Cl Technical Report 001
Li brary No.: S232,522
6 June 1989

COVPUTER VI RUSES:

PREVENTI ON, DETECTI ON, AND TREATMENT

by

Mario Tinto

This publication contains technical observations, opinions, and evidence
prepared for informal exchange anong individuals involved with conputer
security. The information contained herein represents the views of the author
and is not to be construed as representing an official position of the

Nati onal Computer Security Center.

Revi ewed by:

BLAI NE W BURNHAM
Chief, Criteria and Technical Guidelines D vision

Rel eased by:

ELI OT SCHVER
Chief, Ofice of Computer Security Eval uations,
Publ i cati ons and Support

Page 1

TABLE OF CONTENTS
Executive Summary
I. Introduction: The Synptons

1. Treatment and Prevention
A. Technical Measures
1. Trusted Conputing Base
2. Access Controls
a. Discretionary Access Control (DAQC
b. Mandatory Access Control (MAC
3. Audit Trails
4. Architecture
5. Least Privil ege/ Rol e Enforcenent
6. ldentification and Authentication
B. Procedural and Adm nistrative Measures
Passwords and Password Managenent
Configuration Control
Oper ational Procedures
Facility Managenent
User Awareness
Syst em Eval uati ons
C. Synopsi s of Counternmeasures

ook wWNE

1. Summary

APPENDI X
I. The Issue

Il. The Analysis
a. Infection
b. Effects of the Virus

Ref er ences

QOO ~NOOUTA,DWWW

15

17
17

17
17
19

20

Page 2

Executive Sumary

There has been, of |ate, considerable interest in the topic of computer
viruses. The debate has been especially brisk since the so-called

"Internet Virus" of Novenber 1988. At one extrene are those who decl are

that viruses are an essentially new phenonmenon, against which we are

powerl ess. At the other end of the spectrum are those who treat viruses as
nore of a semantics problemthan a technical one, claimng that the probl ens
t hey pose have al ready been sol ved under different term nology. Where thenis
reality? This paper makes the case that the situation, while certainly not
ideal, is not nearly as bleak as sonme of the alarm sts would claim and that
exi sting technol ogy and security-oriented procedures are extensible to the
virus threat. Further, these are largely captured in the DoD Trusted Computer
System Eval uation Criteria (TCSEC). However, while the avail abl e techni ques
are relevant, they supply only partial solutions; perfect and universa
count er neasures agai nst all possible virus scenarios do not exist. If we
are to determ ne whether or not such are possible, nmuch | ess devel op them
further R&D activity is required.

Page 3

I. Introduction: The Symptoms

Viruses are a form of the classical Trojan horse attacks and are characterized
by their ability to reproduce and spread. However, like all Trojan horses,
they first must be "imported” and executed by an authorized user; the attacker
typically dupes an unsuspecting individual into accepting and executing the
virus. The malicious code may be buried in what are presented to be otherwise
useful utilities (e.g., spreadsheets, text editors), which then operate with

the user's own authoritzations to cause harm. The offending code may be
present in a code segment the user "touches,” which then attaches itself to
the user's program, without the user ever realizing that he is importing a
virus. For instance, a virus may be implanted in system library utilities

(e.g., sort/merge routines, mathematics packages) and servers.

While a virus (or Trojan Horse) is normally considered to be limited to the
authorizations of the user who is executing the code, the virus can clearly
exploit any flaws in the system that would allow the user to enter

privileged state (although such attacks are more correctly seen as traditional
penetration attacks). If the user who executes the infected code has system
privileges (e.g., a system administrator), then the virus will be able to do

still more severe damage, depending upon the specific privileges available
to it.

The critical point is that viruses depend upon their ability to exploit the
legitimate capabilities of authorized users. In order to be successful, a
virus must replicate and infect other programs without detection.

Il. Treatment and Prevention

As with their biological namesakes, computer viruses come in a variety of
types; their missions can be modification or theft of data, or denial of
service. Their methods of attack will be as numerous and varied as the
weaknesses manifest in systems. Thus, perfect and universal solutions are not
likely; there will be no single solution developed capable of preventing any
and all virus attacks. Such a solution is certainly not currently

available. However, that is not to say that we are powerless to combat
viruses, contain their effects, or limit their capability to do damage. The
defenses against viruses are both technical and procedural. More
specifically, the principles and mechanisms provided in the TCSEC,
especially at class B2 and above, provide a variety of valid defenses
against a large class of malicious code and, when applied effectively, can
severely limit both the scope of the attack and the extent of the damage.

A. Technical Measures

1. Trusted Computing Base

The TCSEC has, as a central theme, the extremely strong notion of a Trusted
Computing Base, or TCB (i.e., the implementation of the Reference Monitor
concept). In essence, the TCB is the central policy enforcement mechanism for
the computer system, mediating the actions of all system users and user

Page 4

processes. Anobng the inportant characteristics of the TCBis that it be

al ways invoked (i.e., unbypassable, nediates each and every access) and self-
protecting (i.e., cannot be nodified by user code). The consequence of
requiring architectures that provide such nmechanisnms is to limt the ability
of hostile code to subvert the TCB. Beginning at the Cl | evel of trust,
fundanmental protection mechani snms are required that provide protection of

the system prograns and data fromunprivil eged users. Many existing systens
(e.g., PCs running DOS) | ack even these basic protections required at Cl, thus
allowing a virus executed by any user to infect any part of the system even
t hose nost basic to systemoperation and integrity. Comencing with the B2

| evel of trust, we expect that there will be no fundamental design flaws

that allow the security mechanisms to be circumvented. Thus, in the absence
of penetration paths, a virus would be linmted to attacking users on an

i ndi vidual basis. This means that the rate at which it could propagate
woul d be reduced, as would the damage it could inflict.

It can be argued that a virus capable of infecting each and every user in

the system (one that was present in the text editor, for instance) would be
reasonably effective at acconplishing sone m ssions (e.g., denial of service).
Thus, the value of an intact TCB in the face of an otherw se conpletely

i nfected user population is nmoot. However, it is still true that a strong and
self-protecting TCB, at a mininmum forces a virus to infect users one at a
time. It can also prevent sone forns of attack (see 2.b, Mandatory Access
Control s, below), and assure the existence and protection of the audit data by
whi ch viruses may be detected and traced. |In fact, a strong TCB represents
the central protection nechanismthat a virus nust overcone in order to infect
the text editor in the first place.

2. Access Controls

Among t he fundanmental principles that provide the foundation to the TCSEC is
that of policy enforcenent, the need for the conputer systemto enforce an
access control, or sharing, policy. For both technical and historica
reasons, the principle of policy enforcenent translates in the TCSEC i nto
access control nechanisns. Specifically, these are:

a. Discretionary Access Control (DAQC

Di scretionary Access Control provides the mechanisns that enforce user-defined
sharing, also known in sonme communities as "need-to-know. " Beginning at CI1,
the TCSEC requires that it be possible for the owner or nmanager of each data
file to specify which users may access his data, and in what nodes (e.g.

Read, Modify, Append). Cdearly, such a mechani sm provides control over both
acqui sition and nodi fication of data by Trojan horses and viruses. |n order
for the malicious code to carry out its mssion, it would have to be

execut ed by someone who al ready possessed valid perm ssions against the data
being targeted. |If that user is not the owner, then the capability of the
attack code to do harmwould be limted by the all owed perm ssions (e.g., if
the user who was being attacked had "READ- ONLY" access, the attack code

could copy the data, but could not nodify or erase it). Wile discretionary
access control nechani sns provide relatively weak protections, they do
constitute a hurdle that a virus nmust overcome, and can slow the rate at which

Page 5

the virus propagates.

b. Mandatory Access Control (MAC

Mandat ory Access Control provides those nmechani snms that enforce corporate
policy dealing with the sharing of data. Exanples of such polices would be:
"only menbers of the payroll staff may read or change payroll data," and
"classified data may only be accessed by those having the appropriate

cl earances. " Beginning at the Bl | evel, the TCSEC requires conputer systens to
be capable of enforcing MAC as well as DAC. That is, the system nust be

able to enforce those nore fornmal rules dealing with either, or both, |evels
of sensitivity (e.g., DoD classification schene) and categories of information
(e.g., payroll, medical, R&D, corporate planning). Thus, the ability of a
user to access and mani pul ate data is based upon the conparison of the
attributes of users (e.g., "nenber of payroll department,” "menber of R&D
staff,” "managenent," or "clearance level”) with the attributes of the data to
be accessed (e.g., payroll data, R&D data, classification |level). Because

it is required that the TCB control and protect these attribute designators
(or, "labels"), they constitute a "hard barrier” for a virus, effectively
l[imting the scope of what it may do; in a properly designed and i npl enent ed
systema virus would be unable to effect any changes to the |abels. This
means, for instance, that a virus that is being executed by soneone in the
PAYROLL departnent would be limted to doing damage strictly within the set of
data that is |abelled accordingly. It would have the potential to nodify or
destroy PAYROLL data, but not access R&D or MEDI CAL data. Additionally, a
virus could not change any | abels, which nmeans that it is unable to prevent
PAYROLL data from bei ng passed to anyone who is not a nenber of the payrol
staff. Likew se, a virus could not cause "SECRET" data to be downgraded.

In short, MAC is an extrenmely strong nechani sm which prevents any process,

i ncluding a virus, fromnmaking properly | abeled i nformati on avail able to users
who are not authorized for the information. Systens that achi eve TCSEC | evel s
of B2 or greater essentially guarantee that information will not be
"conpronmised,” i.e., no nalicious code can violate the restrictions inplied by
t he | abel s.

It needs to be noted that the way in which mandatory controls are typically
used is to prevent conprom se, which is to say that the enphasis is on
preventing "high" data frombeing witten into a "low' file. This does not,
initself, prohibit viruses from propagating, either via a "l ow' user

witing into a "high" file, or a "high" user inporting software froma "I ow'
file. However, it should be noted further that the mandatory controls provide
the opportunity for inplementing simlar controls for witing (or inportation)
as for reading. Such controls are usually seen as inplenenting mandatory
integrity policies, such that the ability to nodify files is based upon a

set of integrity labels, anal ogous to the classification |abels used to

regul ate the readi ng of data. Some systens exist (e.g., Honeywel|l SCOWP) that
have i npl enent ed such mechani sns.

3. Audit Trails

The collection of audit data is a traditional security nechanismthat provides
a trace of user actions such that security events can be traced to the actions

Page 6

of a specific individual. The TCSEC requires, comnmencing at class C2, that

the TCB "...be able to create, maintain, and protect from nodification or
unaut hori zed access or destruction an audit trail of accesses to the objects
it protects.” Because an effective virus depends upon its ability to infect

ot her prograns and carry out its mssion w thout detection, audit data

provi des the basis not only for detecting viral activity, but also for
determ ni ng whi ch users have been infected (i.e., by identifying which user is
responsi ble for the events in question). Cearly, the collection of data is
nmerely the foundation for detection. To fully inplenent a sound program
audit reduction and anal ysis tools are also required. These are al so provided
for in the TCSEC. Considerable advancenent in this arena is reflected by the
recently devel oped intrusion detection systens; sophisticated real-tine

audit anal ysis and event-reporting systems, sone based on artificia
intelligence (or, "Al") techniques. These typically provide extensive
capability for detecting a variety of anomal ous behavior, and thus can be
"tuned" for known or suspected viral patterns. \While the available systens
are still largely devel opnental, the early results are quite prom sing

4. Architecture

VWiile it is certainly inportant to identify the correct set of security
features that are needed in a system it is equally inportant to provide the
assurances that the features work as intended, are continually present, and
are uncircumventabl e. Such assurances are provided by the underlying
architecture, nanely, the hardware support for the features, and the

har dware and software design. The TCSEC stresses the inportance of
architecture and adequate hardware support for the security mechani sms. Even
at the | owest |level of trust defined by the TCSEC (i.e., Cl) fundanental
protection mechani snms are required that provide protection of the systens
progranms and data fromunprivil eged users. Such protection is usually

i mpl enented by nultistate hardware. Starting with B2, the TCSEC pl aces strong
enphasi s upon design, design analysis, and architectural features that provide
for isolation of user programs fromeach other as well as isolation of

system prograns fromuser prograns. Such nmechanisns not only prevent

viruses fromcasually infecting systemprograns (e.g., the TCB), but al so make
it more difficult for the virus to spread from user to user

As an exanmple of the gain to be realized by the right choice of system
architecture, type-enforcement architectures are worthy of special note.
These systens provide the potential for extrenely fine-grained control of
executing code, such that a virus would be incapable of perform ng any
action that is not explicitly allowed by the type-enforcenent nmechanism And,
because all access to data and resources is via a conmon, central mechani sm
(i.e., the type manager), protection need only be focused on the code

aut horized to mani pul ate the data and resources, rather than attenpting to
protect all user prograns. By way of illustration, such systens could quite
easily enforce the follow ng policy, or set of access rules, which a bank

m ght wish to enforce

* Tell ers nmay nake changes only to those accounts for which they
are aut hori zed.

* They may only make changes to specific fields (e.g., may

Page 7

not change the account number, depositor name).

* They may only make the changes authorized between the hours of
9:00 a.m. and 5:00 p.m., Monday through Friday.

* Transactions that exceed $1,000 require the authorization of a
supervisor, while transactions that exceed $5,000 require the
authorization of the bank manager.

The capabilities of a virus that attached itself to a teller's process in
such a system would be, mildly speaking, somewhat circumscribed.

5. Least Privilege/Role Enforcement

A virus that is executed by a user with privilege (i.e., a user that is

permitted by the system to circumvent some part or all of the system's
security policy) provides an enormous threat to the entire system, because,
in assuming the legitimate user's identity, it would be able to circumvent
the normal controls that protect other users' programs and data. In many
systems, the virus would also be able to circumvent the controls that
protect the system itself from modification.

Least Privilege is a familiar concept in the computer security community,
and deals with limiting damage through the enforcement of separation of
duties. It refers to the principle that users and processes should operate
with no more privileges than those needed to perform the duties of the role
they are currently assuming. That is, a user who may take on more than one
role or identity (e.g., administrator and unprivileged user, Project A and
Project B), should only be given the authorizations needed at the moment,
rather than all the privileges he can assume for any and all roles that may be
assumed. In contrast, many current systems support only a single, all-
powerful system administrator (note especially, the UNIX role of "superuser").
Beginning at the B2 level, trusted systems limit the capabilities of

privileged users to those capabilities necessary to accomplish the
prescribed task. Beginning at the B3 level, privileged users cannot, in their
privileged roles, execute any non-TCB code. The consequence is that, in
such a system, a virus could not infect a privileged user's programs, and thus
could not exercise his privileges. In addition, at B3 and higher,

privileged functions that may modify any security-critical system data or
programs require the use of "trusted path” (i.e., require an explicit,
unforgeable, action from the privileged user) in order to prevent these
actions from being performed without the explicit knowledge and cooperation of
the privileged user. This means that no virus could affect security

critical data or programs surreptitiously, since it could not cause any
modifications without the privileged user becoming aware of the requested
actions, thus making the virus visible.

6. Identification and Authentication
Identification and authentication ensures that only authorized users have

any access to the system or information contained on the system. It also
forms the basis for all other access control mechanisms, providing the

Page 8

necessary user identification data needed to make decisions on requested
user actions. While passwords are the oldest and perhaps the most familiar
form of personal identifiers used to authenticate users to computer systems,
also available today are biometric techniques and "smart card" devices.

B. Procedural and Administrative Measures

While technical measures are necessary for controlling what code segments a
process may access, what actions it may take, and the conditions under which
it can operate (i.e., what goes on inside the computer), total system security
also involves effective site security procedures and system management.

This is particularly true because poor procedures can negate the positive
effects of some of the technical controls. As an example, audit data

collected by the system, and the availability of even the most sophisticated
audit analysis tools are of little value if the audit logs are never reviewed,

nor action ever taken as a result of questionable activity.

The following should in no way be seen as an exhaustive list of procedures and
management practices effective in addressing the virus threat. Rather, it

is intended to be merely illustrative of the manner in which procedural
controls are complementary of technical capability.

1. Passwords and Password Management

Historically, passwords have been among the first targets on which an attacker
would focus attention. They have traditionally been an easy target with

high payoff potential. Because a person's password is often the key to all

his data and authorizations, they are analogous to a safe combination. By
extension, attacking the password file is akin to targeting the safe that

holds the combinations to all the other safes in the building. Thus, good
password management and practices can go a long way toward limiting virus
attacks. A virus counts on its ability to infect other programs. Thus,

either the target must import the virus and execute it as his own (i.e.,

with his own privileges and authorizations), or the virus must be able to
"become” the user to be infected by invoking his password. (It might be
noted, in passing, that the November 1988 Internet virus contained extensive
password attacks). If the virus cannot successfully log in as an arbitrary

user (e.g., by stealing or guessing valid passwords), then it is limited to
attempting to fool users into executing the virus code. The trivial ease with
which user passwords can be guessed and entire password files can often be
attacked is usually nothing short of shocking. Truly effective
countermeasures to such attacks are easy to implement and relatively

inexpensive. They often amount to not much more than sensible management.

2. Configuration Control

A virus represents code that was not intended to be part of a program or the
system. Thus, procedures for maintaining valid and known system
configurations, for validating and approving shared code (e.g., software
library routines), and for distributing approved programs and media (e.g.,
diskettes) can provide further obstacles to viral infestation.

Page 9

3. Operational Procedures

VWi le there may be sone commmonal ity across conputer sites, it is also true
that each site will offer its own unique set of problenms. Thus, operationa
procedures typically need to be tailored to fit the needs of the particul ar
envi ronnent, and defenses against viruses will need to be designed into the
procedures that govern the day-to-day operation of the site. As an exanple,
recovery froma known or suspected virus attack mght require a clean copy

of the system This, inturn, inplies procedures for verifying the source and
correctness of the backup copy, protecting it fromnodification until it is to
be installed, and for installing it safely. Likew se, nmanagenent policies and
procedures dealing with the inportation of code can al so provide a nmeasure of
resi stance to viruses. The establishment of the policy will tend to

hei ght en awareness of the danger of bringing unknown software into the work
environnent, while effective procedures for controlling the inportation of
software will nake it nore difficult for a virus to be introduced.

4. Facility Managenent

VWil e a conputer systemmay provide a variety of security-rel ated

nmechani snms, they nmust be used and, nore inportantly, used correctly, if any
nmeasure of protection is to be achieved. Large, conplex systens offer a
special challenge, in that there are typically a variety of configuration
options, and can support a |arge nunber or users, which nmay be grouped into
different "comunities” and cl asses, each with unique attributes, security
restrictions and privileges, and with a different view of the system This
translates into a particularly difficult job for the systemsecurity

adm nistrator; it is inperative that he get everything right

si mul taneously. There will be many opportunities to configure the systemsuch
t hat needed security features are not active, or that the choice of options
invalidates the action of a security feature that was activated. The second
case i s probably worse, because the security adm nistrator believes that he
has activated a security feature when, in fact, he has inadvertently caused
the desired protection mechanismto be rendered ineffective. 1In short, the
desired security characteristics of the system while achievable, can easily
be lost in the conplex detail of configuring and maintaining an operationa
environnent. Thus, it is critical that there be support for the system

adm ni strators such that they can nmake effective use of the avail able security
features of, and configure and provide life-cycle support for, the |level of

policy enforcenent needed. Toward this end, the TCSEC, at all |evels, demands
that the vendor provide the purchaser of the product a "Trusted Facility
Manual ," a docunent that describes, in a single volune or chapter, all the

security nmechani sns supported by the system and provides gui dance on how to
use them It is a docunent aimed explicitly at the system security

adm ni strator, and as such, it provides the information necessary to fully
under st and system security mechani sms, how to use them properly, and the
potential harm of poor inplenentation and configuration choices (e.qg.

i nsufficient auditing).

5. User Awar eness

Page 10

Virtually every shared-resource system available today provides facilities for
users to specify some level of protection for their data. These may be in the
form of User/Group/World mechanisms, Access Control Lists (ACLSs), or other
features that allow users to specify how, and with whom, information is to
be shared. However, in order to be effective, the features must first be
used, and they must also be used properly. This clearly means that the
users need to be cognizant of the protection features that are provided to
them, and understand how they operate. Here also, the TCSEC provides
support for this level of user awareness in that it requires that the vendor
provide a separate document (i.e., the Security Features User's Guide),
explicitly aimed at system users, which apprises them of the security
mechanisms that are available to them. While, as noted earlier, most user-
specifiable protection mechanisms are not proof against determined hostile
attack (at least, not in most current implementations), such protection
features do provide a barrier that a virus must overcome; it is clearly easier
to steal or damage files that are not protected than those that are. Itis
certainly easier for a virus to escape detection if there exist no system-
enforced prohibitions against the actions it is attempting to carry out.

6. System Evaluations

Itis standard practice, at least within the DoD and Intelligence communities,
to have systems undergo an accreditation process, a formal and reasonably
well-defined process for determining the acceptability of systems. The
critical facet of the process is centered about the "certification,” which
involves the assessment of the system capabilities as measured against the
original requirements definition (e.g., the RFP, system specifications), and
typically also takes into account any system vulnerabilities that have been
discovered. The certification process is a technical assessment of the
system, and thus subjects the system to some level of technical scrutiny.
Thus, any flaws, either in system design or in implementation detail, are more
likely to be discovered. This is a direct benefit of the current evaluation
process directed toward the evaluation of products against the TCSEC. The
evaluation process will, in addition to assuring that the TCSEC requirements
are satisfied, tend to discover and correct poor design, poor implementation
choices and, in some cases, will discover and correct penetration paths.
Clearly, processes that find and correct errors and eliminate penetration
paths will tend to raise the cost to the attacker.

C. Synopsis of Countermeasures

As discussed earlier, the mission of a virus can be classified as one or

more of the standard threats to information security, namely, unauthorized
modification, unauthorized disclosure, and denial of service. Technical as
well as procedural and administrative countermeasures exist that address these
threats, and thus will, in general, limit the success of malicious code
attempting to carry out such attacks.

a. ldentification and authentication, discretionary access controls, process
isolation, and auditing are relevant countermeasures for the virus whose

Page 11

mssion is to destroy or nodify user data. Likew se, TCB protection, |east
privilege, trusted path, and auditing will also serve as val uable
count er neasures agai nst the virus whose mssionis to destroy or nodify system
programs and data structures.

b. Identification and authentication, nandatory access controls, and
di scretionary access controls provide effective counternmeasures agai nst
Vi ruses whose mission is to cause unauthorized di sclosure of information

c. Because infection requires that the virus be able to nodify or replace sone
exi sting program all of the technol ogy and procedural counterneasures that
are designed to prevent unauthorized nodification of prograns will nake it
harder for a virus to attach itself to | egal user processes.

d. The current state of the art in conputer security provides only very
limted counterneasures agai nst denial of service. ldentification and

aut henti cati on nmechani sms ensure that only authorized users have access to
system resources, while auditing allows the systemadm nistrator to

determ ne to what extent particular users use or abuse system resources.
These controls thus ensure that a virus can attack only those systemresources
that the infected user is allowed to use, as well as keeping a record of
utilization that nmay make virus detection easier

1. Summary

Clearly, as stated above, there are no universal cures; no single set of
procedures and technical neasures guaranteed to stop any and all possible
virus attacks. However, this is not different fromany other everyday
security situation. Specific nechanisns tend to be designed to conbat

speci fic dangers, in the sane way that vaccines are devel oped to conbat
specific diseases. Thus, preventive neasures are intended to raise the cost
of attacks, or to make it less likely that a specific class of attack wll

be successful. Simlarly for viruses. Wile viruses can exploit any and all
flaws in our computer systens and networks, they also tend to be classes of
attacks with which we are already famliar. Thus, while there is valid
concern for our vulnerability to virus attacks, a di spassionate anal ysis shows
t hat our previous experience in conputer security is relevant - the protective
nmeasures and technol ogy we have devel oped are directly applicable, and provide
a good baseline for naki ng headway agai nst these attacks. |In addition, good
environnental controls are critical; while technical neasures are necessary
for controlling what data and resources a user process may access, Wwhat
actions it may take, and the conditions under which it can operate (i.e., what
goes on inside the conmputer), total systemsecurity also involves effective
procedures and system managenent.

On the one hand, it may be argued that viruses present no new technical
chal l enges. The attacks they carry out are the attacks that have been

postul ated virtually since the advent of time-sharing. However, the
intel l ectual process is such that one deternmnes a threat, or attack scenario,
and then devel ops specific countermeasures. Thus, the classical approach

Page 12

has |l ed us to consider attacks and devel op responses on an individua

basis. A virus not only propagates, but may also carry out any or all known
attacks, thus potentially presenting us with a universal set of attacks in one
set of hostile code. However, what is truly revolutionary about viruses is
that they change the way in which we will have to view the processing and
conmuni cati ons support available to us, in the same way that "letter bonbs”
woul d cause us to radically change the way we vi ewed t he postal system

i.e., frombeneficial and useful to hostile and potentially dangerous.

VWere we have previously put great confidence in our conputing resources
("If the computer said it, it nmust be correct”), we will now have to

consi der those resources as potentially hostile.

Viruses also will cause us to change our view of the very intellectual
environnent - the sharing of software can no | onger be as casual as it was
once was. Perhaps this should not be surprising. The attacks that were
originally postul ated and desi gned agai nst (e.g., penetrations, Trojan horses,
trapdoors) were predicated on a relatively unconplicated conputing
environnent. The conmuni cati ons expl osi on now confronts us with a

consi derably nore conplex, richly interconnected conputing and

comuni cations environnent. In this environnment, viruses are the concern
This nmeans that, while our previous experience is extensible to the new
threats, R&D is still needed. While there is considerabl e debate over whet her

or not viruses present a conpletely new set of problens, there is certainly no
di sagreenment concerning our abilities to conbat them nost will concede

that, at best, today we have only partial solutions. Perfect solutions may be
possi bl e, but a better understanding of the root technical issues, devel opnent
of theory, and testing of counterneasures is required before we can know for
certain.

In short, viruses and other forms of nalicious code are seen as an extension
of classical conputer security threats into the current conputing and
conmuni cati ons environnent. The capabilities we have al ready devel oped to
conbat the threats of yesterday apply perfectly well against viruses, but
are not perfect solutions. |If we are to develop still better solutions, R&D
inthis area is critical

Page 13

APPENDIX

Analysis of Internet Virus

and the Evaluation Process

I. The Issue

Among the first questions asked within the NCSC immediately following the
November Internet Virus attack was, "Could the attack have been prevented,
or at least ameliorated, by the product evaluation process?" It is

instructive to determine the impact the TCSEC requirements and the current
evaluation process would have had on the virus and the flaws it was able to
exploit.

The following assumes that the reader is familiar with the details of the
specific attacks, and no effort is made to describe or otherwise elaborate
on the technical details of the virus.

Il. The Analysis

The question to be answered is, "What effect would trust technology and/or
product evaluation have had on the effectiveness of the virus?" The responses
fall into two main areas: methods of attack (i.e., which flaws or features

were exploited), and the effects of the attack.

a. Infection

The virus used three methods to infect other systems: 1) a subtle bug in
the "finger" daemon software, 2) the "debug" feature of the "sendmail”
program, and 3) the ability of a user to determine other users' passwords.

The bug in the "finger" daemon (or, fingerd) software would likely not be
caught in a C1-B1 level evaluation. There is a moderate chance that it

would have been found in a B2-Al evaluation. If discovered in any evaluation,

a fix would not have been required by the NCSC as the problem would not affect
the system's ability to enforce the security policy; it does not appear in the

TCB, but rather in user space. Most vendors would, however, fix the bug
simply to make the system more robust.

At the same time, it is important to note that this attack was successful
largely because other routines, which made use of fingerd, did not perform the
bounds checks required to catch the error being exploited. A system being
designed against the TCSEC would be sensitive to the need for complete
parameter checking, at least for security-critical or otherwise privileged
codes. Additionally, the evaluation process, at any level, would likely

identify fingerd as code being used by privileged programs, thus raising the
probability that the flaw would either be found or obviated. This is

Page 14

clearly the case for systems at B2 and beyond; while the flaw that allowed the
virus to attack users might still appear (depending on the implementation
choices made), the B2 requirements are such that privileged processes would
not be dependent on any unevaluated code.

The debug feature of sendmail had a moderate chance of being discovered in a
C1-B1 evaluation. The feature would almost certainly have been discovered

in a B2-Al evaluation. When discovered, the team would only have been able to
force the vendor to document the feature, as its presence would not affect the
system'’s ability to enforce the security policy.

Here also, it is fair to point out that in a product that was designed to
conform with TCSEC requirements, sendmail might well have been seen as
integral to the TCB (i.e., a security-critical process). As such, it would

have been more closely scrutinized and, beginning at B2, been subjected to
penetration testing. To the extent, however, that sendmail is strictly within
user space (i.e., not within the TCB boundary), the evaluation process is
not likely to turn up flaws such as was exploited by the virus.

The ability of a user to generate other users' passwords as a result of

being able to read the password file (albeit encrypted) would have been
detected in any evaluation, and the vendor would have been forced to correct
the problem. It is important to note that the virus contained an extensive
capability to guess user passwords. While it is not clear to what extent

the virus actually resorted to this attack, inexpensive and well-known
password management procedures would have a major impact on password
attacks, and thus would considerably impair the propagation rate of any

virus that depended on them.

b. Effects of the Virus

The primary effect of the virus was the consumption of processor time and
memory to the point that nonvirus processes were unable to do any useful work.
For the systems in question any valid user could have produced the same effect
because the system enforces few useful limits on resource utilization. The
current state of the art in trust technology provides no better than partial
solutions for dealing with the issues of inequitable use of system

resources. B2-Al evaluations will address so-called "denial of service”
problems, but the presence of problems of this type will not adversely

affect the rating. That is, evaluators will look for, and report on,

attacks that can monopolize system resources or "crash” the system.
However, since no objective way yet exists to measure these effects, they do
not influence the rating. Instead, it is left to the accreditation

authority to determine the impact in his environment, and to implement any
necessary countermeasures (e.g., quota management routines, additional
auditing).

Page 15

Ref er ences
1. Continuing Education Institute, "Software-Oiented Computer
Architecture,” Course notes, 1984.

2. Departnent of Defense, Department of Defense Trusted Conputer System
Eval uation Criteria (DoD 5200. 28-STD), Decenber 1985.

3. Gasser, M, Building a Secure Conputer System Van Nostrand Rei nhol d, 1988.
4. digor, V. D, "Architectural Inplications of Abstract Data Type

| mpl enent ations, " Proceedi ngs of the International Synposium on Conputer
Architecture, Philadel phia, PA My 1977.

5. Lunt T., "Automated Audit Trail Analysis and Intrusion Detection: A
Survey," Proceedi ngs of the 11th National Conputer Security Conference,

Cct ober 1988.

6. Spafford, E. H, "The Internet Worm Program An Analysis," Purdue Techni cal
Report, CSD- TR-823, Novenber 28, 1988.

Page 16

