
A Bypass of Cohen’s Impossibility Result:
Extended Version for SSN - 29 November 2004

Jan A. Bergstra1,2 and Alban Ponse1

1 University of Amsterdam, Programming Research Group, Kruislaan 403,
1098 SJ Amsterdam, The Netherlands

www.science.uva.nl/research/prog/

2 Utrecht University, Department of Philosophy, Heidelberglaan 8,
3584 CS Utrecht, The Netherlands

www.phil.uu.nl/en/

Abstract

Detecting illegal resource access in the setting of network communication or grid computing is
similar to the problem of virus detection as put forward by Fred Cohen in 1984. We disucuss Co-
hen’s impossibility result on virus detection, and introduce “risk assessment of security hazards”,
a notion that is decidable for a large class of program behaviors.

Keywords: Malcode, Program algebra, Polarized process algebra, Virus, Worm.

1 Introduction

Virus, Worm, Trojan horse, Malcode....There is a vast amount of literature on these matters, and
opinions seem to differ wildly. Many authors agree that malcode contains all others, and that both
a virus and a worm can replicate.1 Furthermore, a worm is more autonomous than a virus. Some
authors claim that a virus can only replicate as a consequence of actions of users, and that sound
education and awareness can protect users from acting with such effect. So, a virus uses a user for
its replication; that user may or may not be a victim of the virus’ harmful action at the same time.
Unclear is if each of these users must be a human one or if background processes in a machine can
also be “used” as users.

This paper is about virus detection and discusses two fundamental questions. First, we consider
Cohen’s result about the impossibility of a uniform tool (or algorithm) for detecting viruses in all
programs [4]. This is done in the setting of the program algebra PGA [1]. Then, we define an
associated notion of testing —security hazard risk assessment— with which the occurrence of
security hazards is decidable for a large class of program behaviors. However, if divergence (the
absence of halting) is considered also as a security hazard, decidability is lost.

The paper is organized as follows: in Section 2, we introduce some basics of program algebra.
Then, in Section 3, we consider Cohen’s impossibility result and some related issues. In Section 4
we introduce our notion of security risk assessment. In Section 5 we discuss a variant of the Halting
Problem that applies to the present setting. The paper is ended with an Appendix.

2 Basics of Program Algebra

Program algebra (PGA, [1]) provides a very simple notation for sequential programs and a setting in
which programs can be systematically analyzed and mapped onto behaviors. Program behaviors are

1See Appendix A for some quotes about these topics.

1

2 Jan A. Bergstra and Alban Ponse

modeled in BPPA, Basic Polarized Process Algebra. Finally, we consider in this section some other
program notations based on program algebra.

2.1 The program Algebra PGA

In PGA we considerbasicinstructionsa, b, ..., given by some collectionB. Furthermore, for each
a ∈ B there is apositive testinstruction+a and anegative testinstruction−a. The control instruc-
tions aretermination, notation!, and (relative) jump instructions#k (k ∈ N). Program expressions
in PGA, or shortly PGA-programs, have the following syntax:

— each PGA-instruction is a PGA-program,
— if X andY are PGA-programs, so is theirconcatenationX;Y ,
— if X is a PGA-program, so is its repetitionXω.

The behavior associated with the execution of PGA-programs is explained below in Section 2.2.
Instruction congruence of programs has a simple axiomatization, given in Table 1.

Table 1: Axioms for PGA’s instruction sequence congruence

(X;Y);Z = X; (Y ;Z) (PGA1)
(Xn)ω = Xω for n > 0 (PGA2)

Xω;Y = Xω (PGA3)
(X;Y)ω = X; (Y ;X)ω (PGA4)

The axioms PGA1-4 implyUnfolding, i.e. the lawXω = X;Xω, and PGA2-4 may be replaced by
Unfolding and the proof ruleY = X;Y ⇒ Y = Xω.

2.2 BPPA, Basic Polarized Process Algebra

Execution of PGA-programs is modeled in BPPA, Basic Polarized Process Algebra. GivenB, now
considered as a collection ofactions, it is assumed that upon execution each action generates a
Boolean reply (true or false). Now, behavior is specified in BPPA by means of the following con-
stants and operations:

Termination.The constantS ∈ BPPA represents (successful) termination.

Inaction. The constantD ∈ BPPA represents the situation in which no subsequent behavior is pos-
sible. (SometimesD is calleddeadlockor divergence.)

Post conditional composition.For each actiona ∈ B and behavioral expressionsP andQ in BPPA,
the post conditional compositionP � a � Q describes the behavior that first executes action
a, and continues withP if true was generated, andQ otherwise.

Action prefix.For a ∈ B and behavioral expressionP ∈ BPPA, the action prefixa ◦ P describes
the behavior that first executesa and then continues withP , irrespective of the Boolean reply.
Action prefix is a special case of post conditional composition:a ◦ P = P � a � P .

2.3 Behavior Extraction: from PGA to BPPA

Thebehavior extractionoperator|X| assigns a behavior to programX. Instruction sequence equiv-
alent programs have of course the same behavior. Behavior extraction is defined by the thirteen
equations in Table 2, wherea ∈ B andu is a PGA-instruction.

A Bypass of Cohen’s Impossibility Result: SSN - 29/11/04 3

Table 2: Equations for behavior extraction on PGA

|!| = S
|a| = a ◦D

|+a| = a ◦D
|−a| = a ◦D

|!;X| = S
|a;X| = a ◦ |X|

|+a;X| = |X|� a � |#2; X|
|−a;X| = |#2; X|� a � |X|

|#k| = D
|#0; X| = D
|#1; X| = |X|

|#k+2;u| = D
|#k+2;u;X| = |#k+1;X|

Some examples:|(#0)ω| = |#0; (#0)ω| = D and, further taking action prefix to bind stronger than
post conditional composition,

|−a; b; c| = |#2; b; c|� a � |b; c|
= |#1; c|� a � b ◦ |c|
= |c|� a � b ◦ c ◦D
= c ◦D � a � b ◦ c ◦D.

In some cases, these equations can be applied (from left to right) without ever generating any behav-
ior, e.g.,

|(#1)ω| = |#1; (#1)ω| = |(#1)ω| = . . .

|(#2; a)ω| = |#2; a; (#2; a)ω| = |#1; (#2; a)ω| = |(#2; a)ω| = . . .

In such cases, the extracted behavior is defined asD.

It is also possible that behavioral extraction yields an infinite recursion, e.g.,|aω| = |a; aω| =
a ◦ |aω|, and therefore,

|aω| = a ◦ |aω|
= a ◦ a ◦ |aω|
= a ◦ a ◦ a ◦ |aω|
...

In such cases the behavior ofX is infinite, and can be represented by a finite number of behavioral
equations, e.g.,|(a; +b;#3;−b;#4)ω| = P and

P = a ◦ (P � b � Q),
Q = P � b � Q.

Note. Observe that the following identity holds:|X| = |X; (#0)ω|. This identity characterizes that
for a finite program object (i.e., a finite sequence of instructions), a missing termination instruction
yields inaction. Conversely, this identity makes six out of the thirteen equations in Table 2 derivable
(namely, those for programs of length 1 and the equation|#k+2;u| = D).

2.4 The program notations PGLB and PGLC

The program notation PGLB is obtained from PGA by adding backwards jumps\#k and leaving out
the repetition operator. For example,+a;#0; \#2 behaves as(+a;#0)ω. This can be defined with
help of a projection functionpglb2pga that translates PGLB-programs in a context-dependent
fashion to PGA-programs. For a PGLB-programX we write |X|pglb = |pglb2pga (X)| (see
further [1]).

The language PGLC is the variant of PGLB in which termination is modeled implicitly: a pro-
gram terminates after the last instruction has been executed and that instruction was no jump into the

4 Jan A. Bergstra and Alban Ponse

program, or after a jump outside the program. The termination instruction! is not present in PGLC.
For example,

|+a;#2; \#2; +b|pglc = |+a;#2; \#2; +b; !; !|pglb

= |(+a;#2;#6; +b; !; !; #0; #0)ω|
= P

for P = b ◦ S � a � P (see [1] for precise definitions of|X|pglc and|Y |pglb.)

3 Forecasting Security Hazards

In this section we introduce the setting in which we will analyze code security risks. We then recall
Cohen’s impossibility result on forecasting security hazards and draw some conclusions.

3.1 A Setting with Security Hazards

Let P be some behavior that uses communication with other devices — further calledreactors—
Hf , Hg andHe:

P
e−−→ He (external focus)

f ↓ ↘ g Hg (low risk focus, no security hazard)

Hf (high risk focus, security risk)

Such communication will be modelled using “focus-method” notation: the reply of a basic instruc-
tion e.m will be determined by the reactorHe. Likewise, instructions with focusf or g communicate
with Hf andHg, respectively.

Let furthermoreskipbe the identity onHf . Now, execution issecureif no f.m is called until
termination or first call of somee.m (to the external focus). A behavior can have low risk actions
(secure execution expected) and high risk actions (insecure execution expected). For example,

S — a low risk behavior,
f.skip◦ S — a high risk behavior,
f.skip◦ S � g.m � g.skip◦ S — risk depends onHg.

3.2 SHFT, a Security Hazard Forecasting Tool

In this section we discuss the impossibility of a tool (algorithm) that forecasts security hazards. Let
SHFT be a Security Hazard Forecasting Tool with focusshft, thus a reactor that forecasts a security
hazard. As assumed earlier, a security hazard is in this simple setting a call (action)f.m for some
m. Furthermore, letshft.testbe the test that uses SHFT in the following way: in

P � shft.test� Q,

the actionshft.testreturnstrue if P has a security hazard, andfalse if Q has no security hazard.

Theorem 1. A Security Hazard Forecasting Tool cannot exist.

Proof. ConsiderS � shft.test� f.skip◦ S. If the test actionshft.testreturnsfalse, f.skip◦ S will
be performed, which is a security hazard; iftrue is returned, thenS is performed and no security
hazard arises.

A Bypass of Cohen’s Impossibility Result: SSN - 29/11/04 5

The behavior in the proof above illustrates the impossibility of prediciting that a behavior (or a
program) contains a virus, a general phenomenon that was described in Cohen’s seminal 1984-paper
[4] and that will be further referred to asCohen’s impossiblity result. For the sake of completeness,
we recall Cohen’s line of reasoning. In the pseudo-code in Figure 1 (taken from [4]),D is a decision
procedure that determines whether a program is (contains) a virus,˜D stands for its negation, and
next labels the remainder of some (innocent) program.

program contradictory-virus:=
{1234567;

subroutine infect-executable:=
{loop:file = get-random-executable-file;
if first-line-of-file = 1234567 then goto loop;
prepend virus to file;
}

subroutine do-damage:=
{whatever damage is to be done}

subroutine trigger-pulled:=
{return true if some condition holds}

main-program:=
{if ˜D(contradictory-virus) then

{infect-executable;
if trigger-pulled then do-damage;
}

goto next;
}

}

Figure 1: Cohen’s programcontradictory-virus

In PGLC, the programcontradictory-virus can be represented by the following termCV:

CV = #8; Pre;#3;−shft.test(CV); \#8; Next

wherePre abbreviates the six instructions that model the security hazard:

Pre = file:=get-random-executable-file ;
+first-line-of-file=1234567 ;
\#2;
prepend ;
+trigger-pulled ;
do-damage

andNext models the remainder of the program. Applying behavior extraction on this program yields

|CV|pglc = |Next|pglc � shft.test(CV) � |Pre;#3;−shft.test(CV); \#8; Next|pglc

= |Next|pglc � shft.test(CV) � |Pre; Next|pglc.

So,S � shft.test� f.skip◦ S is indeed a faithful characterization of Cohen’s impossibility result.

Even with the aid of universal computational power, the problem whether a behavior has a secu-
rity hazard (issues anf.m call) is undecidable. In Section 5.2 we give a proof of this fact.

6 Jan A. Bergstra and Alban Ponse

3.3 Modifying SHFT

Alternatively, we can modify our definitions concerning forecasting security hazards:

1. If all code is malcode, SHFT should always returntrue. This is correct. It follows that Cohen’s
impossibility result depends on the assumption that for someP , SHFT returnsfalse.

2. We can restrict our class of behaviors: if security hazards occur only in the lefthand-sides of
behavioral expressions, as inf.skip◦ S � shft.test� S, then a negative reply (false) is always
correct (using the definition that malcode is code for which the extracted behavior contains a
security hazard).

Cohen’s impossibility result needs the notion of a secure run (no security hazards), as well as a
secure program or behavior (a behavior that will have secure runs only). So, Cohen’s impossibility
result emerges if:

— secure runs exist,
— secure programs (polarized processes) exist,
— there is a full match between these two, and
— forecasting is possible.

Now there is a difficulty with forecasting: ifshft.test returnsfalse one hopes to proceed in such a
way that the security hazard is avoided (why else do the test?). But that is not sound as was shown
above. Thus we conclude: this type of forecasting security hazards is a problematic idea for security
assessment.

Yet another perspective on these problems is to consider the option that test actionsshft.testmay
also yield a third truth valueM (Meaningless). At the same time we can avoid the problem that
thetrue-reply of the testshft.testis about a different behavior (the left-argument) as thefalse-reply,
making such a type of test (a little) more plausible. So, consider the following modification of
shft.test: in

P � shft.test2 � Q,

the actionshft.test2 returnstrue if P has a security hazard,false if bothP andQ have no security
hazard, andM in all other cases. ‘the behavior associated with the replyM can be takenD, but
other options are possible (see e.g. [3]). This seems a more consistent definition. However, in

S � shft.test2 � f.skip◦ S

the test actionshft.test2 returnsM , showing that forecasting security hazards in the style of Cohen
remains a problematic issue.

4 Security Risk Assessment

In this section we introduce asecurity risk assessmenttool, taking into account the above-mentioned
considerations. This tool turns out to be a more plausible modeling of testing the occurrence of
security hazards. However, if we add divergence (the absence of halting) as a security risk, this tool
can not exist.

4.1 SHRAT, a Security Hazard Risk Assessment Tool

The following security risk assessment tool SHRAT with focusshratmay be conceived of as assess-
ing a security hazard risk. In

P � shrat.ok� Q

A Bypass of Cohen’s Impossibility Result: SSN - 29/11/04 7

the test actionshrat.ok returnstrue if P is secure, andfalse if P is insecure (thenP is avoided and
Q is done instead). This seems to be a more rational test, because it only tests a property of a single
behavior (its left argument). Using an external focuse, the test actionshrat.ok in

(P1 � e.m � P2) � shrat.ok � Q

yieldstrue becausee.m is seen as an action that is beyond control of assessing security hazards.

For testingshrat.okactions we can employ a backtracking model: atP � shrat.ok� Q,

• temporarily remove loaded program (or behavior),

• placeP instead

• execute until

 true ⇒ commit,
external call ⇒ commit,
hazard ⇒ backtrack.

So, for a behavior(P1 � shrat.ok � P2) � shrat.ok � Q, first evaluate the leftmostshrat.ok test
action. If this yieldstrue, then the rightmost does as well, otherwise evaluateP2 �shrat.ok�Q. For
finite behaviors this is a terminating procedure, and not problematic. Some examples of the reply of
shrat.ok:

S � shrat.ok � Q ⇒ true
D � shrat.ok � Q ⇒ true
(P1 � f.m � P2) � shrat.ok � Q ⇒ false

Evaluation ofshrat.okactions can be extended to a larger class of behaviors. A polarizedregular
behavior overB is defined by a finite system of equations overP = P1, ..., Pn (for somen ≥ 1) of
the following form:

P1 = F1(P)
...
Pn = Fn(P)

with Fi(P) ::= S | D | Pi,1 � ai � Pi,2 wherePi,j ∈ {P1, ..., Pn} andai ∈ B.

ConsiderP1 � shrat.ok� Q, thusF1(P) � shrat.ok� Q. Again we can decide the outcome of
the test actionshrat.okby doing a finite number of substitutions, linear inn. (Loops and divergence
are not considered security hazards.) This leads us to the following result:

Theorem 2. For regular behaviors, the tool SHRAT is possible.

We give an example: if

P1 = P2 � a � P1

P2 = P1 � f.skip� P1 (= f.skip◦ P1),

thenshrat.ok in (P2 � a � P1) � shrat.ok� Q yieldstrue if it does in both

P1 � shrat.ok� Q andP2 � shrat.ok� Q.

Obviously, it does not in the latter case, so this behavior equalsQ.

So, evaluation of the reply ofshrat.ok is decidable for regular behaviors. This even remains
the case if a stack is added as a reactor (based on the decidability of DPDA-equivalence [5]). We
conclude that Cohen’s impossibility result does not apply in this case; apparently, that result is about
forecasting. Of course, the decidability of the reply ofshrat.ok actions is lost if a Turing Tape is
used as a reactor (see Section 5).

8 Jan A. Bergstra and Alban Ponse

4.2 Divergence Risk Assessment

If we consider divergence as a security hazard, say by focusdrat and reactor DRAT (Divergence
Risk Assessment Tool), we have a totally different situation: in the behavior defined by

P = P � drat.ok� S

we then obviously want that the test actiondrat.ok returns the answerfalse. It is well-known that (in
general) DRAT can not exist, as it would solve the Halting Problem (further discussed in Section 5).

Now, involving divergence as a security hazard inshrat.okactions, we also find that in

P = P � shrat.ok� f.m ◦ S

the test should yield false (otherwise divergence). However, this yields a problem: in

P = P � shrat.ok� S

this goes wrong: the termination problem (Turing impossibility result) “wins”, and hence the back-
tracking model is not suitable anymore. We conclude that SHRAT (a Security Hazard Risk Assess-
ment Tool) does not exist ifD (divergence) is considered a security hazard.

5 Digression: Using a Turing Machine

In this section we elaborate on a variant of the Halting Problem, which we call the Security Hazard
Property (SHP), formalizing the situation that the execution of a certain program in a certain initial
state establishes a security hazard. In order to give a concise presentation, we rely on a few notations
and explanations given in [3], and we will be very precise about the part of that paper that is used
below.

5.1 Preliminaries

Behaviors as considered in the above arise from PGA-programs (or programs in PGLB or PGLC).
A more fundamental view on generators of behavior is the so-called SPI, theSequence of Primitive
Instructions. Of course, each program in PGA, PGLB or PGLC represents a SPI, but not each
(computable) SPI can be represented by a program in one of the above-mentioned program notations,
a simple example being

a; b; a; b; b; a; b3; a; b4; ...

The above SPI defines a behavior that is not regular, and because each behavior definable by a PGA-
program (PGLC-program) is regular, it is clear that we need an extended setting to specify such
behaviors.

One such extension is the use of reactors, as was sketched in the above. In [2] we provide a formal
treatment of the (potential) interaction of a behaviorP with reactorsHe, Hg andHf . Notation for
that situation is the expression

((P/fHf)/gHg)/eHe or equivalently,P/fHf/gHg/eHe.

The operator/h (that takes as its left-argument a behavior and as its right-argument a reactor) is
called theuse operator, whereh is some dedicated focus. In the previous part of the paper we
considered all communications ofP with a reactorHh implicit and wroteP instead. In other words,
an expression likeP � h.m � Q as occurring in the previous part of this paper is considered to
abbreviate

(P � h.m � Q)/hHh,

A Bypass of Cohen’s Impossibility Result: SSN - 29/11/04 9

and this type of interaction is formalized in [2]. Furthermore, the variants of PGA and PGLC
that use instructions with a focus explicitly intended for use-applications are called PGA:FMN and
PGLC:FMN, where FMN abbreviatesfocus-method notation.

In the next section we prove that even with the availability of Turing computational power, it is
undecidable that security hazards can be predicted. For this proof we use the notation and terminol-
ogy explained in [3, Sections 3 and 4]. However, the material presented in Section 3.4 of [3] is not
used in this exposition.

5.2 Proof of the Undecidability of Virus-Detection

TheSecurity Hazard Property(SHP) can be modeled as follows: a PGLCi:FMN programp execut-
ing on the ETMT with initial configuration̂bw b (w a bit sequence) has a security hazard, notation
(p, w) ∈ SHP, if

pgaEA(|p|pglc, etmt:ETMT(b̂w b))

issues an action of the formf.m. We stipulate that programq ∈ PGLCi:FMN solvesthe question
whether(p, w) ∈ SHP in the following way:

pgaEA(|q|pglc, etmt:ETMT(b̂p;w b))

wherep is stored as a bit sequence always halts, and after halting, the tape configuration is of the
form

ETMT(b̂1σ) for someσ if pgaEA(|p|pglc, etmt:ETMT(b̂w b)) has a security hazard,
thus(p, w) ∈ SHP,

ETMT(b̂0ρ) for someρ if pgaEA(|p|pglc, etmt:ETMT(b̂w b)) has no security hazard,
i.e.,(p, w) 6∈ SHP.

Of course, it is assumed that the programq in no circumstance itself issues anf.m action, i.e.,
(q, w) 6∈ SHP for all tape configurationsw, and that its execution always terminates.

Theorem 3. The security hazard property is unsolvable by means of any program inPGLCi:FMN.

Proof. Suppose the contrary, i.e., there exists a programq ∈ PGLCi:FMN that solves SHP. Let
programs be defined as follows:

s = etmt.dup; q; r

with r = etmt.mv:right;−etmt.test:1; f.skip; etmt.mv:begin. Consider the question(s, s)
?
∈ SHP.

We show below that both assumptions(s, s) 6∈ SHP and(s, s) ∈ SHP lead to a contradiction.
Hence,s cannot exist, and thusq cannot exist.

First, assume that(s, s) 6∈ SHP. Then

pgaEA(|s|pglc, etmt:ETMT(b̂s b))

↓ τ (dup)

pgaEA(|q; r|pglc, etmt:ETMT(b̂s; s b)).

Becauseq ∈ PGLCi:FMN, the programq; r first executesq (which terminates successfully by
assumption) and then starts with the first instruction ofr. Thus,

pgaEA(|q; r|pglc, etmt:ETMT(b̂s; s b))

↓ τ (by programq)

pgaEA(|r|pglc, etmt:ETMT(b̂0σ b))

10 Jan A. Bergstra and Alban Ponse

for some stringσ. The remaining behavior is displayed in Figure 2, and results in

pgaEA(|f.skip; etmt.mv:begin|pglc, etmt:ETMT(b 0̂σ b)).

This last AnArch clearly represents a security hazard because of the first instructionf.skip, and
therefore(s, s) ∈ SHP. Contradiction.

pgaEA(|r|pglc, etmt:ETMT(b̂0σ b))
=

pgaEA(|etmt.mv:right;−etmt.test:1; f.skip; etmt.mv:begin|pglc, etmt:ETMT(b̂0σ b))

↓ τ (etmt.mv:right)

pgaEA(|−etmt.test:1; f.skip; etmt.mv:begin|pglc, etmt:ETMT(b 0̂σ b))

↓ τ (−etmt.test:1)

pgaEA(|f.skip; etmt.mv:begin|pglc, etmt:ETMT(b 0̂σ b)).

Figure 2: Critical state of the behavior in case(s, s) 6∈ SHP in the proof of Thm. 3

Now assume that(s, s) ∈ SHP. The resulting computation is displayed in Figure 3 (for some
stringρ). Here the last configuration represents halting without having executed anyf.m action, and
therefore(s, s) 6∈ SHP and again a contradiction occurs.

pgaEA(|s|pglc, etmt:ETMT(b̂s b))

↓ τ (dup)

pgaEA(|q; r|pglc, etmt:ETMT(b̂s; s b))

↓ τ (by programq)

pgaEA(|r|pglc, etmt:ETMT(b̂1ρ b))
=

pgaEA(|etmt.mv:right;−etmt.test:1; f.skip; etmt.mv:begin|pglc, etmt:ETMT(b̂1ρ b))

↓ τ (etmt.mv:right)

pgaEA(|−etmt.test:1; f.skip; etmt.mv:begin|pglc, etmt:ETMT(b 1̂ρ b))

↓ τ (−etmt.test:1)

pgaEA(|etmt.mv:begin|pglc, etmt:ETMT(b 1̂ρ b))

↓ τ (etmt.mv:begin)
√

with ETMT’s configuration:etmt:ETMT(b̂1ρ b).

Figure 3: The case that(s, s) ∈ SHP in the proof of Thm. 3

So our supposition was definitely wrong, i.e., there is no programq ∈ PGLCi:FMN that solves
the security hazard property.

A Bypass of Cohen’s Impossibility Result: SSN - 29/11/04 11

References

[1] J.A. Bergstra and M.E. Loots. Program algebra for sequential code.Journal of Logic and
Algebraic Programming, 51(2):125–156, 2002.

[2] J.A. Bergstra and A. Ponse. Combining programs and state machines.Journal of Logic and
Algebraic Programming, 51(2):175–192, 2002.

[3] J.A. Bergstra and A. Ponse. Execution architectures for program algebra. Logic Group Preprint
Series 230,http://preprints.phil.uu.nl/lgps/?lang=en , Dept. of Philoso-
phy, Utrecht University, 2004.

[4] F. Cohen. Computer viruses - theory and experiments, 1984.http://vx.netlux.org/
lib/afc01.html . Version including some corrections and references:Computers & Secu-
rity 6(1): 22-35, 1987.

[5] C.P. Stirling. Decidability of DPDA equivalence.Theoretical Computer Science, 255, 1-31,
2001.

A Appendix - Terminology and Quotes from the Web

Ball State University. What is a Computer Virus?2 A computer virus is a type of computer pro-
gram that is designed to hide in the background and replicate itself from one computer to another
by attaching itself to existing programs or parts of the operating system. Users can unknowingly
transmit a virus from one system to another by copying infected program files from one machine
to another or by using an infected program downloaded from the Internet. Computer viruses often
infect many programs on the same system or even parts of the operating system in an attempt to
spread themselves as far as possible.

A computer virus will often have a ”trigger” such as a specific date or a specific program being
run that will perform a benign event such as flashing a message on the users screen. Some viruses
will perform more malicious deeds however, deleting or scrambling users files or their entire system.
Some viruses also slow down a users system, disable certain functions, or cause erratic system
behavior.

Computer Worm (Definition).3 Worms are very similar to viruses in that they are computer pro-
grams that replicate themselves and that often, but not always, contain some functionality that will
interfere with the normal use of a computer or a program.

The difference is that unlike viruses, worms exist as separate entities; they do not attach them-
selves to other files or programs. A worm can spread itself automatically over the network from one
computer to the next. Worms take advantage of automatic file sending and receiving features found
on many computers.

Webopedia. Virus.4 A program or piece of code that is loaded onto your computer without your
knowledge and runs against your wishes. Viruses can also replicate themselves. All computer
viruses are manmade. A simple virus that can make a copy of itself over and over again is relatively
easy to produce. Even such a simple virus is dangerous because it will quickly use all available
memory and bring the system to a halt. An even more dangerous type of virus is one capable of
transmitting itself across networks and bypassing security systems.

2www.bsu.edu/ucs/article/0,1370,6254-1978-3303,00.html
3www.bsu.edu/ucs/article/0,1370,6254-1978-4488,00.html
4www.webopedia.com/TERM/v/virus.html

12 Jan A. Bergstra and Alban Ponse

Since 1987, when a virus infected ARPANET, a large network used by the Defense Department
and many universities, many antivirus programs have become available. These programs periodi-
cally check your computer system for the best-known types of viruses.

Some people distinguish between general viruses and worms. A worm is a special type of virus
that can replicate itself and use memory, but cannot attach itself to other programs.

Worm.5 A program or algorithm that replicates itself over a computer network and usually per-
forms malicious actions, such as using up the computer’s resources and possibly shutting the system
down.

Trojan horse.6 A destructive program that masquerades as a benign application. Unlike viruses,
Trojan horses do not replicate themselves but they can be just as destructive. One of the most
insidious types of Trojan horse is a program that claims to rid your computer of viruses but instead
introduces viruses onto your computer.

The term comes from a story in Homer’s Iliad, in which the Greeks give a giant wooden horse
to their foes, the Trojans, ostensibly as a peace offering. But after the Trojans drag the horse inside
their city walls, Greek soldiers sneak out of the horse’s hollow belly and open the city gates, allowing
their compatriots to pour in and capture Troy.

5www.webopedia.com/TERM/w/worm.html
6www.webopedia.com/TERM/T/Trojan_horse.html

