SFG: Furtim’s Derivative

By Joseph Landry and Udi Shamir

The Labs team at SentinelOne recently discovered a sophisticated malware campaign specifically targeting at least one European energy
company. Upon discovery, the team reverse engineered the code and believes that based on the nature, behavior and sophistication of the
malware and the extreme measures it takes to evade detection, it likely points to a nation-state sponsored initiative, potentially originating in
Eastern Europe.

The malware is most likely a dropper tool being used to gain access to carefully targeted network users, which is then used either to
introduce the payload, which could either work to extract data or insert the malware to potentially shut down an energy grid. The exploit
affects all versions of Microsoft Windows and has been developed to bypass traditional antivirus solutions, next-generation firewalls, and
even more recent endpoint solutions that use sandboxing techniques to detect advanced malware. (biometric readers are non-relevant to the
bypass / detection techniques, the malware will stop executing if it detects the presence of specific biometric vendor software).

We believe the malware was released in May of this year and is still active. It exhibits traits seen in previous nation-state Rootkits, and
appears to have been designed by multiple developers with high-level skills and access to considerable resources.

We validated this malware campaign against SentinelOne and confirmed the steps outlined below were detected by our Dynamic Behavior
Tracking (DBT) engine.

Malware Synopsis

This sample was written in @ manner to evade static and behavioral detection. Many anti-sandboxing techniques are utilized. Analysts relying
solely on sandbox solutions such as GFl and Joe Sandbox to analyze this malware will miss full functionality of the sample.

Two known exploits (CVE-2014-4113 and CVE-2015-1701) were found in the sample, as well as one UAC bypass.

The sample appears to be targeting facilities that not only have software security in place, but physical security as well. ZKTeco
(http://www.zkteco.com/ (http:/www.zkteco.com/)) is a global manufacturer of access control systems including facial recognition,
fingerprint scanners, and RFID. If the sample is run on a workstation with ZKTeco’s ZKAccess software installed, the process will prematurely
terminate. These systems would be heavily scrutinized by their administrators, and an infection on one of these machines would likely not go
unnoticed.

Two hard coded MAC addresses are checked for by the sample. A MAC address is unique 6-byte number that is burned into the chips of all
network cards. The sample will prematurely terminate if the machine it is running on has one of these two MAC addresses.

Use of low-level APl (Ntx and Rtlx) and direct system calls (INT 2Eh and CALL ntdll!KiFastSystemCall)

were used to bypass user-space hooks used by antivirus software and sandboxes. This also demonstrates the expertise of the author. Many of
these low-level APIs and system calls are undocumented/under-documented and can change between different versions of Windows. To gain
an understanding of these functions, one has to be familiar with the Windows Driver Development Kit (DDK), and also reverse-engineered
portions of the Windows operating system.

The use of indirect subroutine calls make manual static analysis nearly impossible, and manual dynamic analysis painful and slow. The author
took special care to keep this sample undetected for as long as possible.

The main goal of the sample analyzed is to run its final payload after silently removing a number of antivirus products.

Overview of Execution

The sample starts by rigorously checking its environment. If in a sandbox or under manual inspection by an analyst, the sample will
prematurely terminate. If the sample finds specific antivirus software installed, it will carefully enable and disable specific functionality to
evade behavioral detection.

In many situations, the sample will distance itself from malicious behaviors by invoking cmd.exe to do its dirty work. For example, modifying
sensitive registry values are done by invoking cmd.exe /c reg.exe Unfortunately for this sample, SentinelOne tracks the full context of
processes to determine the root cause of malicious behavior.

http://www.zkteco.com/

push offset aZktelcoZkaccess ; "\\ZKTeco\\ZKAccess\\"

push edi ; int

call [esi+global_struct.SHLWAPI_StrStriIwW] From this
test eax, eax

jnz short bad guy

point on, the sample’s goal is to remove any antivirus software before running its final payload. To accomplish this goal, the sample must be
run as administrator. Two known local privilege escalation exploits are included in the sample (CVE-2014- 4113 and CVE-2015-1701), as well as
one UAC bypass, which are used to acquire administrator access. As a last resort, the sample will use a UAC prompt to try and elevate itself to
administrator. Once the sample is running as administrator, it will add the current user to the local Administrator group, allowing it to
maintain administrator access in the future.

The sample now writes its Native Application binary to disk. Unlike regular application code, this binary can only link to ntdll.d1l. It will run
at a point in the boot-up process where some Windows subsystems are not yet initialized, and therefore can not call into normal dlls

like kernel32.d11 and user32.dl1l. This Native Application is hidden in an NTFS Alternative Data Stream (ADS) at the

path C:\Windows\Temp:1. By using ADS, the file will not be visible by normal file browsers, like explorer.exe . The Native Application is
registered to run on boot-up altering the values SetupExecute and BootExecute in the registry

key HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\\ .

To ensure the success of the Native Application, the sample will remove all filter drivers from running after reboot by removing their
associated registry entries. Filter drivers are use by anti-virus software to intercept file and network access to run static detection on the
contents of the traffic. These drivers are loaded early in the boot process, and could interfere with the execution of the Native Application.

The system is now forced to reboot, allowing the Native Application to run. The Native Application also has similar checks to tell if it is
running in a sandbox, and will terminate prematurely when one is detected.

The Native Application’s goal is to remove any anti-virus software that is installed on the system and drop its final payload. By running during
the boot process, and after the preperation that was done in the previous stage, the Native Application has full control over the system.
Removing any anti-virus is trivial at this point because the anti-virus software is not running. The Native Binary writes the final payload of the
sample to disk under the filename rdpinst.exe and registers it to be run later in the boot process by creating a registry value

in \Registry\Machine\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce.

Architecture

There is one large structure that is allocated on the heap. This structure contains mostly function pointers to external libraries and internal
function pointers. This creates a problem for static analysis. There are many indirect calls (e.g. CALL EAX) obscuring the program flow for
static analysis. This structure is passed as the first parameter to almost every function in the binary.

A large chunk of the .data region is encrypted using RC4. This encrypted region contains the string literals for the sample, creating another
problem for static analysis and static detection. Before the process is terminated, this region is re-encrypted, possibly to deter an analyst
from recovering the unencrypted contents by using memory dumps.

Included in this encrypted region are three binary blobs that are also encrypted and compressed: final payload, a Windows Native API
application; A DLL with a UAC bypass; and a 64-bit executable an exploit for CVE-2014-4113.

Reversing Techniques Used

To reverse the main sample, | developed a python script to patch out the blacklist and NOP out some test code. By placing a breakpoint on
the function that gets called to prematurely terminate the process, we were able to identify checks that failed by inspecting the return
address on the call stack.

Zeroing out the relocation size in the PE Data Directory also made jumping between IDA and OllyDBG easier because the base address of the
executable was not randomized.

Noting the destination address of indirect jumps in IDA comments made reviewing after debugging much simpler.

To debug the Native Application binary, | patched the PE Optional Header field Subsystem field from 1to 2. This changed the subsystem used
by the binary from Native to WindowsGUI . This will let the binary run after bootup is finished, instead of getting this error message:

ChlUsers\owner\Desktop\ MativeBinary.exe @

.6. The ChUsers\owner\Desktop\NativeBinary.exe application cannot be run in Win32 mode.

Ok |

“Packing”

The code of the main executable (.text segment) isn’t packed, but a region in the .data section is encrypted using RC4 with the password
“dgrChZonUF”. The RC4 implementation looks like a direct copy of the code found in the FreeBSD and XNU kernel:

o https://github.com/freebsd/freebsd/blob/master/sys/crypto/rc4/rca.c
(https://aithub.com/freebsd/freebsd/blob/master/sys/crypto/rc4/rc4.c)

« http://opensource.apple.com//source/xnu/xnu-1456.1.26/bsd/crypto/rc4/rc4.c (http://opensource.apple.com//source/xnu/xnu-
1456.1.26/bsd/crypto/rc4/rc4.c)

The only modification to the BSD RC4 implementation is the pointer to the global struct containing the function pointers to the RC4
subroutines.

After decrypting this large section, all the string literals are uncovered.

bash-3.2$ dd if=sample.exe bs=1 skip="python -c 'print 0x@0414C7C - @x401c0Q'" count=0x32e8c 2> /dev/null | ./rc4 dqrChZonUF | strings -n 25
Wowb4DisableWowb4FsRedirection
Wow64RevertiWow64FsRedirection
PsLookupProcessByProcessId
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jklmnopgrstuvwxyz@123456789+/
CaptureProcessMonitor.sys
CaptureRegistryMonitor.sys
GLlobal\KLObj_mt_avp6syncbla-blalic

Realtek RTL8139 Family PCI Fast Ethernet NIC
Realtek RTL8139C+ Fast Ethernet NIC

VMware Accelerated AMD PCNet Adapter
Microsoft Virtual Machine Bus Network Adapter
Microsoft Hyper-V Network Adapter

Adaptador de red de bus de m?quina virtual de Microsoft
VMware Virtual Ethernet Adapter for VMnet$8
VMware Virtual Ethernet Adapter for VMnetl
VirtualBox Host-Only Ethernet Adapter
QueryFullProcessImageNameW
GetSystemWindowsDirectoryW
InitializeSecurityDescriptor
SetSecurityDescriptorDacl
RtlIdentifierAuthoritySid
NtQueryInformationProcess
RtlAnsiStringToUnicodeString
Rt1AddVectoredExceptionHandler
RtlCreateSecurityDescriptor
RtlSetDaclSecurityDescriptor

Intel Celeron_4x@ (Conroe/Merom (lass Core 2)
Westmere ES56xx/L56xx/X56xx (Nehalem-C)

Intel Core 2 Duo P9xxx (Penryn Class Core 2)
Intel Core i7 9xx (Nehalem Class Core i7)
Intel Xeon E312xx (Sandy Bridge)

AMD Qpteron 240 (Gen 1 (Class Opteron)

AMD Opteron 22xx (Gen 2 Class Opteron)

AMD Opteron 23xx (Gen 3 Class Opteron)

AMD Opteron 62xx class CPU

AMD Athlon(tm) 64 Processor 3200+

Intel(R) Core(TM)2 Duo CPU

Also, there are other regions inside of this decrypted region containing more encrypted blobs, like a Matryoshka doll. These contain a Native
executable, the UAC bypass DLL, and the 64-bit implementation of the exploit for CVE-2014-4113. Furthermore, the Native binary contains
another binary blob, that is the compressed and encrypted final payload.

Team member, Caleb Fenton, correctly identified the compressed stream format used for these blobs as aPLib
(http://ibsensoftware.com/products_aPLib.htmD.

https://github.com/freebsd/freebsd/blob/master/sys/crypto/rc4/rc4.c
http://opensource.apple.com//source/xnu/xnu-1456.1.26/bsd/crypto/rc4/rc4.c
http://ibsensoftware.com/products_aPLib.html

bash-3.2$ xxd -g 1 dumped64.bin | head

0000000: 4d 38 5a 90 38 03 66 02 04 @9 71 ff

0000010: 01 40 15 c6 d8 @9 1c @e 1f ba f8 .

0000020: 21 b8 4c c@ @a 54 68 69 73 20 Qe I..L..This .prog
0000030: 67 61 87 63 47 1f 4f 74 €7 62 gam.cGn.Ot.be. .u
0000040: 5f 98 06 44 4f 7e 53 03 6d 6f 64 _.1.D0~S.mode. ..
0000050: Qa 24 44 91 @1 f5 e2 c4 d5 94 8c

0000060: 3e ec 2a d6 @c 7c¢ 8d 54 df 10 19

0000070: 06 f1 do6 Oc 1d a8 10 52 69 28 63 68

0000080: 50 45 01 64 86 06 c@ 3c 4e 2b d9 56

0000090: 22 06 @b 02 @9 3b ca 1b 14 14 43 c8

bash-3.2% ./depack < dumped64. xxd -g 1

0000000: 4d S5a 90 00 03 00 00 00 00 00

0000010: b8 00 00 00 00 00 @0 00 00 00

0000020: 00 00 00 00 00 00 00 00 00 00

0000030: 00 00 00 00 00 00 00 00 00 00

0000040: Qe 1f ba Qe 00 b4 @9 b8 01 4c

0000050: 69 73 20 70 72 6f 67 6d 20 63 1s program canno
0000060: 74 20 62 65 20 72 75 69 6e 20 t be run in DOS

0000070: 6d 6f 64 65 2e @d @d 00 00 00

0000080: 91 f5 e2 c4 d5 94 8c 94 8c 97

0000090: dc ec 1f 97 do 94 8c 94 8d 97

bash-3.25$ ||

Although RC4 isn’t an esoteric stream cipher, the decision by the author to use such a cipher shows a level of sophistication not seen in
typical crimeware.

Anti-Debug, Anti-Sandbox, Anti-AV

The sample has an overwhelming number of checks to determine if it is in a sandbox, or if an antivirus application is installed. But why would
the author go through so much trouble to evade sandboxes and AV products?

The strategy used by the author seems to be this:

« If we are running in a virtual machine, sandbox, or under manual inspection by an analyst, encrypt the .data section and terminate
prematurely.

« If we are in an environment with Anti-Virus products installed, carefully enable and disable behavoirs of the infection to avoid behavoiral
detection.

The folowing is a list of checks the sample performs in the order that they are executed.

CPUID Check

This test is the least invasive of all the tests performed. It also would be hard for a virtualization-based sandbox to detect, because the CPUID
instruction would be run on the physical CPU, and can’t be hooked.By running this test first, it will insure that the sandbox log would not
show any evidence of the process trying to inspect its environment. An analyst might dismiss the sample, because it doesn’t appear to be
trying to detect the sandbox or virtual machine.The x86 instruction CPUID will report back features of the CPU. This instruction is normally
used to check what features are supported by the CPU to avoid an “Invalid Instruction” exception before executing feature specific code. The
sample uses this instruction to find artifacts of a virtual machine When the CPUID instruction is executed and the register EAX set to
0x80000002, 0x80000003, or 0x80000004, the CPU fills registers EAX, EBX, ECX, and EDX with the “Product Brand String.” If the brand
string is found in the sample’s blacklist, the process will prematurely terminate.

Strings check by CPUID where EAX=0x8000000x:

Intel(R) Xeon(R) CPU
Common KVM processor
Common 32-bit KVM
Virtual CPU

Intel Celeron_4x0 (Conroe/Merom Class Core 2)
Westmere E56xx/L56xx/X56xx (Nehalem-C)

Intel Core 2 Duo P9xxx (Penryn Class Core 2)
Intel Core i7 9xx (Nehalem Class Core i7)
Intel Xeon E312xx (Sandy Bridge)

AMD Opteron 240 (Gen 1 Class Opteron)

AMD Opteron 22xx (Gen 2 Class Opteron)

AMD Opteron 23xx (Gen 3 Class Opteron)

AMD Opteron 62xx class CPU

Intel CPU version

Many of these CPU strings look legitimate, but are the exact strings used by KVM and QEMU.

kvm —cpu ?

x86 gemu64 QEMU Virtual CPU version 2.4.0

x86 phenom AMD Phenom(tm) 9550 Quad-Core Processor

x86 core2duo Intel(R) Core(TM)2 Duo CPU T7700 @ 2.40GHz
x86 kvm64 Common KVM processor

x86 gemu32 QEMU Virtual CPU version 2.4.0

x86 kvm32 Common 32-bit KVM processor

x86 coreduo Genuine Intel(R) CPU T2600 @ 2.16GHz
x86 486

x86 pentium

x86 pentium2

x86 pentium3

x86 athlon QEMU Virtual CPU version 2.4.0

x86 n270 Intel(R) Atom(TM) CPU N270 @ 1.60GHz

x86 Conroe Intel Celeron_4x@ (Conroe/Merom Class Core 2)
x86 Penryn 1Intel Core 2 Duo P9xxx (Penryn Class Core 2)
x86 Nehalem Intel Core i7 9xx (Nehalem Class Core i7)

x86 Westmere Westmere E56xx/L56xx/X56xx (Nehalem-C)

x86 SandyBridge Intel Xeon E312xx (Sandy Bridge)

x86 IvyBridge Intel Xeon E3-12xx v2 (Ivy Bridge)

x86 Haswell-noTSX Intel Core Processor (Haswell, no TSX)

x86 Haswell 1Intel Core Processor (Haswell)

x86 Broadwell-noTSX Intel Core Processor (Broadwell, no TSX)

x86 Broadwell 1Intel Core Processor (Broadwell)

x86 Opteron_G1 AMD Opteron 240 (Gen 1 Class Opteron)

x86 Opteron_G2 AMD Opteron 22xx (Gen 2 Class Opteron)

x86 Opteron_G3 AMD Opteron 23xx (Gen 3 Class Opteron)

x86 Opteron_G4 AMD Opteron 62xx class CPU

x86 Opteron_G5 AMD Opteron 63xx class CPU

x86 host KVM processor with all supported host features (only available in KVM mode)

If the check passes, the string is stored in the global struct for later testing.

Furthermore, the CPUID instruction can be executed with the register EAX set to 0x40000000. This will return a string that can be set by a
hypervisor.

Blacklist for CPUID where EAX=0x40000000:

VMwareVMware
XenVMMXenVMM
KVMKVMKVM
prl hyperv
Microsoft Hv

More about the CPUID can be found in the Intel Instruction Set Reference starting on page 3-

179: http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-
reference-manual-325383.pdf (http:/www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-
software-developer-instruction-set-reference-manual-325383.pdf)

Hostname Check

The sample contains a blacklist of hostnames. In the event the result of GetComputerNameW() is found in the blacklist, again, the process
terminates.

brbrb-d8fb22afl
jonathan-c561e0@
avreviewl-VMXP
vwinxp-maltest
avreview-VMSunbox
infected-system

Googling these strings brings results that suggest that they are hostnames for sandboxes and honeypots. These hostnames are also used in
other malware samples as hostname blacklists.

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf

Filename Check

By a call to GetModuleFileNameW() the sample check its filename to see if it is in a location commonly used by sandboxes:
Full string case insensitive compare:

:\xxx\sample.exe
:\sample.exe
:\Shared\dum._vxe
:\SniferFiles\sample.exe
:\virus\virus.exe
:\virus.exe

:\sampel.exe

:\setup.exe

:\runme.exe
:\VMRun\Zample.exe
:\FILE.EXE
:\run\temp.exe
:\taskrun\samples\rtktst.exe.exe
:\artifact.exe
:\manual\sunbox.exe
:\l.exe

OO0 o0 00 o0 o000 000000

String find:

malware.exe

\virus\
admin\downloads\sample_
sample_execution
mlwr_smpl.exe

Any file in this format where ‘X’ is any character.

! XXXXXXXXXXXXXXXXXXXXXXXXXXKXKXXXXXX | N XXX XXXXK=XXXX=XXXX=XXXX=XXXXXXXXXXXXXXXX !
This format apears to be a GUID string (https://en.wikipedia.org/wiki/Globally_unique_identifier). There must be some sandboxing

technology that uses this format that the author was aware of. Finally, it checks if a ‘Z:\’ drive is present, then checks for the file
‘Z:\VxStream’. This will detect if it is being run in the VxStream Sandbox (https:/www.vxstream-sandbox.com/)

Look for DLLs associated with function hooking

User-space hooking is a technique used by anti-virus to detect what could be considered malicious behavior. The technique is also used by
sandboxes to record a log of runtime behaviors of a process. The most common way of hooking a process is to inject a DLL into the process.
This hooking DLL will patch system DLLs like kernel32.dIl and ntdll.dll in memory. When the process being hooked makes a call into these
system DLLs, it will be redirected to a “detour” function inside of the injected hooking dll. If the function call is determined to be benign, the
control flow is allowed to continue into the system DLLs.

Anti-Virus products that utilize this technique tend to prefer hooking system DLLs like kernel32.d11 over ntd11l.d1l. This is because
hooking ntdll.d1l is less reliable and requires more labor to write. The interface to ntd11.d11 could change on the whim of Microsoft, and
isn’t documented well. kernel32.d11 has a more predictable and constant interface and is well documented on MSDN.

A malicious program wanting to avoid detection at runtime by a user-space hook might have some success calling directly
into ntdll.dllinstead of kernel32.d11 because the underlying ntdll.d1l functions may not be hooked.

The sample will look for injected DLLs associated with user-space hooks in its process space by making a call

to ntdll!LdrGetD11Handle() instead of the more common kernel32!GetModuleHandle() . By calling directly into the ntdll implementation,
hooks on the kernel32 layer can be avoided. If a DLL associated with hooking is discovered, the programs behavoir can be altered to
specifically avoid detection by these products.

If a DLL is found, the result is stored so that future malicious functionality can be suppressed, or specific techniques to avoid detection can be
utilized.

The hooking DLL black-list:
DLL File ameVen o
avcuf32.dll BitDefender
BgAgent.dll BullGuard
guard32.dil COMODO
wl_hook.dll Agnitum
QOEHook.dll Qurb
az2hooks32.dIl Emsisoft

Looking for Sandbox Artifacts on the File System

If any of this files or directories are found, the process terminates prematurely. These files appear to be associated with sandbox software.

https://en.wikipedia.org/wiki/Globally_unique_identifier
https://www.vxstream-sandbox.com/

