe salculations done on the
variables declared in other garbage blocks. The main idehi®fcode obfuscation
technique is to confuse and exhaust the virtual machine sormpéraversing the virus
code.

However, the virus scanners these days are powedulghno get past these do-
nothing instructions. When there are too many of suchuictstns perceived in a file it
may be flagged as a virus because it is highly unlikely tverdd be such instructions in

non-virus programs.

3.2 Register Renaming

‘Register renaming’ is modifying the names of varialesegisters used in a
virus. When registers are changed they result inrdifttopcodes that trick the signature
search. Regswap is a metamorphic virus that swaps theerede each variant.

a.

5a pop edx

EF04000000 mov edi, 0004k

8BFS Mo esi,ebp

ESO0COD0DO0D Mo eax, 000Ch

81CZ288000000 add edx, 00558h

8B1a Mo ebx, [edx]

899C5618110000 moy [esi+eax*4400001115] , ebx
b.

5a pop eax

EEOD4000000 mo ehx, 0004k

8BILS mow edx,ebp

EFOCO0000D mo edi,000Ch

81CO88000000 add eax, 0055h

8B=0 mowv ezi, [eax]

89E4EA18110000 mo [ed¥4+edi*4400001115] ,e=1

Figure 1: Regswap Variants [11]

Two variants of regswap shown in Figurel have the samef se$tructions but
use different registers. If these instructions form s$ignature, the virus succeeds in
bypassing detection. For detecting such viruses a signaturkl stot be over fitting and
be like a regular expression that can overcome e¥gisianges with wild characters [11].

Memory traces are the key in analysis of unknown ggusmong the other code
obfuscation techniques, register renaming benefits thetocrdsy having different

memory traces for each of its variants.

3.3 Subroutine Permutation

Subroutine permutation is a simple obfuscation methoere the subroutines are
reordered. It will not affect the impact of the virus,the order in which subroutines
appear in the code is insignificant to a program’s exeeuiihus a virus containing ‘n’
subroutines can have ‘n!" permutations. Compared to the atbfeiscation methods,
subroutine permutation can be easily detected by signdéteetion, as the signature still
exists in clear view. Metamorphic viruses like Win95.Ghostl &Vin95.Smash are
examples of this behavior [20].

But rearranging subroutines poses considerable challémgesne of the analysis
methods. This project models a given virus family fromudtiple sequence alignment,
which is obtained by arranging multiple sequences dependingaip@iched region of

opcodes. If a program is permutated, most of the regionsotioanatch, giving a weak
alignment and hence a weaker model. A solution to thissobtion is to de-permute

each sequence before aligning them.

3.4 Code Reordering through Jumps

Code reordering alters the order of the instructions baintains the original
instruction’s logical flow using jumps. Reordering thedeocreates control flow
obfuscation as the control changes depending upon uncoaditipmps. These

unconditional jumps are inserted randomly, challengirgy detection by memory

mapping.

Instruction 4 «—— Instruction 2 Instruction 3 «——

Instruction 5 Imp — Instruction 4

inp garbage —I imp

garbage Instruction 3 garbage :l

start: Tmp Instruction 5

Ins=truction 1 garbage Mo R —

Instruction 2 — Instruction & start:

Inp Jmp Instruction 1

garhage :I start : Imp

Instruction 3 Instruction 1 garbages :I

Imp R — Jmp — Instruction 2

garbage Instruction 4 «— Jmp B
Imp _— garbage

Figure 2: Code Reordering [7]

Figure 2 shows an example of code reordering. This fairhple method overcomes
signature detection by altering the signature-bearing opcsdggence.

3.5 Equivalent Code Substitution

Each task can be done in different ways. Similarlgys/codes, although looking
different, can accomplish the same task. Substituifaguivalent codes for virus codes
escapes few detection techniques. It can be caught thimlgvior checking since the

execution does not change in many cases.

This type of obfuscation can also be used to shrinkpeared the original code by
substituting the code with smaller or larger equivalent €ode a simple exampleADD
ax, 3" can be transformed tdSUB ax, -3" as both the instructions add a 3 to the
contents of ax register. It can also be accomplistidd a two-step process IIK&MOV
bx, -3” and“SUB ax, bx”. W32.Evol is a metamorphic virus that randomly subsstute
equivalent code, generating different strains in eacterggion, Figure 3 shows a few

substitutions perceived in this virus [18].

10

Parent Offspring (transformed)

push eax push =ax

mov [edi], Ox04 push ecx
(a) jop label mov ecx, Jx04
mov [edi], ecx
pop ecx
jop label
push Ox04 mov eax, x4
(b mov eax, Ox09 puszh eax
jop label mov eax, 0x09
jop label
mov eax, Ox04 mov eax, Ox04
(c) push eax push eax
jop label mov eax, Ox09
jop label

Figure 3: Code Substitutions in W32.Evol Metamorphic Virs [18]

Each code segment in the offspring works exactly as renpavith little tweaks
in the parent code. Often, mutated code is not simplegimto be detected by string
search. However, variants shown in the above exawgtebe detected using a wild
string in the signature. One of the detection techniqued tw tackle such advanced
obfuscation is to transform the code into a simple ¢bdg

4. THEORY OF HIDDEN MARKOV MODELS
4.1 Markov Chains

Markov chains are a series of states with probabiliiesociated with each
transition between states. Transition probabilitiaikwated from the current state are
independent of its previous states [3].

A Markov chain for a DNA sequence is shown in Figure 4 DNA's chemical
code is an alphabet of four symbols called bases dihgtd (adenosine), C (cytosine),
G (guanine) and T (thymine).

11

Figure 4: Markov Chain for DNA [1]

Each arrow in Figure 4 represents the transition prababil a base followed by
another base. Transition probabilities are calculeaéidr observing several DNA
sequences. A transition probability matrix can represieese transition probabilities.
The DNA Markov model is a first order Markov model siregeh event depends on its

previous event.

The transition probability a(Transition Probability from a previous state with
symbol s to current state with symbol t) is calculagdil]:

a=PMX=tx%x1=5) Xs,t<N (Nisthe number of states)

The sum of the transition probabilities from eachestmequal to 1. Since there is
a probability associated with each step, this modebliedt as a Probabilistic Markov
Model [10].

The Probability of a given sequence against a modeldslated as [1]:
P(X) =PXX1,....%)
= POUX1, .- X1) POCalx2, ... X1)....P(%)

= PO x1) POLa] X2)....P(e|)P (%) (using Baye’s Theorem)
L

=P(%) |_| (8 _1-x)
=2

P(x) is the probability of starting at a state with symbel This can be
calculated by adding a begin state, and an end statectomawmdate first and last

symbols of the sequence.

4.1.1 High Order Markov Chains
High order Markov chains are those in which the cureseint depends on more

than one previous event. As defined in [1] “an nth orderkib\a process is a stochastic

12

process where each event depends on previous n evemdithArder Markov process
with an alphabet of m symbols can be representedfiest @rder markov chain with an
alphabet of Misymbols. Consider a two-symbol alphabet {A,B}. Thissimilar to the
binary code, a sequence like ABAAB will be paired as AB-BA-AB and can be
represented by a four-state first order Markov model stdites AB, BB, BA and AA.

4.2 Hidden Markov Models

Given a sequence and a markov chain, one could determine sthielgenerated
each symbol from the sequence, but in many cases thisaohdne apparent. Consider the
urn and ball model stated in [4] by Rabiner in 1989. Assumethiea¢ are N glass urns
with different colored balls in them as shown in Figar@e. we know the probability of
each ball in each urn), depending upon a process (that talescansideration a
previously-selected urn for selecting a current urn) sbafis are picked. Now, given a
sequence of balls picked, like {Red, Blue, Orange, Red...}, waaldknow which urn
was used to pick a particular ball in the sequence.

1)

—

URN 2 URN N
PIRED) =byl 1) PIRED} = bgl1) PIRED) = byit}
P{BLUE} = byl2) PIBLUE} = ba(2) PIBLUE] = Dbyl2]
PIGREEN) =by(3} PIGREEN) = bai3) P(GREEN) = byl3)
PIYELLOW} = by14) PIYELLOW) = byt4) PIYELLOW] = by{4)
PIORANGE) = by (M) PIORANGE) = bzim) PIORANGE) = by(M)

Figure 5: Urns and Ball Model [4]

So the unobserved or “hidden” process of urn selectionsereéd through the
sequence of balls picked. Hidden Markov Models (HMM) aedusr such problems.
The main distinction between HMM and the Markov Charthat in HMM given a
sequence {x XX), it is not possible to tell which state generategrab®| % [1].

General notation used for HMM is [5]:

O - Observation sequence

T — Total number of symbols in the observation sequence
N - Total number of states

13

a - Alphabet for the model

M - Total number of symbols in the alphabet

7 - Initial state distribution

A - State transition probability matrix

aj - Transition probability from state i to |

B - Symbol probability distribution matrix

bi(k)- Probability distribution of k in state i

A - HMM model

The HMM model is comprised of (A, B) along with N and M.

To help in understanding HMM better, consider an examp&revtwo coins--one
biased, and one normal--are tossed T times to genaragguence O by occasionally
switching between the coins. The observed sequence iHIYHTHH} where H stands
for heads and T for tails, giving the number of symbolthe alphabet {H,T} as 2 (M).
The two states (N) in the model are Biased and Norfiglre 6 depicts the model.

0.95

0.8

Figure 6 Example of HMM
The transition probability matrix taking Normal as 1 &idsed as 2, is as follows:

_[095 005
| 02 08

i.e. a2 = 0.05 represents the transition probability to statéBiased) from state 1
(Normal). The symbol distribution matrix (B) gives thebability distribution of H and

T in both the states.
05 05
B=
07 03

The first row gives the probability distribution of (F) in a Normal coin and second row
is that of a biased coin. The representatighlrepresents the probability distribution of

14

H in case of a Normal coin. The initial distributidatermines which coin to start with; in
this case it is taken at random.

n=[05 05

Hence the HMM model for the two-coin example is @&,x) with N, M also known.

Notice that the sum of each row in the transitind aymbol distribution matrices is 1.

The two-coin example is a fully connected HMM, atstled as an ergodic model [4].
There are other types of HMMs, like left-right médevith or without parallel paths.
More detailed information on different types of HMMIgiven in [4].

4.2.1 Profile Hidden Markov Models

Multiple sequences of genes are combined to forralignment that contains the
hidden relation between them. A model created ftbm resultant multiple sequence
alignment (MSA) is used to measure the relativikyan unknown sequence to a family.
This idea is extended in our case where the segselce opcodes of known

metamorphic viruses.

These sequences can be represented by a largarregptession. However, such
a model will be over-fitting and could miss othetkmown mutations. Profile Hidden
Markov Models (PHMM) are a type of HMM that proBle given sequence alignment
[3]. Unlike the HMMs seen so far, they allow nuthsitions, so that the model can also
fit the divergent sequences. In the case of DNA&s¢hdivergences are caused during
evolution [1]. Metamorphic viruses are, howeveggrammed to have these differences.

The basic advantage of profile HMM over HMM is tthiis more useful in
detecting distantly-related members of the familge structure of a Profile HMM with
the added null transitions and gaps in the sequaligrement looks like in Figure 7.

__

Figure 7 Structure of Profile HMM [2]

15

In Figure 7, circles that allow null transitions aedled “Delete” states, diamonds
that allow gaps in a sequence alignment are called tisert’ states, and the rectangles
are similar to the states in an HMM called “Match'tesa Match and Insert states are the
emission states of PHMM (i.e. whenever passed throughketlstates, a symbol is
emitted.) Emission probabilities are calculated dependpgn frequency of symbols
emitted. Delete states allow passing through the gaps foumdiSIA and reach other
emission states.

The arrows in the figure represent the transitions plesfiom the current to the
next state. Probabilities associated with them, ddlleansition Probabilities,” determine
the likelihood of the next state taken.

As in HMM, two states ‘begin’ and ‘end,’ are added to ude the initial
probability distribution for the first symbol and slarly to the last symbol of the

sequence.

The general notation used in Profile HMM is similaHBIM:
X - Observation sequence

i — Total number of symbols in the Observation sequenge x
N - Total number of states

a - Alphabet for the model

M — Match states M. n

| —Insert states | n

D — Delete StatesD.n

7 - Initial state distribution

A - State transition Probability Matrix

Ay - transition frequencies from state k to |

avvz - Transition probability from state Mo M,

E - Emission Probability Matrix for Match and Insstates
Em(k)- Emission frequency of symbol k at state m

ew:(k)- Emission probability of symbol k atM

A - HMM model

To understand profile HMM better, consider an examplesrgithe Multiple
Sequence Alignment (MSA) obtained by sequences using thebésas of DNA as in
Figure 4 (This sequence is merely an example and is noh faken any genuine
biological sequences).

16

AC .- .
AC-A -G
- CIGATG
AG- - TG
AG - - g
123456

Figure 8 Multiple Sequence Alignment Example

The first step in creating a Profile HMM model is todf which columns in the
MSA form the match and insert states. One of thesru¢eed as illustrated in [1] is to use
the more conservative columns (i.e. at least more Hahof the characters in the
column are symbols) as the Match states and thesothién more gap characters as
Insert states. In the above MSA, the columns 1,2 aret6rbe the Match states.

Next we start by calculating the emisgwobability for column 1, which results
in:
evi(A) =4/4 en(C)=0/4 @(G)=0/4 yT)=0/4

It can be seen that most of these values are zercsirme the model is to be
flexible we have to add small probabilities to other casesder to incorporate all the
cases that may arise. A simple rule to use is the “@ulrule” [1] where we add 1 to the
numerator and the total number of symbols in the alghab#genominator e.g.vg(A) =
(4+1)/(4+4) = 5/8.

This results in the following emission probabilities Match states and Insert
states:

ewi(A) = 5/8 &1(A) = Va

ew:(C) = 1/8 e,(C) = 1/4
aw:(G) = 1/8 a.(G) = 1/4
aw(T) = 1/8 a(T) =Y

ewo(A) = 1/9 ax(A) = 3/9
ew2(C) = 4/9 a,(C) = 1/9
em2(G) = 3/9 e.(G) = 2/9
av(T) = 1/9 ax(T) = 3/9
ews(A) = 1/8 as(A) = 1/4
ems(C) = 1/8 as(C) = 1/4
ems(G) = 5/8 8x(G) = 1/4
aws(T) = 1/8 as(T) =%

Table 2: Profile HMM Emission Probabilities for the MSA in Figure 8

17

The general formula that can be used to calculate tissiom probabilities is:
e,(k) = (Number of Occurrences of k in state n)/(Total hanof symbols in state n)

The Emission Probabilities matrix (E) of PHMM isliele different from the
symbol transition probability matrix (B) in HMM , sie we have more than one way a
symbol is emitted (match and insert).

Transition probabilities calculation is the nextpsie profile HMM modeling, and
the general equation used in calculating it is [1]:

ann = (Number of transitions from m to n)/(Total numbérntransitions from m to any

state)
aem1 = ami/(@wit asigt Gspy) = 4/(4+0+1) = 4/5

To avoid underflow while scoring a given sequence we usadti@ne rule on transition
probabilities e.g. g, = (4+1)/(5+3) = 5/8

agv1 = 5/8 aom: = 1/3

ago =1/8 ao0 = 1/3

agp: = 2/8 AoD1 = 1/3

avimz = 5/7 aum2 = 1/3 apimz= 2/4
avur = 1/7 au =1/3 apu = 1/4
avpe = 1/7 aupe = 1/3 apipz = 1/4
avizms = 2/8 aoms = 4/8 apams = 1/3
avziz = 418 a1, = 3/8 apa2 = 1/3
avzps = 2/8 a.ps = 1/8 apzps = 1/3
awse = 5/6 Az =2 apse = 2/3
avais = 1/6 Aaiz = Y2 apais = 1/3

Table 3: Profile HMM Transition Probabilities for the MSA in Figure 8

The final model for the MSA in Figure 8 with beginning andieg states added looks as
shown in Figure 9.

18

Figure 9: Profile HMM model

The final PHMM model for the MSA consists of E (ermassprobability matrix)
with emission probabilities of Match and Insert staf@able 2) and A (Transition
probability matrix) containing transitions from each Mat Insert and Delete states
(Table 3) and the number of states including beginning andgsthtes (N) is 4.

4.3 Algorithms for Scoring Unknown Sequences against a Knowvodel
There are three basic problems in Hidden Markov Modetisasissed in [4]:

Problem 1: Given a Modél = (A,B,) and an observation sequence (X where X =
X1....X7), how can we efficiently compute P(X] (i.e. the probability for the model to
produce the observed sequence)?

Problem 2: Given a Model (A,Br) and an observation sequence (X), how can we find

the “correct” or optimal sequence of states which produegiven observed sequence?

Problem 3: How can the model (A,B) be changed to best fit the observed sequence?

4.3.1 Forward Algorithm
Forward Algorithm solves the first problem but before gdimere, let us see how

P(X]) can be calculated (i.e. the “inefficient” way). P¢Xis interpreted as probability
of the sequence X emitted by model

The brute-force approach to calculate P{Xis taking the sum of probabilities of
all possible paths to emit sequence X. For example, arssgde= (A, B) emitted by a
4-state PHMM model takes 13 possible paths as shown in FaBlesymbol is emitted
each time they pass through an Insert or a Match state.

lo l1 P M1 | M2
1| AB - - - -
2 A B - - -
3 A - B - -

19

4] A - - | B | -
51 A - - - | B
6| - | AB| - - -
7| - Al B | - | -
8 | - A - - | B
9 | - - | AB| - | -
10 | - B - A -
11| - - B | A| -
12 | - - - | A| B
13 | - - B | -] A

Table 4: Possible Paths for a Sequence with 2 elemefisitted by a 4-state PHMM Model
Figure 10 shows the possible path traversals listed in Bable

1,2,3,45

1,3,9
v
- >
— b’
o e}
~ o
(4p]
9
SN
-9
S s
&
8

My m——» M, —» M, ——» M

10,11,12 12 58,12,13

Figure 10: PHMM with 4 States lllustrating Emissions of a 2-element Sequence

Calculating probabilities for each of these cases initldy not efficient.

Forward algorithm computes the probability by reusing theadyrealculated forward
score of a partial sequence (i.e. at each level wedmmsie next states since we have the

scores for the previous states already calculated)a poofile Hidden Markov Model the

forward algorithm recursive relation is [1]:

ev. (%) am j_qmj exp(Fjl\ﬂl(i -1)+4a j<1Mj eXp(Fj'_l(i -1)

M iy — j
F;" (1) =log———+log

Oy +ap, v expEF2y(i 1)

20

e & (%) A i eXp(FjM (i -D)+a, GXp(FjI (i -1)
F; (i) =log +log N
A +ap,; exp(F (i -1)

F}° (i) =loglaw_y; ©xpF;1 (1)) +a; o expF 4 () +ap, o) expF % (1)

The base case for this recursion fg(B) = 0.

In the above equation,"Ri) represents the Forward score of subsequence;xup to
state j. The background distribution jg @listribution of symbol xin a random model).

During recursion, some insert and delete terms are nimiedelike Fy(0), FPo(0)
... such items are to be ignored while calculating theescdt can be seen that";f) is
calculated as a function of MR(i-1), Fj1(i-1) and Pi(i-1) and their respective
transition probabilities to reach the match state fitsmprevious state to emit the symbol
xi and includes the emission probability ofat M. Similarly, since insert and delete
states do not emit the emission probability, the termeisoved for calculating 3i).
States M and My.1represent “begin” and “end” states respectively, anddéete states
they also do not emit.

4.3.2 Viterbi Algorithm

The coin example from section 2.2 gives an observagoence that looks like
(H,T,H,T...) but we do not know if the first H in the seqoers generated by the biased
or normal coin; this was the hidden part. In the secooblggm stated above, we need to
find this hidden part. The Viterbi algorithm does exactly.thlss problem is called the
decoding problem in speech recognition. Viterbi based on dgngmogramming
techniques finds the sequence that maximizes the B(X|lt does so by taking the
sequence of states that generates the maximum probab#itich level.

For a profile Hidden Markov Model the Viterbi algorithetursive relation is [1]:

21

VjN—Il(i —1) + log(ay [—1M),

em . (Xp)

VM (i) =log ———+ max {V/ (i -1) + log(i _gm ;)
Xij
VjD—l(i = 1) + log(ap 1M j);
VM@ -1)+log(ay)
e (%) b
V(i) =log ———+ max V| (i -1) + log(a,),

Xj

VjD(i_l)"‘lOg(aDjIj);

Vlel(i) +log(ay j-1D j),
VP (i) = max {V 1 (i) + log(&, o)

VjD—l(i) + log(8p _1D |)i

The base case is'y(0) = 0.

The basic difference with the forward algorithm casthag it changes the summation to

maximization in the case of Viterbi.

4.3.3 Baum-Welch Re-estimation

Problem 3 concentrates on “changing” the model to fitdbserved sequence.
This can be done in various ways, including gradient desBanim-Welch is a standard
method that is used for tuning a given model; it calculdtesrequency counts of each
transition and emission probabilities of a given modehgidorward and backward

scores.

Backward algorithm is used to calculate the backward scbtéeoobserved
sequence. It is similar to the forward algorithm except thtraces the given sequence
from the back (i.e. considering the last symbol ofdbguence emitted by the last match
or insert state.)

Backward Algorithm, in the case of a Profile Hidden Markéodel, is [1]:

22

AM Mg ag M g (Xi+1)EXP(By (i + 1))
B! (i)=10g |+ ay m, €m,,q (Xiz1)exp(By, (i + 1))

+ Ay oy &P B (i)

A M 18 aq (Xix1)exp(B, (i + 1))
By (i)=log | +a,, e, (Xi+1)exp(By (i +1)

+ a0y, exP(B (1)

AD M k1M kg (Xi+1)exp(Byia(i +1))
B\ (i) =log |+ ap, e (Xi+1)exp(By (i +1))
+ap g,y ©P(Bir (i)
The base case for Backward algorithm :
Buyq (LD =0
BMM (L) = log(aMM MM+1)
BlM (L) = |Og(a|M MM+1)
BDM (L) = log(aDM MM+1)
Baum-Welch is a special case of the Expectation Maxitiaia algorithm that
tunes existing transition and emission probabilities depgngpon how often each one

of them is used (a detailed discussion of it can badan [1] and [4]). Baum-Welch re-
estimation equations in the case of Profile Hidden MaModels are [1]:

Expected emission counts from sequence Xx:

1

Fu (@)= g, S o Oy 0
£, (a) :ﬁug'k ()b, ()

Expected transition counts from sequence X:

23

1 : :
AXkM K+1 =%Z ka (I)anM k+1eM k+1 (X1 +1)bM k+1 (I +1)

Ax iy = P(x)Z fx, Nax,i. &, (+0bp, (i +1)

A><|<D|<+1 P(x)fok(l)anDk+1ka+l()

In the above equations f and b represent the forward aclwiard scores
respectively. The emission and transition scores leaml from the above sequences are
iterated until a stop criterion is reached. The stopmoih is generally the maximum
number of iterations or the change in the scoresssthan a predefined value [1].

5. ANTIVIRUS TECHNOLOGIES

The war between viruses and antivirus(AV) technologiescbhatinued for more
than a decade now. VXHeaven alone has a collecticabofit 66,000 malicious code
constructs, but not all of these viruses are out inwild. Organizations like “The
WildList Organization International” release a monthdy bf viruses that are most likely
to attack. WildList [15] is a collection of viruses knowo be spreading in the wild that
are confirmed by researchers all over the world. SAm¢echnologies test their product
against these viruses before they are released. AV sigpptiastantly work in detection
and restoration processes, but are surreptitious abeiutnégw methods. The following
sections contain a brief description about the most popoéthods used to detect viruses
today.

5.1 Signature Scanners

Signature Detection is the oldest and most popular virtectien technique used
today. Each virus is searched for a string of bytesishanique to it, which becomes the
signature of the virus. Signatures, also called “Scandsti sometimes depend upon the
placement in the virus code. Scanners use a sigraileetion to identify known viruses
and are almost certain to detect them. By constantlyeasing virus’s collection,
signature scanning should be effective and efficient.

A constant string is easy to find, but today’s viruses alsfescation to escape
string scanning. Signatures need to be tweaked to catehdiffesent stains. Reordering
of code is a simple method used to cheat scanners. &ct detse differences, scanners

consider the code a match even if it has a diffelgite order than the signature.

24

Signatures can also contain wild cards that allownalfgtes to be anything. In the case
of register swapping, the signature differs by the fetedyhat contain the registers, but
the other bytes remain same. In such cases wild ceedseaeficial in identifying new
strains with an old signature. Signature extractiora i€hallenge in itself, a small
signature would match to other non-virus programs and a lgngtare would be over
fitting and may not identify new strains. To overcomis,tmultiple scanners are used on
the same system. These scanners use a differeritsghatures and help in identifying

whatever signatures one scanner misses.

Scanners can be proactive or reactive [16]; proacti@angrs continuously scan
the access files, whereas reactive scanners are aamdestanners and work as
scheduled. Proactive scanning affects the performande &ystem but is very efficient
in handling the virus threats as soon as possible. Ootliee hand, reactive scanners will
not affect the performance but might not detect thesvimtil it is too late. Whichever
scanner is used, it has to be updated as there are netusgs made available by their
vendors. Vendors like AVG supply free downloads of antivingkits for home users,
which update automatically every day. Although scannersnateslow these days,
emerging new viruses can add up and affect their perform@nftferent AV vendors
deal with them differently; some of them take into ddesation the type of file being
scanned, and that gives them a hint of what part ofdtie they should look at.

As discussed in section 2, viruses are clever at changieg look with
alternating source code. A good mutation engine will geeemty different strains and
each strain will not have the signature of the origimas. In the case of polymorphic
and metamorphic viruses, it is not possible to have a ursgueature for the virus
family. This means that although signatures of variowasnst are known there is always a
good chance that another strain will succeed in bypassirgigihature detection.

5.2 Checksum

Checksum is used to verify the integrity of any kindileft It is normally used to
check the correctness of TCP/IP packets that are tire snarce of communication on
the Internet. Software manufacturers use checksudetect unauthorized modifications
made to bypass their license check. The concept of shecks also used in generating
message authentication code (MAC) to check the integffitynessages [6]. Today’s
viruses also use checksum to see if their code is tampétedefore it starts infecting.

25

There are many checksum programs that are readilyableaibr download. Since
they are called only when a new program is accessed, dbenot have a high
performance impact. Executable files are not changesh,ofo a checksum can be used
to verify their integrity. When an integrity check &ithere is a chance that a virus will
have modified it and this helps in detecting the malicibekavior. Checksum is an
example of “detection by change” methodology, wheraadicious activity is detected
when files are changed.

Checksum is a traditional method of detecting the unwactedges; however,
there are a few viruses like the latest Hidan [17] fraed@hiton family of W32 viruses
that will calculate a new checksum after infectidriater replaces the existing checksum
with the new value, thus escaping the detection.

5.3 Hardware-based security

Next Generation Secure Computing Base (NGSCB) is a lanedbased security
system that allows only “trusted” agents to access tseorethe system. These secrets
can be memory, signatures and keys used by the user. llike AV tools these
systems need not depend on a particular virus and have codetexntion mechanisms
for all malware. However, an operating system neete toconfigured in order to use this

system.

Apart from using NGSCB to sign documents, digital righemagement [6] can
be used to keep viruses at bay. Access control listd) Ae often used in an
authorization process, and are checked to see if aisuadlowed to perform an action.
Viruses will never be given access to perform maliciaaBvities if ACLs for each
application are maintained properly. In other words a propethorization for
applications is needed in a system where privilege for gaglcation is clearly defined.

The operating system has to be configured to use this syé8eiih can also be
programmed to identify if an application is behaving oddiis tan be taken as an anti-
virus technology. Efficiency of this system depends upomv Heequently new
applications are used. A home user might need to rethelccomplete access matrix
every time new software is installed and this imposesiderable overhead [16]. On the
other hand, at an organizational level which does natgehaften, this would be a very
good solution. An experienced system administrator woutdvkwhich applications are
allowed to do what.

26

The toughest problem in this system is how to measurgusivorthiness of an
application. To set the allowed operations of an appdios, definitions of what is not
malicious need to be defined, which again depends upon whaingxmsalware has
caused or might cause. There is always a possibilityvihases will modify or delete
these access lists, but then again this is a commorepndot all anti-virus products.

5.4 Heuristics Based Analysis

Heuristics is prominently used for discovering unknown sudepending upon
known virus behavior. Every new file is monitored and st@gainst a predefined set of
indicators that are determined through analyzing known \s8rus#en the score of these
indicators is high it is flagged as a virus. Although theme known to be false positives
in this process, it is fairly effective in detecting unkmoand new strains of viruses.

Static heuristic analysis deals with inspecting codpieseces for known virus-
like code. A flagged malicious behavior in the static caseld trigger the dynamic
heuristics. Dynamic heuristics emulate the program undesideration to further
explore it. It looks for indicators like very big filelayge debug sections, entry-point code
redirection, suspicious kernel operation and many mdrehd program fails the
heuristics test, the user is warned about the samerwigkethe heuristics scanner
continues closely watching the program’s system calls iatirupts [23]. Indicators
used in the analysis sometimes number in the hundreds. Wsngany indicators is
disadvantageous as it flags non-viruses, and tweakingighe score threshold poses
considerable challenges in using heuristics.

In the case of polymorphic viruses, the code is executed @malator until it is
decrypted and a known signature is seen; this process teédscontinued in case of
multi-layered encryptions. Metamorphic viruses do not havsigaature and their
detection depends upon the indicators for any doubtfudratBut metamorphic viruses
often carry a payload that triggers the virus behavior unddain conditions; in such
cases heuristics analysis is cheated. Heuristic asasyslso known to be implemented
using neural networks that are as efficient as itaitrgiset [11].

5.5 Virtual Machine Execution
Mutation engines used in few viruses use the memory staclgdnerating
variants. Such viruses contain the signatures intdek @and not in the actual code. To

detect such viruses, anti-virus researchers should taytian at the system’s internal

27

working. It is extremely important to execute these vsugea safe environment so that

they do not escape into the wild.

Viruses that are polymorphic contain encrypted code aiduaimachine can be
used to step through the instructions until a signatures idetrypted code is detected.
Since the virtual machine has all the memory tracesAftictalls used by the virus it is
easier to analyze for any suspicious activities likert@my jumps, nop and XOR/NOR
instructions. It is helpful in detecting metamorphicasis that use encryption and
obfuscations like junk code insertion and code reordering.

Few viruses are intelligent enough to detect a virtualhmacand go in to a
recursive loop or execute unwanted instructions or exihowt executions. Such
conditions can be fine-tuned within the machine to alertuser. Code emulation on a
virtual machine comes to the rescue when no other methmedsefpful, and anti-virus
researches use these to debug and analyze new viruses #uatay’'s world where
performance is key, virtual machines are slower and need rasources than any other

method.

6. IMPLEMENTATION
For a given multiple sequence alignment (MSA) of opcodes, goal is to
generate a profile hidden markov model and score sequendegho¥iruses and non-

viruses using the model.

A PHMM model is trained depending upon an MSA generataty ugpcodes
sequences from virus files. These virus opcodes used fqrojct are generated using
3 virus construction kits: Virus creation laboratoryQl, Phalcon/Skism Mass-
Produced Code Generator (PS-MPC) and Next generation arigasion kit (NGVCK)
(more detailed description of how these virus kits wergiven in section 2.3). Each of
these kits is used to generate various variants and gromped a family. We wanted to
test the performance of PHMM over various construdkisthat are from different time
periods as this will give us a better understanding of mmgrdvements and trends
followed by the virus writers.

A PHMM model is a combination of Emission and Traaositprobabilities per
state and per opcode basis. The number of entriess# grebabilities depends upon the
gaps and symbols in a given MSA. Basically, the moded &rm@ng as the given MSA. A
weak MSA with many gaps will result in a model containieny Etates.

28

Forward Algorithm is used to score ASM files against &MRHmModel. For this
purpose, we have used non-virus files from genuine programsatly seen on many
systems. These files are filtered to contain only dpsdbefore they are scored, as any
other information like subroutine markers and registeeschanged often.

6.1 Test Data Generation and Filtration
Using 3 different construction kits we generated difiereariants by changing
the configuration settings provided by each Kit.

Our test data contains:
* 10 variants from VCL (vcl32_01 to vcl32_10)
» 30 variants from PS-MPC (psmpc_01 to psmpc_30)
» 200 different variants from NGVCK (ngvck 001 to ngvcl_200)
* 40 disassembled cygwin dlI's of version 1.5.19 (cygwin_01 to cygé0)

+ 30 disassembled dlI's from other non viruses like Msofffedgobe, IE... etc

(nonvirus_01 to non_virus_30)

These construction kits are downloaded from VXHeavenrel'hee several versions
of each of the kits available and we have used thstlatel most stable version for our
test data generation.

Table 4 contains the release date and versions of édoh kits used:

Name of the Kit Version Used Release Date
PS-MPC PS-MPC 0.91 August 1992
NGVCK NGVCKO0.30 June 2001
VCL32 VCL32 February 2004

Table 5: Construction kits information

VCL, PS-MPC and NGVCK all produce asm files depending upeir gettings and
configurations. We have chosen to incorporate the mgsifisant variants in our test
data. Although PS-MPC is capable of generating thousandar@ints with different
payloads, we used the most important configurations ligenony resident, encryption,
file type, etcetera, to generate the variants. Sitgjlarith VCL and NGVCK, test data is
generated to have at least one of the various settinghl@yghis will enable us to have

our model tuned to expect different variants.

29

We used IDA Pro Disassembler to disassemble the aiid exe’s of cygwin and
other non-viruses. To maintain consistency in the dpsave wanted to use IDA Pro for
disassembling the virus variants too. Since the outputeokite was already in the asm
format, we used Turbo Assembler (tasm 5.0) for compiling larkdng the files to
generate exe’s, which are later disassembled using IDA pro.

Virtual machine using VMWare Workstation was used for \aftus files
processing to keep the viruses in a closed system anbea#ngines and exe’s were
deleted after we had the asm file source.

Since each group of viruses is from a different constackit, they are very
different in terms of the opcodes used. All three qoosibn kits used generate 32-bit PE
executable files and each of these files can contaimfitne 250 x 86 opcodes. Using all
of these different opcodes would make the emission andition probabilities too small;
besides there are only 14 opcodes that are most likddg &een in malware as well as
genuine programs [24]. Depending upon opcode frequencies in virusntgariwe
generated one alphabet for each virus family containingjf@fent opcodes.

A wild character “*” is used for any opcodes that are nothie top 36 opcodes
and this is essential, as any opcode might show up durimqngcoThe alphabet thus
generated is fixed and used throughout the process for M8delimg and scoring of the

virus family.

In the models we generated the probabilities perceivetffare much less than
the other opcodes; thus, a sequence not belonging to tisefamily will have different
opcodes and a higher chance of using the lower probalpliydes.

Each asm source file of the viruses is filtered to dordaly the opcodes, while
other information like the subroutine names, registets @mments are omitted. This
takes care of the early metamorphic viruses like Regswap ubed only register
swapping. These filtered files are now used to generat®I8A and Scoring.

6.2 Training the Model

The multiple sequence alignment we used as an input tmmodeling algorithm
is generated using the Feng-Doolittle progressive mulapggnment algorithm [25]. A
PHMM model created from observing the MSA of its vaisagdrries data about opcodes
patterns for each virus family. We have followed a ganerethod used for training the
model as explained in section 3.2.1.

30

A model can be generated for each virus family contaialhthe virus variants
generated, or a model can be generated for each oftigeosips of the variants. But we
opted to generate more than one model for each virusyfagniing us the flexibility to
test our method against other virus variants of the samsy.

After looking at various MSA’s generated by grouping a vaeialimber of files
we decided to group them as follows:

VCL32 — 2 groups with 5 files in each group
PS-MPC — 3 groups with 10 files in each group
NGVCK - 10 groups with 20 files in each group

The percentage of gaps perceived in the virus families isrshoTable 6. These
gap percentages give us a raw estimation of the PHMM Inpeatf@®ormance. An MSA
with many gaps is more generic and might lose the vipesiic information, especially

in advanced metamorphic cases.

Virus Family Gap %
VCL32 7.453
PS-MPC 23.555
NGVCK 88.308

Table 6: Gap percentages perceived in MSA’s of each Virdamily
As it can be seen NGVCK generates far more divensanta than other construction
kits.

The following are the steps used for training the model:

» Calculate the begin probabilities. These are the itr@ngrobabilities from the begin
state to the first insert, match and delete statesul case, we have measured the
begin state to be another match state and renamed/l§, &@hich will enable us to use
the recursive forward algorithm efficiently.

* ldentify the match states. We used MSA columns withentoan half filled as match
and the rest as insert. In the case of Bioinforma#insexperienced biologist would
determine this.

» Calculate the emission probabilities. Each MSA isstdered as a group of columns
with symbols of opcodes in them; each of these columtraversed and frequencies
of each opcode is noted. These frequencies are latetaisaftulate emission match
and emission insert probabilities.

31

» Calculate the transition probabilities. Each colusitraversed to store the number of
transitions between each of the match, insert andedstiates. These results are used
in calculating the final transition probabilities pexasl in the alignment.

» Calculate the end probabilities. The last match statbe end state, if there are n

states we renamed our match state asiMSince begin and end match states are the

only match states that do not emit any symbols, therenaremission probabilities

pertaining to them.

The model generated for VCL32 group 1 using files numbered vcl3® @d32_05

contains a total of 1820 states with emission probabildies$ transition probabilities.

Table 6 shows emission probabilities seen for states1Z26and 128 calculated from a

multiple sequence alignment of 5 files (vcl32_01 to vcl32_05):

32

Emission Match Probabilities Emission Insert Probabilities
opcodes State 126| State 127 State 128 State 126 Statg 127 State 128
and 0.0238 0.025 0.025 0.0612 0.0256 0.025¢
inc 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
xor 0.0238 0.025 0.025 0.0204 0.0256| 0.0513
stc 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
stosb 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
imul 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
jecxz 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
jmp 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
shl 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
not 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
add 0.0238 0.1 0.025 0.0612 0.0256 0.0256
stosd 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
call 0.0238 0.025 0.025 0.0612 0.0256 0.025¢
jnz 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
push 0.0238 0.025 0.025 0.0204 | 0.0769 0.0513
cmp 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
dec 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
xchg 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
test 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
* 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
jb 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
sub 0.0238 0.025 0.025 0.0612 0.0256 0.025¢
or 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
jz 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
neg 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
retn 0.0238 0.025 0.025 0.0204 0.0256 0.025¢

lodsb 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
mov 0.1429 0.025 0.1 0.102 0.0256 0.0256
pop 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
jnb 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
shr 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
stosw 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
lodsd 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
cld 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
rep 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
lea 0.0238 0.025 0.025 0.0204 0.0256 0.025¢
rol 0.0238 0.025 0.025 0.0204 0.0256 0.025¢

Table 7: Emission Match and Insert Probabilities for VCL32 Groupl in States 126, 127 and 128

As can be seen, there are few opcodes that occur rfieretban other opcodes.
The add-one rule is used for opcodes that are not sedhiast@ad of using a zero
probability, which enables us to accommodate them inrsganstead of ignoring them.

The transition probabilities between states 126, 127 andot2goupl VCL32

files are given below:

Mi27 127 D127 Mi2g 128 Di2g
M 126 0.500 0.375 0.125 M 27 0.667 0.167 0.167
l126 0.067 0.733 0.200 l127 0.200 0.200 0.600
D126 0.333 0.333 0.333 D127 0.200 0.600 0.200

Table 8: Transition probabilities between states 149,150 arftb1 for groupl NGVCK
The probabilities shown in Table 8 can be interpreted as:

amyogM1o7 = 0-5, probability that - is reached after Ms emits a symbol is greater

than k.7 and D7 are reached. Notice that the sum of the probabildfesach row is
equal to 1 and so is the sum of each column in the emipsababilities.

The time complexity of the method used to implement RHivaining is O(nL),
where n is the number of sequences in the MSA andHeigength of training sequence.

6.3 Forward Scoring

Forward algorithm scores a given sequence against a givéh ibtel using the
principles of dynamic programming. It is a recursive pthoe that reuses the scores
generated in its previous steps. The theory and formsks for our project are stated in
section 3.3.1.

The following are the steps involved in scoring:

33

» To score a given sequence X, (%,....x) against a PHMM with N+1 states(0,1...N)

with N >= 1, states 0 and N being the start and endsstaspectively, we proceed by

calculating F, (L) , F (L) and F>,(L) in that order.
* In the recursive process of calculatiﬁtilvl_l(L) , many other intermediate values like

Fo(L=1),F ., (L=1)..... are calculated and stored for later use. By the tim

F,\',D_l(L) is calculated, very few intermediate scores have tadeulated from

scratch, thus making scoring efficient.

Figure 11 explains this recursion process:

e T
g A0

I
s

/3> e p—
% Fiza(D)

RN —— RO———R @
-7 AW
= i
FID':D]'—:) Fy -

I
G EO
ra
Figure 11: Forward Algorithm recursive approach

« During the calculations there are a few terms ﬁk}e(O) : FO'VI (2), ... which are not

defined; when these are encountered, we simply excludeftbenthe calculations.

- FM(L),F (L) and F (L) represent the scores for sequence X until it

reaches the N-1 states; multiplying these scores Wwéh tespective end transition
probabilities gives the final score.

34

Fata (L)
AMN-1M N

a|N—1'V|N
Faa(l) ——— 5 RY'(L)

Fu-1(L) ApN M N

Figure 12 Final Score from previous states

Total Score Jog An-n expFyL (L) +& N-IMN exp(Fy-y (L))
* ApN_gMN exp(FND—l(L))

* The scores thus generated are log-odds scores and hemmn¥vbave to subtract
any random or null model scores as normally done in H3dbring.

The resultant scores are sequence-length dependant ramat @ used directly for
comparison. We divided the final score by sequence lengtinggus per-opcode basis
scores. Since all the scores are per-opcode, theseovae used to directly compare
with other scores.

Due to the logarithms used in the scoring process, weadilave any underflow
problems, but due to the exponentiation part of the caionlathere were overflow
problems. The intermediate score sometimes reachetegthan 700 and exp(700) is a
very large number, which affects performance. To overdbe®e problems, we used the
following mathematical principle mentioned in [1]:

log(p +q) =log(p) +log(1+exp(log@) - log(p))

Exponentiation of a big number is not necessatheg are changed as the difference
between logarithmic values. In special cases wiene is only one term, log and exp
cancel each other out.

Since there are a fixed number of possible tramsitfrom each state, the time
complexity is O(nT) where n is the number of stated T is the length of the observed

sequence.

35

7. RESULTS

The score of a given sequence using a virus family mogdegsents its similarity
to the virus. High scored sequences are more closledeto the virus whereas lower
scored sequences are more diverged and thus are less ptoli@blaruses.

We have scored non-viruses and virus variants of eachraoiisn kit against
various PHMM models representing the virus family. Tega dgouping and model

names are shown in Table 9.

Virus Family Groups/Model Name Files in Group

VCL32 vcl32_group5_1 vcl32_01 to vel32_05
vcl32_group5_2 vcl32_06 to vel32_10
psmpc_groupl0_1 psmpc_01 to psmpc_10

PS-MPC psmpc_groupl0_2 psmpc_11 to psmpc_20
psmpc_groupl0_3 psmpc_21 to psmpc_30
ngvck_group20_01 ngvck_01 to ngvck 020
ngvck_group20_02 ngvck_021 to ngvck_04D
ngvck_group20_03 ngvck_041 to ngvck_06D
ngvck_group20_04 ngvck_061 to ngvck_08p
ngvck_group20_05 ngvck 081 to ngvck_100

NGVCK ngvck_group20_06 ngvck_101 to ngvck_120
ngvck_group20_07 ngvck_ 121 to ngvck_140
ngvck_group20_08 ngvck 141 to ngvck_160
ngvck_group20_09 ngvck 161 to ngvck 18D
ngvck_group20_10 ngvck_181 to ngvck_200

Table 9: Test Data Grouping and Model Names

The default threshold for log-odd scores is 0, thatoig;ddd scores would be
positive for family variants and negative for non-fgmmembers. A positive threshold
greater than zero can also be used but carries a rislete€ting non-family files as

viruses, and vice versa.

Since we have used diverse variants while modeling eagh family and have a
considerable dataset of known to be viruses, the threghtdéten as the minimum score
from the viruses of each family.

Figure 13 shows the scatter plot of scores against tB2 vgdoup5_1 model.

36

Scores using vcl32_group5_1 model

& PS-MPC
[] = m Cygwin

Score
o
~ o
(03]

-1.25] u A Other-Nonvirus

File Number

Figure 13 Scores for Virus and Non Virus files using u82_group5_1 model

There are no scores from the cygwin or other non-virtisgisare greater than the
minimum score of 1.0546 in vcl32 variants, thus clearlyirisiishing non-viruses from
vcl family viruses. Scores against the models of vciraekided in Appendix (Table A-1
and Table A-2).

Results forpsmpc_groupl0_Jare shown in Figure 14. There are no false
positives or false negatives using all three models g&gbrfrom PS-MPC. Thus the
detection rate perceived in VCL32 and PS-MPC is 100% wigltsa positive rate of 0%.

Scores using pcmpc_group10_1 model
2
15 | %o *4 ¢ o000 o
* 3 % o .
I o A * PS-MPC
u8) m Cygwin
> A Other-Nonvirus
u u N
ey o L o o
0 Ay Lasabiia, A“ i ‘ :
-0.5
Fle Number

Figure 14 Scores for Virus and Non Virus files using papc_group10_1 model

37

NGVCK, as seen from the gap percentages (Table 6),ns atvanced than PS-
MPC and VCL32. Figure 15 shows the results using the ngvalpgf 01 model. Non-
virus files that score greater than 0.715 are considelssligasitives.

Scores using ngvck_group20_1 model

o 055 4 M guck
5 05 mC .
rH 045 yqunin
04 ;
0Ee Other-M onvirus
0z
oz25
oz
015
0.4
oS
D T T T
I:.||J:|:|_1 50 100 150 200

Ale Mumber

Figure 15 Scores for Virus and Non Virus files using nggk _group20_01 model
The increased rate of false-positives in the NGVCg&eda due to the subroutine

permutation used by the construction kit. As differeniavas had different subroutine
order, the opcodes in the MSA are not aligned as intenBer example, consider
assembly files filel.asm and file2.asm with 3 subroutieash, where the order of
subroutines in file 1 is (1,2,3) and (2,3,1) in case ef 2l The MSA generated from
these files has aligned subroutine 1 in file 1 with subne 2 in file2, giving

considerable gaps in the final MSA.

To overcome this problem, we generated new models for Q¥GWiruses using
finely-tuned MSA’s. New set of MSA’s created for this puspaused virus files that are
reordered to contain fewer gaps. (More details about thequegsing can be found in
[25]). We will be referring to these files as prepreeesfiles from now on. The MSA
gap percentage of NGVCK variants decreased from 88.3% to 4@e®éént using the

preprocessed files. In a real-world scenario the sdileceve score can be a virus or a

38

non-virus, so a preprocessing step is essential for &yofibe scored. The models
generated from preprocessed files are named as ngvck _pp_group20eOdirushand
non-virus files used for scoring are from now on areraiprocessed.

Scores using ngvck_pp_group20_01 model

¢ Ngvck

7_[!. m Cygwin

u Other-Nonvirus

Score

0.4

0.
0.3
0.
0.2
0.
0.1
0.
0.0
-0.0
-0.

D 50 100 150 200 250

5
4
5
3
5
2
5
1
5
0
5
1

Fle Number

Figure 16 Scores for Virus and Non Virus files using nggk_pp_group20_01 model
Figure 16 shows the scores for preprocessed files using the

ngvck _pp_group20_01 model. Although the false positives are notlet@iypgone, the
average false-positive rate across all NGVCK modelsedsed from 92.57% to 48.43%
and the overall accuracy has considerably increased T888% to 95.92% with the

preprocessing step.

Since few virus variants scored much less than therdiles, we increased the
threshold to second and third minimum scores perceiveckiniths variants. Increasing
the threshold would allow actual virus files to bypass db&ection, increasing false
negatives. The average false-negative rate over alpgrof NGVCK pre-processed files
was 1% in the case of third minimum threshold and 0.5%eircdélse of second minimum
threshold.

The improvement due to pre-processing the files cansdmn clearly by
calculating the false-positive percentages before atef #fie pre-processing step at

various threshold levels.

39

100

90

80 »
0 /\ —e— No Pre-Processing
: - /\ /L
'g 60 / \ — —a— Pre-Processing with
o 50 / \ Minimum Score Threshold
Q) _
L) Pre-Processing with 2nd
& 40 / A \ / /\ Minimum Score Threshold
E 30 }(Pre-Processing with 3rd
> 20 Minimum Score Threshold

10 - |

0

Figure 17: False Positive Percentages for Non-virus Be@and After Preprocessing at Different
Thresholds

As shown in Figure 17, the number of false positives deeteaonsiderably by
increasing the threshold and preprocessing the filese Smareasing the threshold to
third minimum of the virus scores has improved the accuaey with a good balance of
false positives and false negatives, we can use a thindmomn threshold for the
NGVCK viruses. Due to space constraints, we have addee@sscalculated using all
NGVCK models in Appendix C. Although the accuracy is h060% as in the case of
VCL32 and PS-MPC, NGVCK viruses can be detected with &sefpositives and false

negatives.

8. CONCLUSION

Virus detection is crucial in today’s world of computévietamorphic viruses are
far more advanced and harder to detect than any otheokiridises in the wild. In this
report, we have described the challenges most anti-virus tegie® face in detecting

metamorphic viruses.

Profile Hidden Markov Models (PHMM) are known for thesuccess in
determining relations between DNA and protein sequencehaweexperimented to see
whether PHMM can be used in detecting computer virus varigeterated using
construction kits. Our results show that Profile Hiddstarkov Models can be

successfully used to model viruses. Using a faster appuoadleld Forward algorithm, we

40

calculated the scores for virus and non-virus files (@%gwin dil's and application dII's)
against each virus model. The time complexity to scorgyusiPHMM is O(nT), where n
is the number of states and T is the length of the segue

We tested our method on three construction kits--navély32, PS-MPC and
NGVCK, which use simple to advanced code-morphing techniqueseshts showed a
100% detection with 0% false positive and false negatitesra VCL32 and PS-MPC.
After rearranging the subroutines and threshold tuningwere able to detect NGVCK
viruses with a false positive rate of 19.43% and a falgatie rate of 1%.

The relationship between opcodes sequences in virus famaniignts and non-
viruses is different and PHMM can model that accuraétecting metamorphic viruses
using Profile Hidden Markov Models is highly feasible, basedperformance and

results.

9. FUTURE WORK

The following ideas can be used to further extend the pbréd®HMM in detecting

metamorphic viruses:

* Our test data contains variants of three construdtiksn When other variants of the
same virus families are discovered, a new set of mothelt include the newly-
detected variants needs to be generated using our methodlt@mnative, would be
to tune the emission and transition probabilities @RRFMM model using the Baum-
Welch reestimation method.

* We have trained our models using assembly sources of files. This can be
extended to model each subroutine and calculate an aggrega® Subroutine
modeling might detect metamorphic viruses that implementostihe permutation
and code reordering. On the other hand, more advanced difuscthat generate
different subroutines for their variants would be a greztallenge to detect.

» Training and scoring are faster than heuristics-baseditpets, but the time taken to
filter the data, and the disassembling, can hinder thenpeathce of different kinds of
files. It would be interesting to see how PHMM perforiindinary code is used
directly.

41

REFERENCES

[1] R. Durbin, S. Eddy, A. Krogh and G. Mitchison, “Biologl Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids,” Caiddpe University Press, 1988.

[2] A. Krogh, “An Introduction to Hidden Markov Models f@&iological Sequences,”
Center for Biological Sequence Analysis, Technical United Denmark, 1988.

[3] D.W. Mount, “Bioinformatics: Sequence and Genome #sial” Cold Spring Harbor
Laboratory, 2004.

[4] L.R. Rabiner, “A Tutorial on Hidden Markov Models ande&éd Applications in
Speech Recognition,” Proceedings of the IEEE, Volumésgdge 2, Feb. 1989. Pages
257-286.

[5] M. Stamp, “A Revealing Introduction to Hidden Markov Majélanuary 2004.
http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf.

[6] M. Stamp, “Information Security: Principles and Piagf’ August 2005.

[7] P. Szor, P. Ferrie, “Hunting for Metamorphic,” Symbec Security Response.
http://www.symantec.com/avcenter/reference/huntingrferamorphic.pdf.

[8] S.R. Eddy, “Profile Hidden Markov Models,” Bioinformesi Oxford Journals,
Volume 14, Number 9, July 1998. Pages 755-763.

[9] W. Wong, “Analysis and Detection of Metamorphic CompMguses,” Master’s
thesis, San Jose State University, 2006.
http://home.earthlink.net/~mstampl/mss_v.html#masters.

[10] S.Khuri, “Hidden Markov Models,” lecture notes.
http://www.cs.sjsu.edu/faculty/khuri/Bio_CS123B/Markov.pdf.

[11] P.Szor, “The Art of Computer Virus Defense and ResgeaSymantec Press, 2005.
[12] R.G. Fifiones and R. Fernandez, “Solving the Metamoimzle,” Virus Bulletin,
Mar. 2006. Pages 14-19.

[13] J. Mc afee and C. Haynes, “Computer Viruses, Worrasa Diddlers, Killer
Programs and Other Threats to Your System,” St. Marfméss, 1989.

[14] http://en.wikipedia.org/wiki/Timeline_of_notable_computaruses_and_worms.
[15] http://www.wildlist.org/WildList/.

42

[16] W.T. Polk, L.E. Bassham, J.P. Wack and L.J. Carndlanti-virus Tools and
Techniques for Computer Systems,” Noyes Data Corporédti#fs.

[17] P. Ferrie, “Hidan and Dangerous,” Virus Bulletin, M2@07. Pages 14-19.

[18] A. Walenstein, R. Mathur, M.R. Chouchane and A. Laikh6Normalizing
Metamorphic Malware Using Term Rewriting," Proc. Int'l lk&hop on Source Code
Analysis and Manipulation (SCAM), IEEE CS Press, S2pd6. Pages 75-84.

[19] http://vx.netlux.org/vx.php?id=tp00.

[20] Myles Jordan, “Anti-Virus Research - Dealing wittetdmorphism,” Virus Bulletin,
Oct. 2002.

[21] http://www.symantec.com/security_response/writeup.jsp@d@000-122010-0045-
99&tabid=2.

[22] “The Molecular Virology of Lexotan32: Metamorphisghustrated,” OpenRCE.org,
Aug. 2007. http://www.openrce.org/articles/full_view/29.

[23] Jay Munro, "Antivirus Research and Detection TechnigiedremeTech., July
2002. FindArticles.com. 02 Nov. 2007.
http://findarticles.com/p/articles/mi_zdext/is_200207/ai_ziff28916.

[24] D. Bilar, “Statistical Structures: Fingerprinting Mare for Classification and
Analysis,” http://www.blackhat.com/presentations/bh-06&88H-US-06-Bilar.pdf.

[25] S.McGhee, “Pairwise Alignment of Metamorphic Compeuses,” Master’s
project, San Jose State University, 2007.
http://www.cs.sjsu.edu/faculty/stamp/students/mcghee .pdbtt

43

APPENDIX A - VCL32 Scores
Table A-1 Scores of Virus and Non Virus files using vcl32_gup5_1 model

VCL32 Virus Variants Non Virus Files
Cygwin Other Non Viruses
File Score File Score File Score
Vcl32_01 1.083767 Cygwin_01 -0.45906 nonvirus_01 200929
Vcl32_02 1.054556 Cygwin_02 -0.37755 nonvirus_02 606955
Vcl32_03 1.07452 Cygwin_03 0.044363 nonvirus_03 40682
Vcl32_04 1.077914 Cygwin_04 -0.00845 nonvirus_04 556673
Vcl32_05 1.094975 Cygwin_05 0.042635 nonvirus_05 530772
Vcl32_06 1.067547 Cygwin_06 0.098187 nonvirus_06 0.494801
Vcl32_07 1.069215 Cygwin_07 0.085779 nonvirus_07 0.510706¢
Vcl32_08 1.080612 Cygwin_08 0.036963 nonvirus_08 0.490264
Vcl32_09 1.060052 Cygwin_09 -0.42124 nonvirus_09 0.179993
Vcl32_10 1.05712 Cygwin_10 -0.89192 nonvirus_10 0.423765
Cygwin_11 -0.23544 nonvirus_11 -0.98025
Cygwin_12 -0.43307 nonvirus_12 0.412032
Cygwin_13 -0.55189 nonvirus_13 0.412032
Cygwin_14 -0.16056 nonvirus_14 0.357063
Cygwin_15 -0.83461 nonvirus_15 0.391026
Cygwin_16 -0.30853 nonvirus_16 0.291146
Cygwin_17 -1.18801 nonvirus_17 0.461129
Cygwin_18 -0.13747 nonvirus_18 -0.09653
Cygwin_19 0.081736 nonvirus_19 0.308743
Cygwin_20 -0.42498 nonvirus_20 0.454242
Cygwin_21 -0.25938 nonvirus_21 0.259071
Cygwin_22 -0.23532 nonvirus_22 -0.29306
Cygwin_23 -0.54901 nonvirus_23 0.291158
Cygwin_24 -0.50752 nonvirus_24 0.583751
Cygwin_25 -0.02293 nonvirus_25 0.443853
Cygwin_26 -0.75277 nonvirus_26 -0.93934
Cygwin_27 -0.49897 nonvirus_27 0.300514
Cygwin_28 -1.11758 nonvirus_28 -2.07051
Cygwin_29 -6.38913 nonvirus_29 0.350297
Cygwin_30 -0.83096 nonvirus_30 0.356699
Cygwin_31 -0.98737
Cygwin_32 -2.70584
Cygwin_33 -0.45342
Cygwin_34 -0.10282
Cygwin_35 -0.09447
Cygwin_36 -0.45365
Cygwin_37 -0.53924
Cygwin_38 -0.41534
Cygwin_39 0.066167
Cygwin_40 -0.52667

44

Figure A-1: Graphical representation of Virus and Non-Virus Scores using vcl32_group5_1 model

Scores using vcl32_group5_1 model

15
1.25

0.75
0.5
0.25

-0.25
-0.5
-0.75
-1
-1.25
-1.5
-1.75
-2
-2.25
-2.5
-2.75
-3

¢ PS-MPC
m Cygwin

Score

A Other-Nonvirus

Fle Number

45

Table A-2 Scores of Virus and Non Virus files using ¥82_group5_2 model

VCL32 Virus Variants

Non Virus Files

Cygwin Other Non Viruses
File Score File Score File Score

vcl32_01 1.054748 cygwin_01 -0.510939 nonvirus_01 0.175959
vcl32_02 1.041679 cygwin_02 -0.429031 nonvirus_02 0.607093
vcl32_03 1.038289 cygwin_03 0.018187 nonvirus_03 0.500238
vcl32_04 1.050418 cygwin_04 -0.041686 nonvirus_04 0.62645
vcl32_05 1.051996 cygwin_05 0.00586 nonvirus_05 0.482649
vcl32_06 1.076125 cygwin_06 0.068762 nonvirus_06 0.469946
vcl32_07 1.071717 cygwin_07 0.05598 nonvirus_07 0.481795
vcl32_08 1.057444 cygwin_08 -0.001187 nonvirus_08 0.459852
vcl32_09 1.067382 cygwin_09 -0.470955 nonvirus_09 0.115241
vcl32_10 1.056705 cygwin_10 -0.954708 nonvirus_10 0.423541

cygwin_11 -0.280892 nonvirus_11 -1.041574

cygwin_12 -0.483825 nonvirus_12 0.447212

cygwin_13 -0.603847 nonvirus_13 0.447212

cygwin_14 -0.201867 nonvirus_14 0.236376

cygwin_15 -0.89825 nonvirus_15 0.284199

cygwin_16 -0.356652 nonvirus_16 0.359028

cygwin_17 -1.259348 nonvirus_17 0.464545

cygwin_18 -0.178455 nonvirus_18 -0.12838

cygwin_19 0.043298 nonvirus_19 0.308425

cygwin_20 -0.473163 nonvirus_20 0.394181

cygwin_21 -0.307048 nonvirus_21 0.222292

cygwin_22 -0.280265 nonvirus_22 -0.334553

cygwin_23 -0.600964 nonvirus_23 0.257425

cygwin_24 -0.56236 nonvirus_24 0.494217

cygwin_25 -0.049662 nonvirus_25 0.338486

cygwin_26 -0.810152 nonvirus_26 -1.005699

cygwin_27 -0.550994 nonvirus_27 0.340329

cygwin_28 -1.187329 nonvirus_28 -2.154028

cygwin_29 -6.570453 nonvirus_29 0.240242

cygwin_30 -0.892495 nonvirus_30 0.261265

cygwin_31 -1.053905

cygwin_32 -2.814226

cygwin_33 -0.511613

cygwin_34 -0.136853

cygwin_35 -0.13808

cygwin_36 -0.506485

cygwin_37 -0.593724

cygwin_38 -0.464666

cygwin_39 0.040891

cygwin_40 -0.579538

46

Figure A-2: Graphical representation of Virus and Non-Virus Scores using vcl32_group5_2 model

Scores using vcl32_group5 2 model

15
1.25
0.75
0.25

-0.25
-0.5
-0.75
-1
-1.25
-1.5
-1.75

& VCL32
M Cygwin
A Other-Nonvirus

Score

-2.25
-2.5
-2.75
-3

File Number

47

APPENDIX B - PS-MPC Scores

Table B-1 Scores of Virus and Non Virus files using psntp group10_1 model

PSPMC Virus Variants

Non Virus Files

Cygwin Other Non Viruses
File Score File Score File Score

psmpc_01 1.323747 cygwin_01 0.217836 nonvirus_01 -0.17126
psmpc_02 1.621965 cygwin_02 0.278389 nonvirus_02 -0.035853
psmpc_03 1.54293 cygwin_03 0.137888 nonvirus_03 -0.094112
psmpc_04 1.02367 cygwin_04 0.203186 nonvirus_04 0.187106
psmpc_05 1.587549 cygwin_05 0.113871 nonvirus_05 -0.168395
psmpc_06 1.524759 cygwin_06 0.106767 nonvirus_06 -0.113968
psmpc_07 0.922988 cygwin_07 0.099252 nonvirus_07 -0.130918
psmpc_08 1.621965 cygwin_08 0.122255 nonvirus_08 -0.119984
psmpc_09 1.385606 cygwin_09 0.107664 nonvirus_09 -0.05732
psmpc_10 0.961724 cygwin_10 0.304064 nonvirus_10 -0.118333
psmpc_11 0.873914 cygwin_11 0.207124 nonvirus_11 -0.056218
psmpc_12 0.943829 cygwin_12 0.175749 nonvirus_12 -0.088344
psmpc_13 0.962353 cygwin_13 0.118547 nonvirus_13 -0.141422
psmpc_14 1.403483 cygwin_14 0.109732 nonvirus_14 -0.218387
psmpc_15 1.379162 cygwin_15 0.263593 nonvirus_15 -0.203497
psmpc_16 1.45283 cygwin_16 0.289688 nonvirus_16 0.015157
psmpc_17 1.009983 cygwin_17 0.194993 nonvirus_17 -0.100559
psmpc_18 1.605451 cygwin_18 0.247258 nonvirus_18 -0.102171
psmpc_19 1.40997 cygwin_19 0.167704 nonvirus_19 -0.130722
psmpc_20 1.621965 cygwin_20 0.138071 nonvirus_20 -0.218612
psmpc_21 1.607687 cygwin_21 0.234471 nonvirus_21 -0.1514
psmpc_22 0.958344 cygwin_22 0.267159 nonvirus_22 -0.050515
psmpc_23 1.614169 cygwin_23 0.01101 nonvirus_23 -0.286356
psmpc_24 1.610268 cygwin_24 0.204981 nonvirus_24 -0.19157
psmpc_25 1.030705 cygwin_25 0.158373 nonvirus_25 -0.235362
psmpc_26 1.017315 cygwin_26 0.171962 nonvirus_26 0.233872
psmpc_27 1.340959 cygwin_27 0.192007 nonvirus_27 0.051087
psmpc_28 1.520831 cygwin_28 0.261288 nonvirus_28 0.041697
psmpc_29 0.949162 cygwin_29 0.311014 nonvirus_29 -0.220485
psmpc_30 1.589719 cygwin_30 0.191735 nonvirus_30 -0.210733

cygwin_31 0.310988

cygwin_32 0.23574

cygwin_33 0.151786

cygwin_34 0.221324

cygwin_35 0.135578

cygwin_36 0.222211

cygwin_37 0.223585

cygwin_38 0.164705

cygwin_39 0.24573

cygwin_40 0.275728

48

Figure B-1: Graphical representation of Virus and Non-Virus Scores using psmpc_group10_1 model

Scores using pcmpc_group10_1 model

¢ PS-MPC
m Cygwin

Score

A Other-Nonvirus

Fle Number

49

Table B-2 Scores of Virus and Non Virus files using pspc_group10_2 model

PSPMC Virus Variants

Non Virus Files

Cygwin Other Non Viruses
File Score File Score File Score

psmpc_01 1.299699 cygwin_01 0.60396 nonvirus_01 -0.011451
psmpc_02 1.499945 cygwin_02 0.743039 nonvirus_02 0.222913
psmpc_03 1.426114 cygwin_03 0.453493 nonvirus_03 0.19182
psmpc_04 1.012006 cygwin_04 0.569435 nonvirus_04 0.581364
psmpc_05 1.464344 cygwin_05 0.407526 nonvirus_05 0.010183
psmpc_06 1.447789 cygwin_06 0.37784 nonvirus_06 0.106866
psmpc_07 0.875303 cygwin_07 0.389348 nonvirus_07 0.053376
psmpc_08 1.499945 cygwin_08 0.414411 nonvirus_08 0.088721
psmpc_09 1.364755 cygwin_09 0.379526 nonvirus_09 0.115241
psmpc_10 1.07822 cygwin_10 0.667799 nonvirus_10 0.122428
psmpc_11 1.006404 cygwin_11 0.569719 nonvirus_11 0.248631
psmpc_12 1.093912 cygwin_12 0.489344 nonvirus_12 0.186405
psmpc_13 1.074151 cygwin_13 0.369263 nonvirus_13 0.196976
psmpc_14 1.383742 cygwin_14 0.379498 nonvirus_14 0.039328
psmpc_15 1.367184 cygwin_15 0.665051 nonvirus_15 0.049431
psmpc_16 1.373806 cygwin_16 0.688913 nonvirus_16 0.285888
psmpc_17 1.023055 cygwin_17 0.508443 nonvirus_17 0.104013
psmpc_18 1.495992 cygwin_18 0.644309 nonvirus_18 0.134148
psmpc_19 1.381297 cygwin_19 0.507705 nonvirus_19 0.057854
psmpc_20 1.499945 cygwin_20 0.390515 nonvirus_20 -0.001147
psmpc_21 1.489273 cygwin_21 0.546206 nonvirus_21 -0.036187
psmpc_22 0.927391 cygwin_22 0.660234 nonvirus_22 0.168131
psmpc_23 1.492649 cygwin_23 0.205626 nonvirus_23 -0.181052
psmpc_24 1.494176 cygwin_24 0.533397 nonvirus_24 -0.029677
psmpc_25 1.033471 cygwin_25 0.506076 nonvirus_25 -0.083614
psmpc_26 1.023167 cygwin_26 0.438186 nonvirus_26 0.489644
psmpc_27 1.325211 cygwin_27 0.468334 nonvirus_27 0.43179
psmpc_28 1.43689 cygwin_28 0.556737 nonvirus_28 0.287961
psmpc_29 1.077357 cygwin_29 0.377149 nonvirus_29 0.067728
psmpc_30 1.476733 cygwin_30 0.397222 nonvirus_30 -0.090047

cygwin_31 0.687407

cygwin_32 0.448065

cygwin_33 0.447832

cygwin_34 0.649103

cygwin_35 0.458314

cygwin_36 0.616491

cygwin_37 0.564271

cygwin_38 0.508992

cygwin_39 0.673767

cygwin_40 0.64151

50

Figure B-2: Graphical representation of Virus and Non-Virus Scores using psmpc_groupl10_2 model

Scores using psmpc_groupl0_2 model

¢ PS-MPC
= Cygwin

Score

A Other-Nonvirus

Fle Number

51

Table B-3 Scores of Virus and Non Virus files using pspc_group10_3 model

PSPMC Virus Variants

Non Virus Files

Cygwin Other Non Viruses
File Score File Score File Score

psmpc_01 1.227648 cygwin_01 0.08141 nonvirus_01 -0.208046
psmpc_02 1.600759 cygwin_02 0.12026 nonvirus_02 -0.140612
psmpc_03 1.505053 cygwin_03 0.013068 nonvirus_03 -0.191327
psmpc_04 1.144719 cygwin_04 0.05019 nonvirus_04 0.031832
psmpc_05 1.554167 cygwin_05 0.024026 nonvirus_05 -0.266684
psmpc_06 1.476359 cygwin_06 0.013583 nonvirus_06 -0.211736
psmpc_07 0.910976 cygwin_07 0.004608 nonvirus_07 -0.224777
psmpc_08 1.600759 cygwin_08 0.032545 nonvirus_08 -0.221471
psmpc_09 1.294007 cygwin_09 0.035636 nonvirus_09 -0.111186
psmpc_10 1.035318 cygwin_10 0.149571 nonvirus_10 -0.199914
psmpc_11 0.923018 cygwin_11 0.080839 nonvirus_11 -0.118773
psmpc_12 1.015707 cygwin_12 0.058602 nonvirus_12 -0.159612
psmpc_13 1.028569 cygwin_13 0.032574 nonvirus_13 -0.220773
psmpc_14 1.282105 cygwin_14 0.006599 nonvirus_14 -0.279282
psmpc_15 1.278729 cygwin_15 0.148496 nonvirus_15 -0.279647
psmpc_16 1.435184 cygwin_16 0.121077 nonvirus_16 -0.046356
psmpc_17 1.147134 cygwin_17 0.098734 nonvirus_17 -0.183069
psmpc_18 1.58493 cygwin_18 0.101414 nonvirus_18 -0.167831
psmpc_19 1.297483 cygwin_19 0.057787 nonvirus_19 -0.201428
psmpc_20 1.600759 cygwin_20 -0.005496 nonvirus_20 -0.260167
psmpc_21 1.582813 cygwin_21 0.081491 nonvirus_21 -0.193507
psmpc_22 1.006626 cygwin_22 0.122084 nonvirus_22 -0.109163
psmpc_23 1.600967 cygwin_23 -0.052099 nonvirus_23 -0.331173
psmpc_24 1.596352 cygwin_24 0.096249 nonvirus_24 -0.271952
psmpc_25 1.232587 cygwin_25 0.07178 nonvirus_25 -0.313998
psmpc_26 1.164333 cygwin_26 0.04778 nonvirus_26 0.122739
psmpc_27 1.242206 cygwin_27 0.08651 nonvirus_27 -0.042634
psmpc_28 1.489333 cygwin_28 0.174561 nonvirus_28 0.024008
psmpc_29 1.042142 cygwin_29 0.316948 nonvirus_29 -0.31655
psmpc_30 1.57858 cygwin_30 0.066092 nonvirus_30 -0.275571

cygwin_31 0.155816

cygwin_32 0.21262

cygwin_33 0.054895

cygwin_34 0.120884

cygwin_35 0.028028

cygwin_36 0.106603

cygwin_37 0.112139

cygwin_38 0.055971

cygwin_39 0.110219

cygwin_40 0.117183

52

Figure B-3: Graphical representation of Virus and Non-Virus Scores using psmpc_groupl10_3 model

Scores using psmpc_groupl0_3 model

& PS-MPC
| Cygwin
A Other-Nonvirus

Score

File Number

53

APPENDIX C - NGVCK Scores
Table C-1.1 Scores of preprocessed Virus and Non Virudds using ngvck_pp_group20_01

model

NGVCK Virus variants
after Pre-Processing

Non Virus files after Pre-Processing

Cygwin Other Non Viruses
File Score File Score File Score

ngvck_001 0.860894 cygwin_01 0.610366 nonvirus_01 0.293974
ngvck_002 0.868975 cygwin_02 0.755483 nonvirus_02 0.510075
ngvck_003 1.000545 cygwin_03 0.547281 nonvirus_03 0.408427
ngvck_004 0.870732 cygwin_04 0.594871 nonvirus_04 0.747985
ngvck_005 0.810336 cygwin_05 0.531224 nonvirus_05 0.332839
ngvck_006 0.867058 cygwin_06 0.521635 nonvirus_06 0.415972
ngvck_007 0.846234 cygwin_07 0.520335 nonvirus_07 0.359667
ngvck_008 0.794665 cygwin_08 0.581491 nonvirus_08 0.402952
ngvck_009 0.9029 cygwin_09 0.505439 nonvirus_09 0.246162
ngvck_010 0.964697 cygwin_10 0.627607 nonvirus_10 0.419246
ngvck_011 0.820068 cygwin_11 0.520347 nonvirus_11 0.4466
ngvck_012 0.946846 cygwin_12 0.519592 nonvirus_12 0.470656
ngvck_013 0.890484 cygwin_13 0.462797 nonvirus_13 0.517136
ngvck_014 0.819489 cygwin_14 0.416628 nonvirus_14 0.313303
ngvck_015 0.904151 cygwin_15 0.622661 nonvirus_15 0.334759
ngvck_016 0.946656 cygwin_16 0.685346 nonvirus_16 0.43101
ngvck_017 0.822826 cygwin_17 0.511617 nonvirus_17 0.389576
ngvck_018 0.793125 cygwin_18 0.65049 nonvirus_18 0.502135
ngvck_019 0.86738 cygwin_19 0.525175 nonvirus_19 0.406563
ngvck_020 0.573609 cygwin_20 0.446541 nonvirus_20 0.274402
ngvck_021 0.841805 cygwin_21 0.558141 nonvirus_21 0.257406
ngvck_022 0.789624 cygwin_22 0.617675 nonvirus_22 0.436877
ngvck_023 0.805843 cygwin_23 0.471552 nonvirus_23 0.106282
ngvck_024 0.772065 cygwin_24 0.493804 nonvirus_24 0.327661
ngvck_025 0.77012 cygwin_25 0.479633 nonvirus_25 0.195072
ngvck_026 0.821852 cygwin_26 0.506057 nonvirus_26 -2.58214
ngvck_027 0.84134 cygwin_27 0.507927 nonvirus_27 0.566432
ngvck_028 0.807432 cygwin_28 0.591615 nonvirus_28 0.327207
ngvck_029 0.799459 cygwin_29 0.166759 nonvirus_29 0.346006
ngvck_030 0.755152 cygwin_30 0.463929 nonvirus_30 0.249738
ngvck_031 0.85008 cygwin_31 0.686945

ngvck_032 0.757738 cygwin_32 0.460027

ngvck_033 0.859768 cygwin_33 0.528198

ngvck_034 0.792964 cygwin_34 0.675175

ngvck_035 0.723463 cygwin_35 0.536658

ngvck_036 0.81013 cygwin_36 0.628225

ngvck_037 0.846603 cygwin_37 0.563168

ngvck_038 0.727694 cygwin_38 0.599896

ngvck_039 0.840671 cygwin_39 0.67509

ngvck_040 0.843615 cygwin_40 0.595222

54

Table C-1.2 Scores opreprocessedVirus files ngvck 041 to ngvck 200 using
ngvck_pp_group20_01 model

NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Score File Sco
ngvck_041 0.753635| ngvck_081 0.86226] ngvck_121 0.804187 ngvck_161 0.857069
ngvck_042 0.871583| ngvck_082 0.80464% ngvck_122 0.8091 ngvck_162 0.817811
ngvck_043 0.842921| ngvck 083 0.78075% ngvck_123 0.814295 ngvck_163 0.834065
ngvck_044 0.817743| ngvck 084 0.840109 ngvck 124 0.825707 ngvck_164 0.858248
ngvck_045 0.797452| ngvck_085 0.713844 ngvck_125 0.709777 ngvck_165 0.745027
ngvck_046 0.833126| ngvck 086 0.89285% ngvck_126 0.898773 ngvck_166 0.875788
ngvck_047 0.921651| ngvck 087 0.790198 ngvck_127 0.739335 ngvck_167 0.813439
ngvck_048 0.869399| ngvck_088 0.815063 ngvck_128 0.72748 ngvck_168 0.79234
ngvck_049 0.882094| ngvck_089 0.76356% ngvck_129 0.706566 ngvck_169 0.8794
ngvck_050 0.756481| ngvck 090 0.79251% ngvck_130 0.864073 ngvck_170 0.768415
ngvck_051 0.761084| ngvck 091 0.82744] ngvck_131 0.805538 ngvck_171 0.796446
ngvck_052 0.825251| ngvck 092 0.74859¢ ngvck_132 0.916603 ngvck_172 0.852494
ngvck_053 0.892163| ngvck_093 0.75286% ngvck_133 0.85658 ngvck_173 0.799862
ngvck_054 0.856581| ngvck_094 0.756388 ngvck 134 0.866253 ngvck_174 0.660757
ngvck_055 0.907063| ngvck_095 0.77675] ngvck_135 0.752514 ngvck_175 0.78357
ngvck_056 0.864343| ngvck 096 0.83451% ngvck_136 0.861997 ngvck_176 0.890955
ngvck_057 0.655816(ngvck 097 0.88057 ngvck_137 0.857547 ngvck_177 0.839373
ngvck_058 0.821135| ngvck 098 0.83983% ngvck_138 0.816845 ngvck_178 0.750812
ngvck_059 0.884584| ngvck_099 0.78702] ngvck_139 0.766686 ngvck_179 0.800548
ngvck_060 0.907645| ngvck 100 0.78341¢ ngvck_140 0.838792 ngvck_180 0.925601
ngvck_061 0.833157| ngvck_101 0.84391% ngvck_141 0.724386 ngvck_181 0.797583
ngvck_062 0.831591| ngvck_102 0.77092F ngvck_142 0.838825 ngvck_182 0.829643
ngvck_063 0.84798 ngvck_103 0.84021% ngvck_143 0.762811 ngvck_183 0.838471
ngvck_064 0.820833| ngvck_104 0.849388 ngvck 144 0.770057 ngvck_184 0.813208
ngvck_065 0.87009 ngvck_105 0.82978% ngvck_145 0.807744 ngvck_185 0.895381
ngvck_066 0.751655| ngvck_106 0.74603¢ ngvck_146 0.821296 ngvck_186 0.827445
ngvck_067 0.805768| ngvck_107 0.75191% ngvck_147 0.842212 ngvck_187 0.777924
ngvck_068 0.881451| ngvck 108 0.848619 ngvck_148 0.872007 ngvck_188 0.870205
ngvck_069 0.812108| ngvck 109 0.878091 ngvck_149 0.803412 ngvck_189 0.852584
ngvck_070 0.780337| ngvck_110 0.907019 ngvck_150 0.749523 ngvck_190 0.814617
ngvck_071 0.786372| ngvck 111 0.80110% ngvck_151 0.778977 ngvck_191 0.773475
ngvck_072 0.764434| ngvck_112 0.83125¢ ngvck_152 0.867348 ngvck_192 0.81144
ngvck_073 0.681482| ngvck 113 0.75903¢¢ ngvck_153 0.8419 ngvck_193 0.854805
ngvck_074 0.85031 ngvck_114 0.81764F ngvck_154 0.844562 ngvck_194 0.848243
ngvck_075 0.794 ngvck_115 0.783874% ngvck_155 0.913228 ngvck_195 0.864787
ngvck_076 0.78672 ngvck_116 0.761749 ngvck_156 0.75372 ngvck_196 0.762374
ngvck_077 0.829067| ngvck_117 0.860341 ngvck 157 0.873416 | ngvck 197 0.813457
ngvck_078 0.904401| ngvck 118 0.79772% ngvck_158 0.775889 ngvck_198 0.74458
ngvck_079 0.853988| ngvck_119 0.88549% ngvck_159 0.816867 ngvck_199 0.84178
ngvck_080 0.792293| ngvck 120 0.75968% ngvck_160 0.848925 ngvck_200 1.030041

55

Figure C-1: Graphical representation of Virus and Non-Virus Scores using ngvck_ pp_group20_01
model

Scores using ngvck_pp_group20_01 model

0.4

. . ’ =
: @ & Ngwvck
0.5 ; m Cygwin

Score

u Other-Nonvirus

o

o

RPONCWe

o

So
OUIFRrOINITWOT A~ OT
L
\
|

D 50 100 150 200 250

=)
©o
N

Fle Number

56

Table C-2.1 Scores of preprocessed Virus and Non Virdiges using ngvck_pp_group20_02 model

NGVCK Virus variants Non Virus files after Pre-Processing
after Pre-Processing Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001 0.828381 cygwin_01 0.580517 nonvirus_01 0.169417
ngvck_002 0.757786 cygwin_02 0.76851 nonvirus_02 0.558092
ngvck_003 0.847624 cygwin_03 0.511929 nonvirus_03 0.448329
ngvck_004 0.7368 cygwin_04 0.613065 nonvirus_04 0.724204
ngvck_005 0.743113 cygwin_05 0.530385 nonvirus_05 0.35404
ngvck_006 0.752671 cygwin_06 0.515502 nonvirus_06 0.428108
ngvck_007 0.798293 cygwin_07 0.518819 nonvirus_07 0.36013
ngvck_008 0.736816 cygwin_08 0.540779 nonvirus_08 0.411188
ngvck_009 0.796243 cygwin_09 0.453575 nonvirus_09 0.233132
ngvck_010 0.800729 cygwin_10 0.656175 nonvirus_10 0.413499
ngvck_011 0.747784 cygwin_11 0.492416 nonvirus_11 0.466024
ngvck_012 0.771351 cygwin_12 0.561099 nonvirus_12 0.392701
ngvck_013 0.801882 cygwin_13 0.506445 nonvirus_13 0.523534
ngvck_014 0.674445 cygwin_14 0.408331 nonvirus_14 0.351599
ngvck_015 0.771006 cygwin_15 0.619902 nonvirus_15 0.3197
ngvck_016 0.822784 cygwin_16 0.712102 nonvirus_16 0.288495
ngvck_017 0.761653 cygwin_17 0.543472 nonvirus_17 0.408147
ngvck_018 0.703043 cygwin_18 0.683028 nonvirus_18 0.4351
ngvck_019 0.802737 cygwin_19 0.488043 nonvirus_19 0.313088
ngvck_020 0.624427 cygwin_20 0.487227 nonvirus_20 0.2605
ngvck_021 0.866153 cygwin_21 0.582314 nonvirus_21 0.235216
ngvck_022 0.730291 cygwin_22 0.526208 nonvirus_22 0.452235
ngvck_023 0.870428 cygwin_23 0.461065 nonvirus_23 0.039321
ngvck_024 0.812 cygwin_24 0.463993 nonvirus_24 0.319042
ngvck_025 0.75809 cygwin_25 0.511801 nonvirus_25 0.308221
ngvck_026 0.85087 cygwin_26 0.499626 nonvirus_26 -2.662959
ngvck_027 0.834567 cygwin_27 0.523655 nonvirus_27 0.515032
ngvck_028 0.917285 cygwin_28 0.572406 nonvirus_28 0.327243
ngvck_029 0.880627 cygwin_29 0.144156 nonvirus_29 0.395129
ngvck_030 0.786614 cygwin_30 0.488398 nonvirus_30 0.274813
ngvck_031 0.830041 cygwin_31 0.703662
ngvck_032 0.77468 cygwin_32 0.487267
ngvck_033 0.884885 cygwin_33 0.494805
ngvck_034 0.807775 cygwin_34 0.598537
ngvck_035 0.765953 cygwin_35 0.479335
ngvck_036 0.818434 cygwin_36 0.534515
ngvck_037 0.781235 cygwin_37 0.555427
ngvck_038 0.858023 cygwin_38 0.51689
ngvck_039 0.854824 cygwin_39 0.531798
ngvck_040 0.771913 cygwin_40 0.609794

57

Table C-2.2 Scores opreprocessedVirus files ngvck 041 to ngvck 200 using
ngvck_pp_group20_02 model

NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Scorg File Scor
ngvck_041 0.73852p ngvck_081 0.824589| ngvck_121 0.738525 ngvck_161 0.799477
ngvck_042 0.84560L ngvck_082 0.770465| ngvck_122 0.771785 ngvck_162 0.786537
ngvck_043 0.79676p ngvck_083 0.757968| ngvck_123 0.73068 ngvck_163 0.754703
ngvck_044 0.704718 ngvck_084 0.81003 ngvck_124 0.763845 ngvck_164 0.794176
ngvck_045 0.815328 ngvck_085 0.686612| ngvck_125 0.695978 ngvck_165 0.672203
ngvck_046 0.790096 ngvck_086 0.774511| ngvck_126 0.833132 ngvck_166 0.831769
ngvck_047 0.838148 ngvck_087 0.740871| ngvck_127 0.697748 ngvck_167 0.783127
ngvck_048 0.76138]L ngvck_088 0.713647| ngvck_128 0.723479 ngvck_168 0.703943
ngvck_049 0.815258 ngvck_089 0.737004| ngvck_129 0.685144 ngvck_169 0.763457
ngvck_050 0.74238 ngvck_090 0.783163| ngvck_130 0.768987 ngvck_170 0.760824
ngvck_051 0.67593f ngvck_091 0.822124| ngvck_131 0.806899 ngvek_171 0.769112
ngvck_052 0.72168 ngvck_092 0.738471| ngvck_132 0.833974 ngveck_172 0.80619
ngvck_053 0.86349 ngvck_093 0.775828| ngvck_133 0.742502 ngveck_173 0.698021
ngvck_054 0.756978 ngvck_094 0.739925| ngvck_134 0.794522 ngvck_174 0.641684
ngvck_055 0.80247#t ngvck_095 0.727793| ngvck_135 0.696242 ngveck_175 0.720702
ngvck_056 0.79062f ngvck_096 0.740935| ngvck_136 0.763223 ngvck_176 0.819771
ngvck_057 0.672291 ngvck_097 0.834719| ngvck_137 0.827659 ngveck_177 0.787317
ngvck_058 0.78004f ngvck_098 0.80435 ngvck_138 0.787525 ngvck_178 0.670883
ngvck_059 0.821721 ngvck_099 0.760884| ngvck_139 0.732842 ngveck_179 0.766033
ngvck_060 0.85770f ngvck_100 0.760663| ngvck_140 0.779013 ngvck_180 0.825609
ngvck_061 0.80080f ngvck_101 0.716262| ngvck_141 0.739274 ngvck_181 0.804958
ngvck_062 0.80894f ngvck_102 0.752558| ngvck_142 0.736926 ngvck_182 0.772727
ngvck_063 0.78680 ngvck_103 0.752348| ngvck_143 0.754939 ngvck_183 0.798342
ngvck_064 0.80163p ngvck_104 0.803709| ngvck_144 0.729938 ngvck_184 0.763681
ngvck_065 0.76635P ngvck_105 0.765567| ngvck_145 0.759534 ngvck_185 0.845407
ngvck_066 0.66015B ngvck_106 0.730209| ngvck_146 0.78559 ngvck_186 0.79659
ngvck_067 0.7411 ngvck_107 0.732221| ngvck_147 0.803442 ngvck_187 0.730319
ngvck_068 0.82791p ngvck_108 0.806108| ngvck_148 0.804933 ngvck_188 0.760496
ngvck_069 0.76209B8 ngvck_109 0.805707| ngvck_149 0.784507 ngvck_189 0.755723
ngvck_070 0.75631 ngvck_110 0.804795| ngvck_150 0.731564 ngvck_190 0.684666
ngvck_071 0.75847f ngvck_111 0.782849| ngvck_151 0.737131 ngveck_191 0.76374
ngvck_072 0.73039L ngvck_112 0.759181| ngvck_152 0.791855 ngvck_192 0.75298
ngvck_073 0.66777p ngvck_113 0.73387 ngvck_153 0.775319 ngvck_193 0.794093
ngvck_074 0.81880f ngvck_114 0.803494| ngvck_154 0.771986 ngvck_194 0.814975
ngvck_075 0.77426fp ngvck_115 0.762706| ngvck_155 0.826642 ngvck_195 0.750904
ngvck_076 0.746308 ngvck_116 0.729938| ngvck_156 0.725358 ngvck_196 0.727907
ngvck_077 0.79125p ngvck_117 0.74896 ngvck_157 0.825593 ngvck_197 0.767195
ngvck_078 0.834478 ngvck_118 0.732935| ngvck_158 0.696075 ngvck_198 0.764788
ngvck_079 0.791101 ngvck_119 0.781585| ngvck_159 0.809949 ngvck_199 0.740886
ngvck_080 0.76466f ngvck_120 0.767033| ngvck_160 0.771337 ngvck_200 0.785756

58

Figure C-2: Graphical representation of Virus and Non-Virus Scores using ngvck_ pp_group20_02
model

Scores using ngvck_pp_group20_02 model

¢ Ngvck
= Cygwin
A Other-Nonvirus

Score

Fle Number

59

Table C-3.1 Scores of preprocessed Virus and Non Virdiges using ngvck_pp_group20_03 model

NGVCK Virus variants
after Pre-Processing

Non Virus files after Pre-Processing

Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001 0.841463 cygwin_01 0.734867 nonvirus_01 0.364686
ngvck_002 0.890275 cygwin_02 0.900736 nonvirus_02 0.823921
ngvck_003 0.908429 cygwin_03 0.750114 nonvirus_03 0.772905
ngvck_004 0.931931 cygwin_04 0.814867 nonvirus_04 1.016538
ngvck_005 0.816886 cygwin_05 0.748111 nonvirus_05 0.659697
ngvck_006 0.836098 cygwin_06 0.757009 nonvirus_06 0.717304
ngvck_007 0.829136 cygwin_07 0.753734 nonvirus_07 0.672208
ngvck_008 0.805622 cygwin_08 0.753501 nonvirus_08 0.703686
ngvck_009 0.873528 cygwin_09 0.562229 nonvirus_09 0.576922
ngvck_010 0.932081 cygwin_10 0.777756 nonvirus_10 0.703593
ngvck_011 0.851462 cygwin_11 0.684623 nonvirus_11 0.615317
ngvck_012 0.892772 cygwin_12 0.732611 nonvirus_12 0.687278
ngvck_013 0.819372 cygwin_13 0.638832 nonvirus_13 0.810699
ngvck_014 0.805064 cygwin_14 0.587021 nonvirus_14 0.619772
ngvck_015 0.93064 cygwin_15 0.737692 nonvirus_15 0.619115
ngvck_016 0.871456 cygwin_16 0.863374 nonvirus_16 0.583951
ngvck_017 0.787787 cygwin_17 0.619695 nonvirus_17 0.668209
ngvck_018 0.788396 cygwin_18 0.841042 nonvirus_18 0.637316
ngvck_019 0.86655 cygwin_19 0.765583 nonvirus_19 0.574846
ngvck_020 0.573397 cygwin_20 0.609147 nonvirus_20 0.579644
ngvck_021 0.849945 cygwin_21 0.760312 nonvirus_21 0.490828
ngvck_022 0.892437 cygwin_22 0.679325 nonvirus_22 0.630619
ngvck_023 0.841527 cygwin_23 0.656278 nonvirus_23 0.346088
ngvck_024 0.797918 cygwin_24 0.630473 nonvirus_24 0.64141
ngvck_025 0.738444 cygwin_25 0.473591 nonvirus_25 0.511113
ngvck_026 0.824084 cygwin_26 0.595079 nonvirus_26 -2.575797
ngvck_027 0.845827 cygwin_27 0.647573 nonvirus_27 0.763262
ngvck_028 0.834182 cygwin_28 0.692067 nonvirus_28 0.375109
ngvck_029 0.813924 cygwin_29 0.139012 nonvirus_29 0.612437
ngvck_030 0.783003 cygwin_30 0.579673 nonvirus_30 0.540981
ngvck_031 0.888515 cygwin_31 0.81042
ngvck_032 0.779469 cygwin_32 0.500726
ngvck_033 0.84003 cygwin_33 0.67757
ngvck_034 0.864777 cygwin_34 0.747324
ngvck_035 0.745495 cygwin_35 0.636384
ngvck_036 0.916553 cygwin_36 0.665231
ngvck_037 0.924546 cygwin_37 0.668131
ngvck_038 0.728479 cygwin_38 0.648995
ngvck_039 0.872537 cygwin_39 0.785913
ngvck_040 1.031087 cygwin_40 0.744111

60

Table C-3.2 Scores of preprocessed Virus

ngvck_pp_group20_03 model

files ngvck_041

to ngvck 200 using

NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Scorg File Sco
ngvck_041 0.83925| ngvck_081 0.872857| ngvck_121 0.797442 ngvck_161 0.924546
ngvck_042 0.91401| ngvck_082 0.808906| ngvck_122 0.805456 ngvck_162 0.849196
ngvck_043 0.8625 ngvck_083 0.783196| ngvck_123 0.851486 ngvck_163 0.928015
ngvck_044 0.9229031 ngvck_084 0.86801 ngvck_124 0.895327 ngvck_164 0.934493
ngvck_045 0.969751] ngvck_085 0.71809 ngvck_125 0.754162 ngvck_165 0.786579
ngvck_046 0.845309] ngvck_086 0.881484| ngvck_126 0.85057 ngvck_166 0.884516
ngvck_047 1.087423 ngvck_087 0.846087| ngvck_127 0.754502 ngvck_167 0.820076
ngvck_048 1.014962] ngvck_088 0.882405| ngvck_128 0.734585 ngvck_168 0.863464
ngvck_049 0.912537| ngvck_089 0.805833| ngvck_129 0.798054 ngvck_169 0.918203
ngvck_050 0.818697| ngvck_090 0.904509| ngvck_130 0.909762 ngvck_170 0.801691
ngvck_051 0.937296| ngvck_091 0.83877 ngvck_131 0.826622 ngvek_171 0.826074
ngvck_052 0.946555 ngvck_092 0.779999| ngvck_132 0.95476 ngveck_172 0.853318
ngvck_053 0.985901] ngvck_093 0.811859| ngvck_133 0.851179 ngveck_173 0.824691
ngvck_054 0.97076| ngvck_094 0.764465| ngvck_134 0.903836 ngvck_174 0.647984
ngvck_055 0.976043| ngvck_095 0.757465| ngvck_135 0.763869 ngveck_175 0.829205
ngvck_056 1.019535(ngvck_096 0.874001| ngvck_136 0.901318 ngvck_176 0.942609
ngvck_057 0.837554| ngvck_097 0.868151| ngvck_137 0.864851 ngvek_177 0.932823
ngvck_058 0.896579] ngvck_098 0.843217| ngvck_138 0.848179 ngvck_178 0.811958
ngvck_059 1.021797] ngvck_099 0.838819| ngvck_139 0.780537 ngveck_179 0.811343
ngvck_060 0.906058 ngvck_100 0.833035| ngvck_140 0.817435 ngvck_180 0.972538
ngvck_061 0.848395 ngvck_101 0.888284| ngvck_141 0.798006 ngvck_181 0.844325
ngvck_062 0.851172] ngvck_102 0.807025| ngvck_142 0.876068 ngvck_182 0.911726
ngvck_063 0.840138 ngvck_103 0.834233| ngvck_143 0.806389 ngvck_183 0.86521
ngvck_064 0.8733431 ngvck_104 0.859233| ngvck_144 0.859658 ngvck_184 0.809428
ngvck_065 0.908832] ngvck_105 0.823624| ngvck_145 0.801252 ngvck_185 0.898132
ngvck_066 0.798149 ngvck_106 0.748523| ngvck_146 0.832969 ngvck_186 0.849825
ngvck_067 0.865831] ngvck_107 0.772242| ngvck_147 0.854851 ngvck_187 0.866119
ngvck_068 0.86319| ngvck_108 0.857217| ngvck_148 0.84847 ngvck_188 0.929229
ngvck_069 0.822837| ngvck_109 0.925482| ngvck_149 0.827902 ngvck_189 0.909698
ngvck_070 0.79258| ngvck_110 0.927198| ngvck_150 0.763924 ngvck_190 0.875517
ngvck_071 0.791387| ngvck_111 0.818228| ngvck_151 0.792034 ngveck_191 0.787677
ngvck_072 0.753153| ngvck_112 0.876711| ngvck_152 0.851721 ngvck_192 0.819372
ngvck_073 0.700216| ngvck_113 0.763812| ngvck_153 0.838518 ngvck_193 0.859047
ngvck_074 0.856811) ngvck_114 0.851522| ngvck_154 0.842713 ngvck_194 0.911266
ngvck_075 0.810692] ngvck_115 0.802874| ngvck_155 0.976208 ngvck_195 0.901283
ngvck_076 0.759762] ngvck_116 0.783519| ngvck_156 0.7397 ngvck_196 0.778578
ngvck_077 0.839966| ngvck_117 0.911759| ngvck_157 0.85456 ngvck_197 0.815285
ngvck_078 0.913255 ngvck_118 0.752942| ngvck_158 0.761636 ngvck_198 0.807637
ngvck_079 0.895487| ngvck_119 0.937536| ngvck_159 0.826476 ngvck_199 0.88342
ngvck_080 0.819754] ngvck_120 0.765434| ngvck_160 0.904737 ngvck_200 0.931357

61

Figure C-3: Graphical representation of Virus and Non-Virus Scores using ngvck _ pp_group20_03
model

Scores using ngvck_pp_group20_03 model

o Ngvek
m Cygwin

Score

Other-Nonvirus

Fle Number

62

Table C-4.1 Scores of preprocessed Virus and Non Virdiges using ngvck_pp_group20_04 model

NGVCK Virus variants
after Pre-Processing

Non Virus files after Pre-Processing

Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001 0.850841 cygwin_01 0.550491 nonvirus_01 0.182317
ngvck_002 0.789578 cygwin_02 0.705151 nonvirus_02 0.4411
ngvck_003 0.929644 cygwin_03 0.493297 nonvirus_03 0.368082
ngvck_004 0.757559 cygwin_04 0.593455 nonvirus_04 0.686137
ngvck_005 0.811504 cygwin_05 0.522902 nonvirus_05 0.335471
ngvck_006 0.856675 cygwin_06 0.51482 nonvirus_06 0.37703
ngvck_007 0.821737 cygwin_07 0.508263 nonvirus_07 0.358807
ngvck_008 0.793246 cygwin_08 0.542356 nonvirus_08 0.380057
ngvck_009 0.840646 cygwin_09 0.408046 nonvirus_09 0.294592
ngvck_010 0.838195 cygwin_10 0.590317 nonvirus_10 0.364261
ngvck_011 0.807864 cygwin_11 0.481398 nonvirus_11 0.539318
ngvck_012 0.814475 cygwin_12 0.538339 nonvirus_12 0.344576
ngvck_013 0.85686 cygwin_13 0.455474 nonvirus_13 0.401636
ngvck_014 0.687016 cygwin_14 0.397333 nonvirus_14 0.406111
ngvck_015 0.839257 cygwin_15 0.599099 nonvirus_15 0.426938
ngvck_016 0.901444 cygwin_16 0.65914 nonvirus_16 0.340582
ngvck_017 0.841206 cygwin_17 0.489615 nonvirus_17 0.351213
ngvck_018 0.73845 cygwin_18 0.614919 nonvirus_18 0.386637
ngvck_019 0.863958 cygwin_19 0.499818 nonvirus_19 0.284266
ngvck_020 0.567517 cygwin_20 0.442372 nonvirus_20 0.308129
ngvck_021 0.873405 cygwin_21 0.593168 nonvirus_21 0.267181
ngvck_022 0.726899 cygwin_22 0.492374 nonvirus_22 0.428343
ngvck_023 0.806073 cygwin_23 0.489134 nonvirus_23 0.12885
ngvck_024 0.816556 cygwin_24 0.478008 nonvirus_24 0.446545
ngvck_025 0.818126 cygwin_25 0.340155 nonvirus_25 0.289537
ngvck_026 0.864861 cygwin_26 0.455283 nonvirus_26 -2.922211
ngvck_027 0.869858 cygwin_27 0.486133 nonvirus_27 0.456843
ngvck_028 0.805993 cygwin_28 0.560022 nonvirus_28 0.298224
ngvck_029 0.830942 cygwin_29 0.113415 nonvirus_29 0.493696
ngvck_030 0.7618 cygwin_30 0.4258 nonvirus_30 0.391814
ngvck_031 0.832774 cygwin_31 0.675477
ngvck_032 0.801001 cygwin_32 0.469703
ngvck_033 0.87189 cygwin_33 0.447418
ngvck_034 0.789558 cygwin_34 0.574049
ngvck_035 0.767798 cygwin_35 0.462666
ngvck_036 0.805831 cygwin_36 0.540654
ngvck_037 0.824222 cygwin_37 0.549647
ngvck_038 0.741865 cygwin_38 0.479169
ngvck_039 0.867498 cygwin_39 0.550915
ngvck_040 0.83168 cygwin_40 0.586272

63

Table C-4.2 Scores of preprocessed Virus files ngvck 041 to ngvck 200 using
ngvck_pp_group20_04 model
NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Scorg File Sco
ngvck_041 0.757298 ngvck_081 0.875376| ngvck_121 0.867213| ngvck_161 0.858928
ngvck_042 0.86898B ngvck_082 0.789727| ngvck_122 0.879113| ngvck_162 0.874478
ngvck_043 0.83548p ngvck_083 0.78406 ngvck_123 0.803316(ngvck_163 0.83829
ngvck_044 0.77249p ngvck_084 0.848924| ngvck_124 0.804353| ngvck_164 0.852214
ngvck_045 0.80876ff ngvck_085 0.765512| ngvck_125 0.750825| ngvck_165 0.688109
ngvck_046 0.85295 ngvck_086 0.847363| ngvck_126 0.929491| ngvck_166 0.902067
ngvck_047 0.858218 ngvck_087 0.787948| ngvck_127 0.793311| ngvck_167 0.815573
ngvck_048 0.84045p ngvck_088 0.799455| ngvck_128 0.757188| ngvck_168 0.762217
ngvck_049 0.89252f ngvck_089 0.814521| ngvck_129 0.714807| ngvck_169 0.862011
ngvck_050 0.75626 ngvck_090 0.80263 ngvck_130 0.858053| ngvck 170 0.777249
ngvck_051 0.72256ff ngvck_091 0.867838| ngvck_131 0.833891| ngvck_171 0.826157
ngvck_052 0.757078 ngvck_092 0.787624| ngvck_132 0.865877| ngvck_172 0.892451
ngvck_053 0.92415p ngvck_093 0.793503| ngvck_133 0.78726| ngvck_173 0.768491
ngvck_054 0.82401p ngvck_094 0.810422| ngvck_134 0.827229| ngvck_174 0.666343
ngvck_055 0.867228 ngvck_095 0.801993| ngvck_135 0.799894(ngvck_175 0.778774
ngvck_056 0.84416p ngvck_096 0.819189| ngvck_136 0.826665| ngvck_176 0.877213
ngvck_057 0.67335p ngvck_097 0.880471| ngvck_137 0.894569(ngvck_177 0.82546
ngvck_058 0.82388 ngvck_098 0.885093| ngvck_138 0.815387| ngvck_178 0.691058
ngvck_059 0.83918p ngvck_099 0.830922| ngvck_139 0.817584(ngvck_179 0.796368
ngvck_060 1.012009 ngvck_100 0.771427| ngvck_140 0.882078| ngvck_180 0.853128
ngvck_061 0.916308 ngvck_101 0.807563| ngvck_141 0.754774| ngvck_181 0.831712
ngvck_062 0.86667f ngvck_102 0.796399| ngvck_142 0.806499(ngvck_182 0.815922
ngvck_063 0.89403 ngvck_103 0.878371| ngvck_143 0.791995| ngvck_183 0.886166
ngvck_064 0.99164p ngvck_104 0.87129 ngvck_144 0.776753| ngvck_184 0.796525
ngvck_065 0.8621] ngvck_105 0.793809| ngvck_145 0.80383| ngvck_185 0.930065
ngvck_066 0.73985 ngvck_106 0.770843| ngvck_146 0.83658| ngvck_186 0.860386
ngvck_067 0.87956ff ngvck_107 0.867642| ngvck_147 0.852187| ngvck_187 0.771396
ngvck_068 0.88310f ngvck_108 0.843888| ngvck_148 0.876262| ngvck_188 0.809346
ngvck_069 0.88651 ngvck_109 0.878378| ngvck_149 0.86039| ngvck_189 0.826969
ngvck_070 0.8579% ngvck_110 0.848251| ngvck_150 0.790311| ngvck_190 0.738429
ngvck_071 0.85872 ngvck_111 0.827482| ngvck_151 0.834198| ngvck_191 0.806646
ngvck_072 0.84403p ngvck_112 0.831778| ngvck_152 0.863463| ngvck_192 0.826995
ngvck_073 0.73604p ngvck_113 0.82623 ngvck_153 0.861613| ngvck_193 0.909475
ngvck_074 0.97883p ngvck_114 0.817299| ngvck_154 0.875987| ngvck_194 0.833949
ngvck_075 0.94560f ngvck_115 0.811942| ngvck_155 0.907116 ngvck_195 0.802299
ngvck_076 0.85391f ngvck_116 0.849045| ngvck_156 0.790272| ngvck_196 0.79544
ngvck_077 0.92604f ngvck_117 0.852727| ngvck_157 0.910911| ngvck_197 0.853541
ngvck_078 1.04857pp ngvck_118 0.834679| ngvck_158 0.797436| ngvck_198 0.821007
ngvck_079 0.90769#t ngvck_119 0.772825| ngvck_159 0.840191| ngvck_199 0.805343
ngvck_080 0.795% ngvck_120 0.811841| ngvck_160 0.834498| ngvck_200 0.852154

64

Figure C-4: Graphical representation of Virus and Non-Virus Scores using ngvck _ pp_group20_04
model

Scores using ngvck_pp_group20_04 model

1.15
1.05

1
0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35

0.25
0.2
0.15
0.1
0.05

0
-0.05
-0.1
-0.15

¢ Ngwvek
m Cygwin

Score
o
w

A Other-Nonvirus

-0.25
-0.3
-0.35
-0.4
-0.45
-0.5

Fle Number

65

Table C-5.1 Scores of preprocessed Virus and Non Virdiges using ngvck_pp_group20_05 model

NGVCK Virus variants
after Pre-Processing

Non Virus files after Pre-Processing

Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001 0.860312 cygwin_01 0.65142 nonvirus_01 0.3098
ngvck_002 0.795237 cygwin_02 0.837838 nonvirus_02 0.548429
ngvck_003 0.886658 cygwin_03 0.62421 nonvirus_03 0.461659
ngvck_004 0.802831 cygwin_04 0.712136 nonvirus_04 0.792522
ngvck_005 0.81137 cygwin_05 0.598098 nonvirus_05 0.403953
ngvck_006 0.839508 cygwin_06 0.602079 nonvirus_06 0.454446
ngvck_007 0.849245 cygwin_07 0.595102 nonvirus_07 0.408925
ngvck_008 0.795148 cygwin_08 0.619307 nonvirus_08 0.451406
ngvck_009 0.834733 cygwin_09 0.522162 nonvirus_09 0.403035
ngvck_010 0.84878 cygwin_10 0.766615 nonvirus_10 0.43616
ngvck_011 0.808141 cygwin_11 0.625508 nonvirus_11 0.47951
ngvck_012 0.835057 cygwin_12 0.633505 nonvirus_12 0.422449
ngvck_013 0.829593 cygwin_13 0.545201 nonvirus_13 0.559038
ngvck_014 0.713438 cygwin_14 0.511541 nonvirus_14 0.38252
ngvck_015 0.842663 cygwin_15 0.690079 nonvirus_15 0.405813
ngvck_016 0.873962 cygwin_16 0.795933 nonvirus_16 0.454967
ngvck_017 0.824749 cygwin_17 0.573789 nonvirus_17 0.414138
ngvck_018 0.738526 cygwin_18 0.747769 nonvirus_18 0.491692
ngvck_019 0.834267 cygwin_19 0.645287 nonvirus_19 0.353092
ngvck_020 0.5831 cygwin_20 0.545467 nonvirus_20 0.348321
ngvck_021 0.828935 cygwin_21 0.707892 nonvirus_21 0.323091
ngvck_022 0.758629 cygwin_22 0.673296 nonvirus_22 0.456602
ngvck_023 0.819315 cygwin_23 0.506957 nonvirus_23 0.212399
ngvck_024 0.793526 cygwin_24 0.565108 nonvirus_24 0.39308
ngvck_025 0.766219 cygwin_25 0.553429 nonvirus_25 0.355802
ngvck_026 0.847906 cygwin_26 0.569064 nonvirus_26 -2.666368
ngvck_027 0.840946 cygwin_27 0.593251 nonvirus_27 0.598836
ngvck_028 0.833153 cygwin_28 0.642484 nonvirus_28 0.353773
ngvck_029 0.822582 cygwin_29 0.124127 nonvirus_29 0.434932
ngvck_030 0.752658 cygwin_30 0.573054 nonvirus_30 0.351344
ngvck_031 0.832907 cygwin_31 0.784436
ngvck_032 0.760973 cygwin_32 0.502194
ngvck_033 0.895305 cygwin_33 0.593266
ngvck_034 0.799552 cygwin_34 0.732766
ngvck_035 0.756854 cygwin_35 0.626555
ngvck_036 0.841632 cygwin_36 0.681297
ngvck_037 0.838682 cygwin_37 0.643173
ngvck_038 0.758617 cygwin_38 0.619963
ngvck_039 0.862616 cygwin_39 0.690918
ngvck_040 0.820418 cygwin_40 0.704758

66

Table C-5.2 Scores of preprocessed Virus files ngvck 041 to ngvck 200 using
ngvck_pp_group20_05 model
NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Scorg File Sco
ngvck_041 0.789268 ngvck_081 0.949979 ngvck_121 0.786711| ngvck_161 0.848393
ngvck_042 0.877905 ngvck_082 0.839963 ngvck_122 0.876532| ngvck_162 0.858623
ngvck_043 0.871348 ngvck_083 0.82950¢ ngvck_123 0.775447| ngvck_163 0.82717
ngvck_044 0.791164 ngvck_084 0.9695| ngvck_124 0.825083| ngvck_164 0.861848
ngvck_045 0.847984 ngvck_085 0.78856% ngvck_125 0.741749| ngvck_165 0.731031
ngvck_046 0.853752 ngvck_086 0.91413% ngvck_126 0.91602| ngvck_166 0.927098
ngvck_047 0.882946 ngvck_087 0.84345%F ngvck_127 0.773638| ngvck_167 0.820945
ngvck_048 0.833787 ngvck_088 0.87577| ngvck_128 0.771198| ngvck_168 0.768382
ngvck_049 0.914435 ngvck_089 0.903104% ngvck_129 0.75079| ngvck_169 0.847036
ngvck_050 0.738183 ngvck_090 0.896723] ngvck_130 0.855277| ngvck_170 0.773147
ngvck_051 0.730682 ngvck_091 0.885369 ngvck_131 0.846253| ngvck_171 0.857833
ngvck_052 0.78623 ngvck_092 0.82229% ngvck_132 0.874133| ngvck_172 0.880044
ngvck_053 0.85688 ngvck_093 0.84891% ngvck_133 0.776646(ngvck_173 0.78647
ngvck_054 0.821237 ngvck_094 0.84229% ngvck_134 0.835827| ngvck_174 0.666196
ngvck_055 0.875092 ngvck_095 0.85404% ngvck_135 0.781461| ngvck_175 0.785309
ngvck_056 0.885147 ngvck_096 0.827899 ngvck_136 0.841166 ngvck_176 0.88969
ngvck_057 0.740422 ngvck_097 1.012343 ngvck_137 0.868623| ngvck_177 0.837363
ngvck_058 0.848453 ngvck_098 0.98284% ngvck_138 0.832373| ngvck_178 0.690419
ngvck_059 0.868572 ngvck_099 0.89859¢ ngvck_139 0.793071| ngvck_179 0.789939
ngvck_060 0.889875 ngvck_100 0.79824% ngvck_140 0.876543| ngvck_180 0.909156
ngvck_061 0.847608 ngvck_101 0.82809% ngvck_141 0.780222| ngvck_181 0.858647
ngvck_062 0.839004 ngvck_102 0.823811 ngvck_142 0.803766(ngvck_182 0.846342
ngvck_063 0.86194 ngvck_103 0.82345¢ ngvck_143 0.790492| ngvck_183 0.89333
ngvck_064 0.892939 ngvck_104 0.88411% ngvck_144 0.767038| ngvck_184 0.781806
ngvck_065 0.849876 ngvck_105 0.835814 ngvck_145 0.82432| ngvck_185 0.91926
ngvck_066 0.721508 ngvck_106 0.79369 ngvck_146 0.865609(ngvck_186 0.858923
ngvck_067 0.797511 ngvck_107 0.81298% ngvck_147 0.891862(ngvck_187 0.800423
ngvck_068 0.868227 ngvck_108 0.933249 ngvck_148 0.879315| ngvck_188 0.80888
ngvck_069 0.818536 ngvck_109 0.886441 ngvck_149 0.828714| ngvck_189 0.792674
ngvck_070 0.805478 ngvck_110 0.889064 ngvck_150 0.811242| ngvck_190 0.755954
ngvck_071 0.78848 ngvek_111 0.86263% ngvck_151 0.774718| ngvck_191 0.769365
ngvck_072 0.802295 ngveck_112 0.847809 ngvck_152 0.858661 ngvck_192 0.832916
ngvck_073 0.708494 ngvck_113 0.78730F ngvck_153 0.870033| ngvck_193 0.904256
ngvck_074 0.894591 ngvck_114 0.874534 ngvck_154 0.882416| ngvck_194 0.835516
ngvck_075 0.820317 ngveck_115 0.82549| ngvck_155 0.918738| ngvck_195 0.812253
ngvck_076 0.8137 ngvck_116 0.80284¢ ngvck_156 0.746016| ngvck_196 0.772325
ngvck_077 0.860255 ngveck_117 0.84806% ngvck_157 0.872844| ngvck_197 0.838026
ngvck_078 0.912617 ngvck_118 0.81455% ngvck_158 0.777988| ngvck_198 0.811225
ngvck_079 0.850906 ngveck_119 0.85369F ngvck_159 0.877765| ngvck_199 0.833222
ngvck_080 0.953381 ngvck_120 0.803989 ngvck_160 0.86788| ngvck_200 0.865753

67

Figure C-5: Graphical representation of Virus and Non-Virus Scores using ngvck _ pp_group20_05

model

Score

Scores using ngvck_pp_group20_05 model

& Ngvck
®m Cygwin
Other-Nonvirus

File Number

68

Table C-6.1 Scores of preprocessed Virus and Non Virdiges using ngvck_pp_group20_06 model

NGVCK Virus variants
after Pre-Processing

Non Virus files after Pre-Processing

Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001 0.857348 cygwin_01 0.665388 nonvirus_01 0.344736
ngvck_002 0.830591 cygwin_02 0.835151 nonvirus_02 0.708166
ngvck_003 0.886336 cygwin_03 0.645472 nonvirus_03 0.669798
ngvck_004 0.780231 cygwin_04 0.729581 nonvirus_04 0.885802
ngvck_005 0.835773 cygwin_05 0.704802 nonvirus_05 0.571462
ngvck_006 0.844064 cygwin_06 0.698572 nonvirus_06 0.631871
ngvck_007 0.82485 cygwin_07 0.686196 nonvirus_07 0.596628
ngvck_008 0.810281 cygwin_08 0.719053 nonvirus_08 0.621427
ngvck_009 0.856378 cygwin_09 0.53585 nonvirus_09 0.481649
ngvck_010 0.892242 cygwin_10 0.725013 nonvirus_10 0.598287
ngvck_011 0.776092 cygwin_11 0.637629 nonvirus_11 0.510082
ngvck_012 0.90029 cygwin_12 0.650058 nonvirus_12 0.567451
ngvck_013 0.834927 cygwin_13 0.550787 nonvirus_13 0.69617
ngvck_014 0.716053 cygwin_14 0.560818 nonvirus_14 0.51911
ngvck_015 0.900905 cygwin_15 0.713838 nonvirus_15 0.530152
ngvck_016 0.870551 cygwin_16 0.790463 nonvirus_16 0.526742
ngvck_017 0.781267 cygwin_17 0.589251 nonvirus_17 0.591833
ngvck_018 0.711871 cygwin_18 0.744832 nonvirus_18 0.507001
ngvck_019 0.87085 cygwin_19 0.662689 nonvirus_19 0.477605
ngvck_020 0.565175 cygwin_20 0.563861 nonvirus_20 0.518567
ngvck_021 0.815945 cygwin_21 0.711819 nonvirus_21 0.450247
ngvck_022 0.792282 cygwin_22 0.645836 nonvirus_22 0.519793
ngvck_023 0.824134 cygwin_23 0.523773 nonvirus_23 0.284339
ngvck_024 0.825402 cygwin_24 0.598631 nonvirus_24 0.513377
ngvck_025 0.780611 cygwin_25 0.454176 nonvirus_25 0.450295
ngvck_026 0.857428 cygwin_26 0.606585 nonvirus_26 -2.84037
ngvck_027 0.841704 cygwin_27 0.618683 nonvirus_27 0.637178
ngvck_028 0.842293 cygwin_28 0.666782 nonvirus_28 0.360564
ngvck_029 0.812517 cygwin_29 0.101304 nonvirus_29 0.469775
ngvck_030 0.77842 cygwin_30 0.560581 nonvirus_30 0.504919
ngvck_031 0.840315 cygwin_31 0.793235
ngvck_032 0.738386 cygwin_32 0.529049
ngvck_033 0.878783 cygwin_33 0.576481
ngvck_034 0.847432 cygwin_34 0.711174
ngvck_035 0.755223 cygwin_35 0.633463
ngvck_036 0.844135 cygwin_36 0.677069
ngvck_037 0.875078 cygwin_37 0.6667
ngvck_038 0.764438 cygwin_38 0.568887
ngvck_039 0.848934 cygwin_39 0.729031
ngvck_040 0.878674 cygwin_40 0.715616

69

Table C-6.2 Scores of preprocessed Virus files ngvck 041 to ngvck 200 using
ngvck_pp_group20_06 model
NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Scorg File Sco
ngvck_041 0.787965 ngvck_081 0.919253] ngvck_121 0.773551| ngvck_161 0.886497
ngvck_042 0.874135 ngvck_082 0.842519 ngvck_122 0.850995| ngvck_162 0.865237
ngvck_043 0.823588 ngvck_083 0.790639 ngvck_123 0.836089| ngvck 163 0.903766
ngvck_044 0.86921 ngvck_084 0.89182] ngvck_124 0.875467| ngvck_164 0.871218
ngvck_045 0.827033 ngvck_085 0.79144% ngvck_125 0.740726| ngvck_165 0.693498
ngvck_046 0.824635| ngvck_086 0.89910¢ ngvck_126 0.919251| ngvck_166 0.932124
ngvck_047 0.899466 ngvck_087 0.83733¢ ngvck_127 0.779074| ngvck_167 0.835308
ngvck_048 0.864145 ngvck_088 0.861653 ngvck_128 0.822191| ngvck_168 0.821496
ngvck_049 0.881111 ngvck_089 0.797263 ngvck_129 0.755359(ngvck_169 0.896264
ngvck_050 0.744739 | ngvck_090 0.837354% ngvck_130 0.916226(ngvck_170 0.771048
ngvck_051 0.780073 ngvck_091 0.84714F ngvck_131 0.891337| ngvck_171 0.860619
ngvck_052 0.797362 ngvck_092 0.79058] ngvck_132 0.904379| ngvck_172 0.868688
ngvck_053 0.855975 ngvck_093 0.82851% ngvck_133 0.840713| ngvck_173 0.828928
ngvck_054 0.869458 ngvck_094 0.798159 ngvck_134 0.901| ngvck_174 0.658104
ngvck_055 0.906181 ngvck_095 0.80677% ngvck_135 0.780507| ngvck_175 0.800254
ngvck_056 0.906896 ngvck_096 0.855954 ngvck_136 0.889069| ngvck 176 0.911872
ngvck_057 0.7225 ngvck_097 0.909904% ngvck_137 0.874965| ngvck_177 0.864514
ngvck_058 0.833423 ngvck_098 0.883154 ngvck_138 0.868311| ngvck_178 0.715396
ngvck_059 0.884655 ngvck_099 0.875773 ngvck_139 0.788287| ngvck_179 0.789318
ngvck_060 0.858085 ngvck_100 0.877474 ngvck_140 0.846438| ngvck_180 0.915722
ngvck_061 0.866041 ngvck_101 0.94122% ngvck_141 0.795904(ngvck_181 0.846975
ngvck_062 0.851616 ngvck_102 0.86384¢ ngvck_142 0.861356(ngvck_182 0.87459
ngvck_063 0.867943 ngvck_103 0.856344% ngvck_143 0.811352| ngvck_183 0.864454
ngvck_064 0.869142 ngvck_104 0.89743¢ ngvck_144 0.826857| ngvck_184 0.804237
ngvck_065 0.910372 ngvck_105 0.87544% ngvck_145 0.812919| ngvck_185 0.909293
ngvck_066 0.741648 ngvck_106 0.86457F ngvck_146 0.847005| ngvck_186 0.860541
ngvck_067 0.879336 ngvck_107 0.90431% ngvck_147 0.889716| ngvck_187 0.821049
ngvck_068 0.867364 ngvck_108 1.00583% ngvck_ 148 0.891082| ngvck_188 0.86864
ngvck_069 0.806277 ngvck_109 1.014893 ngvck_149 0.835956(ngvck_189 0.888359
ngvck_070 0.820465 ngvck_110 1.02681] ngvck_150 0.786074| ngvck_190 0.792541
ngvck_071 0.80174 ngvek_111 0.91939F ngvck_151 0.776276| ngvck_191 0.804301
ngvck_072 0.783952 ngveck_112 0.91397F ngvck_152 0.851057| ngvck_192 0.795243
ngvck_073 0.726149 ngvck_113 0.848819 ngvck_153 0.829074| ngvck_193 0.87558
ngvck_074 0.880718 ngvck_114 0.90550% ngvck_154 0.844509| ngvck_194 0.863965
ngvck_075 0.856148 ngveck_115 0.94980% ngvck_155 0.974118| ngvck_195 0.842996
ngvck_076 0.779281 ngvck_116 0.844209 ngvck_156 0.769981| ngvck_196 0.784674
ngvck_077 0.875151 ngveck_117 0.958554 ngvck_157 0.899375| ngvck_197 0.86301
ngvck_078 0.908855 ngvck_118 0.86951¢ ngvck_158 0.756111| ngvck_198 0.772871
ngvck_079 0.895629 ngveck_119 0.98269¢ ngvck_159 0.848037| ngvck_199 0.817451
ngvck_080 0.845306 ngvck_120 0.79023% ngvck_160 0.883175| ngvck_200 0.928114

70

Figure C-6: Graphical representation of Virus and Non-Virus Scores using ngvck_pp_group20_06
model

Scores using ngvck_pp_group20_06 model

¢ Ngvck

m Cygwin

Score

Other-Nonvirus

=
Q1|
()
N
Q|
()
N

T
) 50 100
oY T

50

ROPO oCRCPNCWORCLUICHONCP o
TR GIRUTN CTWGT A GIU1G10 GI~I U100 GO U1 Gli= U1
Il
I

6.6 0 0 0 0 0 0 O O O O Kk

Fle Number

71

Table C-7.1 Scores of preprocessed Virus and Non Virdiges using ngvck_pp_group20_07 model

NGVCK Virus variants
after Pre-Processing

Non Virus files after Pre-Processing

Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001 0.865543 cygwin_01 0.630754 nonvirus_01 0.362882
ngvck_002 0.814869 cygwin_02 0.741246 nonvirus_02 0.669439
ngvck_003 0.866258 cygwin_03 0.585521 nonvirus_03 0.551523
ngvck_004 0.800929 cygwin_04 0.652538 nonvirus_04 0.777995
ngvck_005 0.793267 cygwin_05 0.637812 nonvirus_05 0.536817
ngvck_006 0.82085 cygwin_06 0.636536 nonvirus_06 0.583833
ngvck_007 0.792142 cygwin_07 0.632793 nonvirus_07 0.548286
ngvck_008 0.770744 cygwin_08 0.649109 nonvirus_08 0.573075
ngvck_009 0.813397 cygwin_09 0.503038 nonvirus_09 0.489976
ngvck_010 0.88659 cygwin_10 0.627092 nonvirus_10 0.545885
ngvck_011 0.777947 cygwin_11 0.582739 nonvirus_11 0.494611
ngvck_012 0.883008 cygwin_12 0.603015 nonvirus_12 0.536247
ngvck_013 0.800081 cygwin_13 0.518257 nonvirus_13 0.627552
ngvck_014 0.730695 cygwin_14 0.50358 nonvirus_14 0.48205
ngvck_015 0.858821 cygwin_15 0.647903 nonvirus_15 0.500026
ngvck_016 0.874824 cygwin_16 0.721082 nonvirus_16 0.507018
ngvck_017 0.804879 cygwin_17 0.534949 nonvirus_17 0.560958
ngvck_018 0.695072 cygwin_18 0.674909 nonvirus_18 0.524389
ngvck_019 0.853693 cygwin_19 0.607236 nonvirus_19 0.48448
ngvck_020 0.544857 cygwin_20 0.528619 nonvirus_20 0.461801
ngvck_021 0.805895 cygwin_21 0.644642 nonvirus_21 0.421492
ngvck_022 0.780706 cygwin_22 0.60521 nonvirus_22 0.517388
ngvck_023 0.777135 cygwin_23 0.526276 nonvirus_23 0.301061
ngvck_024 0.79111 cygwin_24 0.540287 nonvirus_24 0.531684
ngvck_025 0.748803 cygwin_25 0.514545 nonvirus_25 0.482876
ngvck_026 0.848425 cygwin_26 0.517585 nonvirus_26 -2.901623
ngvck_027 0.81959 cygwin_27 0.540059 nonvirus_27 0.605216
ngvck_028 0.841042 cygwin_28 0.615562 nonvirus_28 0.32678
ngvck_029 0.773215 cygwin_29 0.082993 nonvirus_29 0.513358
ngvck_030 0.753541 cygwin_30 0.525204 nonvirus_30 0.484492
ngvck_031 0.880447 cygwin_31 0.713515
ngvck_032 0.7555 cygwin_32 0.465451
ngvck_033 0.875635 cygwin_33 0.544242
ngvck_034 0.846532 cygwin_34 0.663104
ngvck_035 0.750527 cygwin_35 0.580656
ngvck_036 0.877516 cygwin_36 0.629654
ngvck_037 0.837036 cygwin_37 0.600762
ngvck_038 0.736628 cygwin_38 0.539433
ngvck_039 0.840309 cygwin_39 0.68919
ngvck_040 0.845677 cygwin_40 0.649597

72

Table C-7.2 Scores of preprocessed Virus files ngvck 041 to ngvck 200 using
ngvck_pp_group20_07 model
NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Scorg File Sco
ngvck_041 0.775355 ngvck_081 0.84971] ngvck_121 0.922586(ngvck_161 0.887096
ngvck_042 0.847094 ngvck_082 0.793204 ngvck_122 0.901097| ngvck_162 0.843595
ngvck_043 0.793334 ngvck_083 0.76733% ngvck_123 0.982504 ngvck_163 0.860205
ngvck_044 0.819569 ngvck_084 0.848144 ngvck_124 0.954673| ngvck_164 0.892938
ngvck_045 0.90113 ngvck_085 0.732159 ngvck_125 0.772622| ngvck_165 0.686417
ngvck_046 0.785737 ngvck_086 0.868704 ngvck_126 0.908331| ngvck_166 0.875288
ngvck_047 0.911622 ngvck_087 0.84619% ngvck_127 0.817109| ngvck_167 0.803674
ngvck_048 0.859318 ngvck_088 0.83673] ngvck_128 0.789825| ngvck_168 0.786548
ngvck_049 0.86345 ngvck_089 0.78716% ngvck_129 0.831343| ngvck_169 0.887587
ngvck_050 0.728942 ngvck_090 0.87945% ngvck_130 0.92762| ngvck_170 0.771826
ngvck_051 0.734492 ngvck_091 0.82894F ngvck_131 0.845319| ngvck_171 0.788454
ngvck_052 0.801667 ngvck_092 0.784641 ngvck_132 0.952769| ngvck_172 0.8577
ngvck_053 0.873191 ngvck_093 0.80336% ngvck_133 0.967479| ngvck_173 0.805117
ngvck_054 0.843231| ngvck_094 0.74886F ngvck_134 0.972339| ngvck_174 0.654976
ngvck_055 0.900406 ngvck_095 0.788409 ngvck_135 0.792553| ngvck_175 0.813911
ngvck_056 0.847508 ngvck_096 0.828264% ngvck_136 0.926932 ngvck_176 0.87807
ngvck_057 0.734386 ngvck_097 0.850103 ngvck_137 0.929807| ngvck_177 0.871574
ngvck_058 0.818712 ngvck_098 0.86141¢ ngvck_138 0.885438| ngvck_178 0.729826
ngvck_059 0.900183 ngvck_099 0.804601 ngvck_139 0.841805| ngvck 179 0.763426
ngvck_060 0.843617 ngvck_100 0.80519% ngvck_140 0.820611| ngvck_180 0.914973
ngvck_061 0.843202 ngvck_101 0.87258] ngvck_141 0.795471| ngvck_181 0.793061
ngvck_062 0.802549 ngvck_102 0.78796% ngvck_142 0.835331| ngvck_182 0.87821
ngvck_063 0.840131| ngvck_103 0.797834 ngvck_143 0.81389(ngvck_183 0.827427
ngvck_064 0.85059 ngvck_104 0.849879 ngvck_144 0.812214| ngvck_184 0.773326
ngvck_065 0.88008 ngvck_105 0.82847¢ ngvck_145 0.789994(ngvck_185 0.867622
ngvck_066 0.740655 ngvck_106 0.761004% ngvck_146 0.825814(ngvck_186 0.843866
ngvck_067 0.83688 ngvck_107 0.77415¢ ngvck_147 0.822584(ngvck_187 0.863482
ngvck_068 0.838369 ngvck_108 0.86722% ngvck_148 0.847318| ngvck_188 0.845432
ngvck_069 0.805139 ngvck_109 0.90623% ngvck_149 0.78061| ngvck_189 0.8818
ngvck_070 0.801444 ngvck_110 0.93224¢ ngvck_150 0.769145| ngvck_190 0.772034
ngvck_071 0.805832 ngvek_111 0.80917% ngvck_151 0.767872| ngvck_191 0.784859
ngvck_072 0.781726 ngveck_112 0.851759 ngvck_152 0.875141| ngvck_192 0.802599
ngvck_073 0.707756 ngvck_113 0.785004% ngvck_153 0.870604(ngvck_193 0.869056
ngvck_074 0.839369 ngvck_114 0.836123 ngvck_154 0.839702| ngvck_194 0.864655
ngvck_075 0.813256 ngveck_115 0.80914% ngvck_155 0.910136(ngvck_195 0.828821
ngvck_076 0.762005 ngvck_116 0.76956% ngvck_156 0.77269| ngvck_196 0.756132
ngvck_077 0.830247 ngveck_117 0.87443% ngvck_157 0.871158| ngvck_197 0.8267
ngvck_078 0.92745 ngvck_118 0.79179¢ ngvck_158 0.741797| ngvck_198 0.750452
ngvck_079 0.856045 ngveck_119 0.87888% ngvck_159 0.813947| ngvck_199 0.811506
ngvck_080 0.786227 ngvck_120 0.79232¢ ngvck_160 0.85236| ngvck_200 0.898386

73

Figure C-7: Graphical representation of Virus and Non-Virus Scores using ngvck_pp_group20_07
model

Scores using ngvck_pp_group20_07 model

1.05

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

o Ngvek
m Cygwin

Score

A Other-Nonvirus

-0.05
-0.1
-0.15

Fle Number

74

Table C-8.1 Scores of preprocessed Virus and Non Virdiges using ngvck_pp_group20_08 model

NGVCK Virus variants
after Pre-Processing

Non Virus files after Pre-Processing

Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001 0.890141 cygwin_01 0.691074 nonvirus_01 0.404595
ngvck_002 0.777603 cygwin_02 0.862468 nonvirus_02 0.801461
ngvck_003 0.919734 cygwin_03 0.665714 nonvirus_03 0.710558
ngvck_004 0.745359 cygwin_04 0.767715 nonvirus_04 0.973881
ngvck_005 0.855405 cygwin_05 0.700638 nonvirus_05 0.644307
ngvck_006 0.879181 cygwin_06 0.705133 nonvirus_06 0.699958
ngvck_007 0.864211 cygwin_07 0.700183 nonvirus_07 0.662902
ngvck_008 0.811957 cygwin_08 0.712667 nonvirus_08 0.691914
ngvck_009 0.843758 cygwin_09 0.576687 nonvirus_09 0.502399
ngvck_010 0.835925 cygwin_10 0.735554 nonvirus_10 0.680546
ngvck_011 0.786572 cygwin_11 0.637736 nonvirus_11 0.558661
ngvck_012 0.834035 cygwin_12 0.677864 nonvirus_12 0.651092
ngvck_013 0.854765 cygwin_13 0.590888 nonvirus_13 0.761642
ngvck_014 0.68875 cygwin_14 0.548772 nonvirus_14 0.561532
ngvck_015 0.83759 cygwin_15 0.715496 nonvirus_15 0.569489
ngvck_016 0.948309 cygwin_16 0.818346 nonvirus_16 0.586006
ngvck_017 0.817287 cygwin_17 0.599846 nonvirus_17 0.677293
ngvck_018 0.755212 cygwin_18 0.794147 nonvirus_18 0.609735
ngvck_019 0.879627 cygwin_19 0.712323 nonvirus_19 0.575809
ngvck_020 0.582577 cygwin_20 0.571657 nonvirus_20 0.553802
ngvck_021 0.882238 cygwin_21 0.723099 nonvirus_21 0.492475
ngvck_022 0.711032 cygwin_22 0.695721 nonvirus_22 0.58752
ngvck_023 0.816493 cygwin_23 0.543123 nonvirus_23 0.323355
ngvck_024 0.862073 cygwin_24 0.602569 nonvirus_24 0.602793
ngvck_025 0.82815 cygwin_25 0.581748 nonvirus_25 0.568189
ngvck_026 0.884607 cygwin_26 0.59061 nonvirus_26 -2.847293
ngvck_027 0.912054 cygwin_27 0.624209 nonvirus_27 0.727102
ngvck_028 0.867979 cygwin_28 0.660262 nonvirus_28 0.34403
ngvck_029 0.831158 cygwin_29 0.097214 nonvirus_29 0.594118
ngvck_030 0.782319 cygwin_30 0.546242 nonvirus_30 0.537
ngvck_031 0.832386 cygwin_31 0.798378
ngvck_032 0.808949 cygwin_32 0.488291
ngvck_033 0.909359 cygwin_33 0.644436
ngvck_034 0.792839 cygwin_34 0.756893
ngvck_035 0.730825 cygwin_35 0.630445
ngvck_036 0.841126 cygwin_36 0.690675
ngvck_037 0.833045 cygwin_37 0.689045
ngvck_038 0.768074 cygwin_38 0.637685
ngvck_039 0.844888 cygwin_39 0.736579
ngvck_040 0.826928 cygwin_40 0.726946

75

Table C-8.2 Scores of meprocessed Virus files ngvck 041 to ngvck 200 using
ngvck_pp_group20_08 model
NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Scorg File Sco
ngvck_041 0.805377| ngvck_081 0.91568% ngvck_121 0.833005| ngvck_161 0.849962
ngvck_042 0.896656| ngvck_082 0.831023 ngvck_122 0.880849(ngvck_162 0.87475
ngvck_043 0.859624| ngvck_083 0.82916% ngvck_123 0.800707| ngvck_163 0.817234
ngvck_044 0.79271| ngvck_084 0.87240% ngvck_124 0.82741| ngvck_164 0.821403
ngvck_045 0.826229] ngvck_085 0.760503 ngvck_125 0.746659| ngvck 165 0.710488
ngvck_046 0.836969| ngvck_086 0.85487| ngvck_126 0.942152| ngvck_166 0.950248
ngvck_047 0.86469| ngvck_087 0.785574 ngvck_127 0.805325| ngvck_167 0.862672
ngvck_048 0.840169] ngvck_088 0.80251% ngvck_128 0.790965| ngvck_168 0.741967
ngvck_049 0.90374| ngvck_089 0.86361] ngvck_129 0.750409| ngvck_169 0.799065
ngvck_050 0.805312] ngvck_090 0.827643 ngvck_130 0.857436(ngvck_170 0.799495
ngvck_051 0.704289| ngvck_091 0.904243 ngvck_131 0.872555| ngvck_171 0.854514
ngvck_052 0.750496| ngvck_092 0.80357§ ngvck_132 0.896051| ngvck_172 0.933774
ngvck_053 0.935332] ngvck_093 0.83477% ngvck_133 0.830718| ngvck_173 0.772713
ngvck_054 0.812124) ngvck_094 0.82063% ngvck_134 0.838589| ngvck_174 0.687992
ngvck_055 0.867598 ngvck_095 0.81133% ngvck_135 0.79889| ngvck_175 0.80426
ngvck_056 0.868336| ngvck_096 0.818489 ngvck_136 0.836009| ngvck 176 0.891901
ngvck_057 0.679785 ngvck_097 0.933964 ngvck_137 0.883729| ngvck_177 0.805876
ngvck_058 0.855351] ngvck_098 0.897759 ngvck_138 0.883737| ngvck 178 0.66864
ngvck_059 0.841996| ngvck_099 0.86470¢ ngvck_139 0.800752| ngvck_179 0.817758
ngvck_060 0.905574] ngvck_100 0.772584 ngvck_140 0.974362| ngvck_180 0.853839
ngvck_061 0.855445 ngvck_101 0.83618% ngvck_141 0.840758| ngvck_181 0.870896
ngvck_062 0.843742] ngvck_102 0.82448¢ ngvck_142 0.871869| ngvck_182 0.789751
ngvck_063 0.907973| ngvck_103 0.81345¢ ngvck_143 0.855663| ngvck_183 0.904679
ngvck_064 0.888358 ngvck_104 0.898684 ngvck_144 0.826324| ngvck_184 0.815941
ngvck_065 0.839282] ngvck_105 0.90974¢ ngvck_145 0.889468| ngvck_185 0.955751
ngvck_066 0.691726| ngvck_106 0.81926% ngvck_146 0.898341| ngvck_186 0.875103
ngvck_067 0.793397| ngvck_107 0.798243 ngvck_147 1.04783| ngvck_187 0.767535
ngvck_068 0.87561| ngvck_108 0.88995% ngvck_148 0.937647| ngvck_188 0.832419
ngvck_069 0.855727| ngvck_109 0.88363¢ ngvck_149 0.916563| ngvck_189 0.834388
ngvck_070 0.836216| ngvck_110 0.89018YF ngvck_150 0.862537| ngvck_190 0.736419
ngvck_071 0.836522] ngvck_111 0.841354% ngvck_151 0.886537| ngvck_191 0.784291
ngvck_072 0.834869| ngvck_112 0.822144 ngvck_152 1.04194| ngvck_192 0.876888
ngvck_073 0.713289] ngvck_113 0.79613% ngvck_153 0.943327| ngvck_193 0.922199
ngvck_074 0.920724) ngvck_114 0.88266% ngvck_154 0.966463| ngvck_194 0.829006
ngvck_075 0.873066| ngvck_115 0.82048% ngvck_155 0.976824| ngvck_195 0.798529
ngvck_076 0.863213 ngvck_116 0.80588| ngvck_156 0.865403| ngvck_196 0.804606
ngvck_077 0.87679| ngvck_117 0.837689 ngvck_157 1.031274| ngvck_197 0.88721
ngvck_078 0.946965 ngvck_118 0.85345% ngvck_158 0.845869| ngvck_198 0.782963
ngvck_079 0.833724f ngvck_119 0.83982F ngvck_159 0.900087| ngvck_199 0.813735
ngvck_080 0.821638 ngvck_120 0.79434% ngvck_160 0.849555| ngvck_200 0.882488

76

Figure C-8: Graphical representation of Virus and Non-Virus Scores using ngvck_pp_group20_08
model

Scores using ngvck_pp_group20_08 model

|
:t

T o" '_'Ig'. & Ngvck

e m Cygwin

Other-Nonvirus

=
U1
D
Iy
D
D
Iy
ol
D
N

D0

Score
©,0,0 O O O O O O O O O O K
NP RCo OCRCPNCWOEROPUCHCNCHCw oFkrhk

UIN 1R 010 U1 UTN UTW 0T A OT1UTOTOY U1 U100010 U1 U1 OTN)

'
(=X

Fle Number

77

Table C-9.1 Scores of preprocessed Virus and Non Virdiges using ngvck_pp_group20_09 model

NGVCK Virus variants
after Pre-Processing

Non Virus files after Pre-Processing

Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001 0.8467 cygwin_01 0.642955 nonvirus_01 0.395202
ngvck_002 0.862735 cygwin_02 0.761702 nonvirus_02 0.713194
ngvck_003 0.891343 cygwin_03 0.641485 nonvirus_03 0.707139
ngvck_004 0.8426 cygwin_04 0.703916 nonvirus_04 0.816648
ngvck_005 0.836165 cygwin_05 0.648203 nonvirus_05 0.608953
ngvck_006 0.804085 cygwin_06 0.650045 nonvirus_06 0.64707
ngvck_007 0.79117 cygwin_07 0.640925 nonvirus_07 0.605903
ngvck_008 0.767192 cygwin_08 0.665772 nonvirus_08 0.638037
ngvck_009 0.855232 cygwin_09 0.54619 nonvirus_09 0.51479
ngvck_010 0.920348 cygwin_10 0.670382 nonvirus_10 0.625015
ngvck_011 0.754918 cygwin_11 0.601528 nonvirus_11 0.520071
ngvck_012 0.873677 cygwin_12 0.64663 nonvirus_12 0.601335
ngvck_013 0.799154 cygwin_13 0.5737 nonvirus_13 0.712667
ngvck_014 0.760269 cygwin_14 0.531057 nonvirus_14 0.559963
ngvck_015 0.896827 cygwin_15 0.656245 nonvirus_15 0.564387
ngvck_016 0.883655 cygwin_16 0.741775 nonvirus_16 0.555113
ngvck_017 0.766549 cygwin_17 0.583765 nonvirus_17 0.61697
ngvck_018 0.735215 cygwin_18 0.715955 nonvirus_18 0.579912
ngvck_019 0.838088 cygwin_19 0.662721 nonvirus_19 0.552176
ngvck_020 0.581149 cygwin_20 0.545342 nonvirus_20 0.555523
ngvck_021 0.855421 cygwin_21 0.654253 nonvirus_21 0.494318
ngvck_022 0.797966 cygwin_22 0.592079 nonvirus_22 0.578756
ngvck_023 0.800017 cygwin_23 0.557306 nonvirus_23 0.420753
ngvck_024 0.771175 cygwin_24 0.561559 nonvirus_24 0.566911
ngvck_025 0.771735 cygwin_25 0.466957 nonvirus_25 0.53763
ngvck_026 0.824103 cygwin_26 0.545931 nonvirus_26 -2.766437
ngvck_027 0.837449 cygwin_27 0.583207 nonvirus_27 0.665153
ngvck_028 0.833139 cygwin_28 0.626975 nonvirus_28 0.366792
ngvck_029 0.795813 cygwin_29 0.129535 nonvirus_29 0.544359
ngvck_030 0.752853 cygwin_30 0.523881 nonvirus_30 0.494246
ngvck_031 0.887688 cygwin_31 0.710977
ngvck_032 0.720614 cygwin_32 0.465987
ngvck_033 0.896997 cygwin_33 0.590736
ngvck_034 0.847262 cygwin_34 0.665903
ngvck_035 0.727158 cygwin_35 0.608972
ngvck_036 0.867133 cygwin_36 0.610567
ngvck_037 0.911228 cygwin_37 0.603839
ngvck_038 0.752406 cygwin_38 0.57922
ngvck_039 0.8374 cygwin_39 0.669615
ngvck_040 0.877902 cygwin_40 0.649991

78

Table C-9.2 Scores of meprocessed Virus files ngvck 041 to ngvck 200 using
ngvck_pp_group20_09 model
NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Scorg File Sco
ngvck_041 0.753302] ngvck_081 0.867793 ngvck_121 0.783076 ngvck_161 1.019969
ngvck_042 0.865901] ngvck_082 0.81888% ngvck_122 0.828114| ngvck_162 0.874079
ngvck_043 0.810561] ngvck_083 0.77482F ngvck_123 0.862592| ngvck_163 0.989519
ngvck_044 0.844247 ngvck_084 0.83964¢ ngvck_124 0.875405| ngvck_164 1.026387
ngvck_045 0.889764| ngvck_085 0.705039 ngvck_125 0.737176| ngvck_165 0.769648
ngvck_046 0.805807| ngvck_086 0.92345(ngvck_126 0.892286(ngvck_166 0.930501
ngvck_047 0.963534| ngvck_087 0.83983% ngvck_127 0.731885| ngvck_167 0.868818
ngvck_048 0.88873| ngvck_088 0.86787% ngvck_128 0.752611| ngvck_168 0.897586
ngvck_049 0.873463| ngvck_089 0.76346% ngvck_129 0.759153| ngvck_169 0.966084
ngvck_050 0.759452] ngvck_090 0.89777| ngvck_130 0.898989(ngvck_170 0.821347
ngvck_051 0.776751) ngvck_091 0.855034 ngvck_131 0.858691| ngvck_171 0.875476
ngvck_052 0.844896| ngvck_092 0.77167% ngvck_132 0.928073| ngvck_172 0.901643
ngvck_053 0.903033| ngvck_093 0.80136¢ ngvck_133 0.841615| ngvck_173 0.907257
ngvck_054 0.897038 ngvck_094 0.762874 ngvck_134 0.892001| ngvck_174 0.69839
ngvck_055 0.907983| ngvck_095 0.776704 ngvck_135 0.754002| ngvck_175 0.937481
ngvck_056 0.915907| ngvck_096 0.86815¢ ngvck_136 0.892931| ngvck_176 0.967634
ngvck_057 0.755941) ngvck_097 0.87652% ngvck_137 0.848813| ngvck_177 0.971157
ngvck_058 0.846208 ngvck_098 0.871824 ngvck_138 0.822338| ngvck_178 0.774363
ngvck_059 0.915899| ngvck_099 0.81355] ngvck_139 0.783055| ngvck_ 179 0.834452
ngvck_060 0.876291] ngvck_100 0.846303 ngvck_140 0.837417| ngvck_180 0.954403
ngvck_061 0.830285 ngvck_101 0.87437% ngvck_141 0.796149| ngvck_181 0.826118
ngvck_062 0.823961] ngvck_102 0.80674% ngvck_142 0.848936(ngvck_182 0.86639
ngvck_063 0.85802| ngvck_103 0.81234% ngvck_143 0.793869| ngvck_183 0.878642
ngvck_064 0.849756| ngvck_104 0.832634 ngvck_144 0.824358| ngvck_184 0.787076
ngvck_065 0.872632] ngvck_105 0.84057% ngvck_145 0.806727| ngvck_185 0.883247
ngvck_066 0.768171) ngvck_106 0.748349 ngvck_146 0.826007| ngvck_186 0.837598
ngvck_067 0.871324) ngvck_107 0.80111f ngvck_147 0.854007| ngvck_187 0.859214
ngvck_068 0.864064| ngvck_108 0.875219 ngvck_148 0.854706| ngvck_188 0.88798
ngvck_069 0.810433| ngvck_109 0.916043 ngvck_149 0.828465| ngvck_189 0.879918
ngvck_070 0.796965 ngvck_110 0.92139% ngvck_150 0.742959(ngvck_190 0.806717
ngvck_071 0.792842] ngvck_111 0.80687% ngvck_151 0.789481| ngvck_191 0.787896
ngvck_072 0.74882| ngvck_112 0.901229 ngvck_152 0.828123| ngvck_192 0.837309
ngvck_073 0.699248 ngvck_113 0.76721% ngvck_153 0.845602| ngvck_193 0.865728
ngvck_074 0.835851) ngvck_114 0.82821% ngvck_154 0.837855| ngvck_194 0.913318
ngvck_075 0.807648 ngvck_115 0.79952% ngvck_155 0.967379| ngvck_195 0.8774
ngvck_076 0.77548| ngvck_116 0.78834% ngvck_156 0.748469| ngvck_196 0.736768
ngvck_077 0.82793| ngvck_117 0.88095% ngvck_157 0.882318| ngvck_197 0.819572
ngvck_078 0.891998 ngvck_118 0.7795| ngvck_158 0.748594(ngvck_198 0.773445
ngvck_079 0.907019] ngvck_119 0.89186F ngvck_159 0.827073| ngvck_199 0.876383
ngvck_080 0.814825 ngvck_120 0.753408 ngvck_160 0.938722| ngvck_200 0.935838

79

Figure C-9: Graphical representation of Virus and Non-Virus Scores using ngvck_pp_group20_09
model

Scores using ngvck_pp_group20_09 model

o Ngwvek
m Cygwin

Score

Other-Nonvirus

Fle Number

80

Table C-10.1 Scores of preprocessed Virus and Non Virtiges using ngvck_pp_group20_10 model

NGVCK Virus variants
after Pre-Processing

Non Virus files after Pre-Processing

Cygwin Other Non Viruses

File Score File Score File Score
ngvck_001 0.835274 cygwin_01 0.709146 nonvirus_01 0.368329
ngvck_002 0.839564 cygwin_02 0.851151 nonvirus_02 0.799011
ngvck_003 0.884455 cygwin_03 0.675595 nonvirus_03 0.74036
ngvck_004 0.836423 cygwin_04 0.778349 nonvirus_04 0.98869
ngvck_005 0.812151 cygwin_05 0.751269 nonvirus_05 0.625614
ngvck_006 0.854471 cygwin_06 0.745161 nonvirus_06 0.690337
ngvck_007 0.823538 cygwin_07 0.723689 nonvirus_07 0.644455
ngvck_008 0.7911 cygwin_08 0.762253 nonvirus_08 0.676615
ngvck_009 0.835688 cygwin_09 0.568476 nonvirus_09 0.569572
ngvck_010 0.900649 cygwin_10 0.740279 nonvirus_10 0.646661
ngvck_011 0.786403 cygwin_11 0.661184 nonvirus_11 0.554642
ngvck_012 0.883959 cygwin_12 0.707771 nonvirus_12 0.628051
ngvck_013 0.831828 cygwin_13 0.621298 nonvirus_13 0.767003
ngvck_014 0.750639 cygwin_14 0.611181 nonvirus_14 0.574758
ngvck_015 0.88218 cygwin_15 0.728782 nonvirus_15 0.580729
ngvck_016 0.887437 cygwin_16 0.82976 nonvirus_16 0.610242
ngvck_017 0.794006 cygwin_17 0.62471 nonvirus_17 0.6516
ngvck_018 0.728453 cygwin_18 0.816968 nonvirus_18 0.589566
ngvck_019 0.836684 cygwin_19 0.740482 nonvirus_19 0.535808
ngvck_020 0.580427 cygwin_20 0.554621 nonvirus_20 0.56025
ngvck_021 0.807855 cygwin_21 0.774337 nonvirus_21 0.508226
ngvck_022 0.839337 cygwin_22 0.65265 nonvirus_22 0.587912
ngvck_023 0.805779 cygwin_23 0.600755 nonvirus_23 0.276487
ngvck_024 0.821028 cygwin_24 0.585671 nonvirus_24 0.575307
ngvck_025 0.745632 cygwin_25 0.436518 nonvirus_25 0.529595
ngvck_026 0.830191 cygwin_26 0.576001 nonvirus_26 -2.496257|
ngvck_027 0.871291 cygwin_27 0.696381 nonvirus_27 0.718465
ngvck_028 0.82244 cygwin_28 0.70685 nonvirus_28 0.381314
ngvck_029 0.791279 cygwin_29 0.176976 nonvirus_29 0.54802
ngvck_030 0.763494 cygwin_30 0.586221 nonvirus_30 0.543744
ngvck_031 0.849665 cygwin_31 0.807715
ngvck_032 0.762064 cygwin_32 0.530242
ngvck_033 0.845671 cygwin_33 0.648863
ngvck_034 0.841663 cygwin_34 0.767342
ngvck_035 0.738297 cygwin_35 0.676187
ngvck_036 0.895112 cygwin_36 0.678254
ngvck_037 0.88164 cygwin_37 0.712501
ngvck_038 0.757309 cygwin_38 0.593486
ngvck_039 0.836564 cygwin_39 0.755802
ngvck_040 0.864728 cygwin_40 0.708962

81

Table C-10.2 Scores of mprocessed Virus files ngvck 041 to ngvck 200 using
ngvck_pp_group20_10 model
NGVCK Virus Variants after Pre-Processing (Contd)

File Score File Score File Scorg File Sco
ngvck_041 0.806136| ngvck_081 0.86450¢ ngvck_121 0.791963| ngvck_161 0.880509
ngvck_042 0.847177| ngvck_082 0.830974% ngvck_122 0.829968| ngvck_162 0.865064
ngvck_043 0.829665 ngvck_083 0.803309 ngvck_123 0.84861| ngvck_163 0.881594
ngvck_044 0.841277| ngvck_084 0.82883| ngvck_124 0.867851| ngvck_164 0.897337
ngvck_045 0.905322] ngvck_085 0.75169] ngvck_125 0.734984(ngvck_165 0.749164
ngvck_046 0.837817| ngvck_086 0.89408% ngvck_126 0.883431| ngvck_166 0.876397
ngvck_047 0.908585 ngvck_087 0.84411¢ ngvck_127 0.777839| ngvck_167 0.838498
ngvck_048 0.856655 ngvck_088 0.86598] ngvck_128 0.766265| ngvck_168 0.823362
ngvck_049 0.868916| ngvck_089 0.784684 ngvck_129 0.790593| ngvck_169 0.912443
ngvck_050 0.760482 ngvck_090 0.94200% ngvck_130 0.906221| ngvck_170 0.810481
ngvck_051 0.804519] ngvck_091 0.84021% ngvck_131 0.852502 ngvck_171 0.814819
ngvck_052 0.839949| ngvck_092 0.783553 ngvck_132 0.923051| ngvck_172 0.840636
ngvck_053 0.874903 ngvck_093 0.813714 ngvck_133 0.853154 ngvck_173 0.841052
ngvck_054 0.880146| ngvck 094 0.776534 ngvck_134 0.881862| ngvck 174 0.64686
ngvck_055 0.902571) ngvck_095 0.75841% ngvck_135 0.780832(ngvck_175 0.809198
ngvck_056 0.902833| ngvck_096 0.85456% ngvck_136 0.871903| ngvck_176 0.931621
ngvck_057 0.748321) ngvck_097 0.86880¢ ngvck_137 0.827791| ngvck_177 0.861389
ngvck_058 0.829101] ngvck_098 0.87281f ngvck_138 0.84194| ngvck_178 0.753529
ngvck_059 0.916347| ngvck_099 0.823874% ngvck_139 0.788465| ngvck_179 0.824825
ngvck_060 0.862244] ngvck_100 0.82095% ngvck_140 0.812093| ngvck_180 0.974242
ngvck_061 0.855147| ngvck_101 0.860169 ngvck_141 0.797802| ngvck_181 0.864314
ngvck_062 0.825158 ngvck_102 0.81583% ngvck_142 0.824642| ngvck_182 0.933638
ngvck_063 0.845969| ngvck_103 0.82435¢ ngvck_143 0.797001| ngvck_183 0.887501
ngvck_064 0.854689 ngvck_104 0.85324] ngvck_144 0.813329| ngvck_184 0.851609
ngvck_065 0.919003| ngvck_105 0.83851] ngvck_145 0.808395| ngvck_185 0.940524
ngvck_066 0.762422] ngvck_106 0.769408 ngvck_146 0.821483| ngvck_186 0.92356
ngvck_067 0.868012] ngvck_107 0.78832]F ngvck_147 0.854361| ngvck_187 0.888566
ngvck_068 0.851694| ngvck_108 0.87298% ngvck_148 0.869809(ngvck_188 0.95117
ngvck_069 0.808513| ngvck_109 0.94007F ngvck_149 0.846805| ngvck_189 0.969765
ngvck_070 0.786868 ngvck_110 0.921029 ngvck_150 0.772844| ngvck_190 0.895132
ngvck_071 0.777821) ngvck_111 0.83686% ngvck_151 0.755694(ngvck_191 0.825318
ngvck_072 0.775516| ngvck_112 0.860339 ngvck_152 0.845488| ngvck_192 0.860018
ngvck_073 0.705139] ngvck_113 0.784173 ngvck_153 0.861015| ngvck_193 0.892635
ngvck_074 0.864175 ngvck_114 0.84671% ngvck_154 0.830788| ngvck_194 0.929118
ngvck_075 0.828592 ngvck_115 0.841963 ngvck_155 0.957069| ngvck_195 0.938228
ngvck_076 0.770082] ngvck_116 0.79638% ngvck_156 0.758893| ngvck_196 0.833595
ngvck_077 0.86613| ngvck_117 0.90369¢ ngvck_157 0.85778| ngvck_197 0.924956
ngvck_078 0.931194] ngvck_118 0.810073 ngvck_158 0.760051| ngvck_198 0.799816
ngvck_079 0.867157| ngvck_119 0.92081% ngvck_159 0.824571| ngvck_199 0.914229
ngvck_080 0.793652] ngvck_120 0.78173F ngvck_160 0.889094(ngvck_200 0.934642

82

Figure C-10: Graphical representation of Virus and Non-Vimus Scores using ngvck_pp_group20_10
model

Scores using ngvck_pp_group20_10 model

o Ngvek
m Cygwin

Score

Other-Nonvirus

Fle Number

83

